
W6 – UNIX PROCESS
SCHEDULING

Aakash Tyagi
CSCE 313 Spring 2017

Reading Reference:

Textbook: Chapter 7

Theme – What we have explored so far

 We have seen how computer and operating systems have
evolved, especially in doing multiple things at once
(concurrency and parallelism)

 We have talked about the separation of user application
space, hardware, and the middle protective layer called Kernel

 We have discussed how certain operations initiated by the
user must be intercepted and furnished by the Kernel

 We have also seen how the hardware IO devices get the
attention of the Kernel to serve Interrupts

 We have discussed the concept of a process (program in
execution) and talked about how a process can create and
execute a child process

 Finally, we have seen what a process lifecycle looks like with
the different stages a process can be in and its various
transition modes

2

Theme – What we have explored so far

 We have seen how computer and operating systems have
evolved, especially in doing multiple things at once
(concurrency and parallelism)

 We have talked about the separation of user application
space, hardware, and the middle protective layer called Kernel

 We have discussed how certain operations initiated by the
user must be intercepted and furnished by the Kernel

 We have also seen how the hardware IO devices get the
attention of the Kernel to serve Interrupts

 We have discussed the concept of a process (program in
execution) and talked about how a process can create and
execute a child process

 Finally, we have seen what a process lifecycle looks like with
the different stages a process can be in and its various
transition modes

ready running

blocked

Exit

(terminated)

Create

(new)

preempt

dispatch

I/O or event wait
I/O or

Event complete

3

Theme – What are we moving on to
next?

 Today we will ask how does a Kernel juggle the
(often) competing requirements of Performance,
Fairness, Utilization, etc. in dealing with
concurrency

Proc 1 Proc 2 Proc n

Kernel

4

Outline of the Lecture

 Scheduling policy: what to do next, when there are
multiple processes ready to run

 Or multiple packets to send, or web requests to serve,
or...

 Definitions

 response time, throughput, predictability

 Scheduling policies

 FIFO, round robin, optimal

 multilevel feedback queues as approximation of optimal

Adapted from contemporary courses in OS/Systems taught at Berkeley, UW, TAMU,

UIUC, and Rice. Special acknowledgment to Profs. Guo/Bettati at TAMU,

Joseph at Berkeley, Anderson & Dahlin (Chapter 7)

5

A Conversation about Scheduling

 You manage a web site, that suddenly becomes wildly popular. Do you?
 Buy more hardware?

 Implement a different scheduling policy?

 Turn away some users? Which ones?

 How much worse will performance get if the web site becomes even
more popular?

 When does scheduling become important?
 Multiple consumers

 Diverse needs for shared resources

 Consideration must be paid for a number of performance measures
 Customer-Centric: Response Time (wait time + service time)

 System-Centric: Response Time, Fairness, Throughput

 Overarching Goal: Minimize Response time while maximizing throughput

6

A Conversation about Scheduling

 How do these systems operate in real life –

Order counter at a fast food restaurant

Water server at a sit-down restaurant

Checkout counter at a supermarket

7

Terms and Definitions

 Task/Job

 User request: e.g., mouse click, web request, shell command, …

 Latency/response time

 How long does a task take to complete?

 Throughput

 How many tasks can be done per unit of time?

 Overhead

 How much extra work is done by the scheduler?

 Fairness

 How equal is the performance received by different users?

 Predictability

 How consistent is the performance over time?

8

More Terms and Definitions

 Workload
 Set of tasks for system to perform

 Preemptive scheduler
 If we can take resources away from a running task

 Work-conserving
 Resource is used whenever there is a task to run

 Scheduling algorithm
 takes a workload as input
 decides which tasks to do first
 Performance metric (throughput, latency) as output
 Only preemptive, work-conserving schedulers to be

considered

9

Schedulers

start

blocked

ready running
suspended

ready

suspended

blocked

long-term (admission) scheduler

medium-term (memory) scheduler

short-term (CPU) scheduler

10

CPU Scheduling

 Question: How is the OS to decide which of several
processes to take off a queue?
 Obvious queue to worry about is ready queue

11

Scheduling Assumptions

 The high-level goal: Dole out CPU time to
optimize some desired parameters of
system

USER1 USER2 USER3 USER1 USER2

Time

12

Focus: Short-Term Scheduling

 Recall: Motivation for multiprogramming -- have multiple
processes in memory to keep CPU busy.

 Typical execution profile of a process:

CPU burst

wait for I/O

CPU burst

wait for I/O

CPU burst

wait for I/O

CPU burst

start terminate

• CPU scheduler is managing the execution of CPU

bursts, represented by processes in ready or running

state.

13

Scheduling Metrics

 Waiting Time: time the job is waiting in the ready queue
 Time between job’s arrival in the ready queue and launching the

job
 Service (Execution) Time: time the job is running
 Response (Completion) Time:

 Time between job’s arrival in the ready queue and job’s
completion

 Response time is what the user sees:
 Time to echo a keystroke in editor
 Time to compile a program

Response Time = Waiting Time + Service Time

 Throughput: number of jobs completed per unit of time
 Throughput related to response time, but not same thing:

 Minimizing response time will lead to more context switching than if
you only maximized throughput

14

Scheduling Policy Goals/Criteria

 Minimize Response Time

 Minimize elapsed time to do an operation (or job)

 Maximize Throughput

 Two parts to maximizing throughput

 Minimize overhead (for example, context-switching)

 Efficient use of resources (CPU, disk, memory, etc)

 Fairness

 Share CPU among processes in some equitable way

 Fairness is not minimizing average response time

15

P1: First In First Out (FIFO) or FCFS
(First Come First Served)

 Schedule tasks in the order they arrive

 Continue running them until they complete or give up
the processor

 Example: memcached

 Facebook cache of friend lists, …

 On what workloads is FIFO particularly bad?

 One really long task, remaining tiny tasks. If the long
task comes first, the rest would wait.

16

P2: Shortest Job First (SJF)

 Always do the task that has the shortest remaining
amount of work to do
 Also called Shortest Remaining Time First (SRTF)

 Suppose we have five tasks arrive one right after each
other, but the first one is much longer than the others
 Which completes first in FIFO? Next?

 As name implies, first task in will finish first without pre-emption.
Next will be the one that came right after, and so on

 Which completes first in SJF? Next?
 The shortest task always finishes first. Next shortest task will finish

second, and so on

17

FIFO vs. SJF – Example showing
extremes

If T1 = 10, T2..T5 = 1

Average response time =

(10+11+12+13+14)/5

= 12

If T1 = 10, T2..T5 = 1

Average response time =

(1+2+3+4+14)/5

= 4.8

18

Shortest Job First

 Somehow need to predict future
 How can we do this?
 Some systems ask the user

 When you submit a job, have to say how long it will take
 To stop cheating, system kills job if takes too long

 But: even non-malicious users have trouble predicting runtime of
their jobs

 Claim: SJF is optimal for average response time
 Why? SJF always picks the shortest job; if it did not, then by definition it

would result in higher average response time. <<see notes for details>>

 For what workloads is FIFO optimal?
 Why? FIFO is optimal for jobs that have identical characteristics in which

case it does not matter who goes first.

 Does SJF have any downsides?
 Yes, SJF can lead to starvation because longer jobs would never get any

allocated resources. Imagine a supermarket that implemented SJF!

19

Predicting the Length of the Next CPU
Burst

 Adaptive: Changing policy based on past behavior
 CPU scheduling, in virtual memory, in file systems, etc.

 Works because programs have predictable behavior
 If program was I/O bound in past, likely in future

 If computer behavior were random, wouldn’t help

 Example: SRTF with estimated burst length

 Use an estimator function on previous bursts:

Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.

Estimate next burst n = f(tn-1, tn-2, tn-3, …)

 Function f could be one of many different time series
estimation schemes (Kalman filters, etc.)

20

P3: Round Robin

 Each task gets resource for a fixed period of time
(time quantum)

 If task doesn’t complete, it goes back in line

 Need to pick a time quantum

 What if time quantum is too long?

 Infinite?

 Then it will be equivalent to FCFS or FIFO

 What if time quantum is too short?

 One instruction?

 Too much overhead of swapping processes

21

Round Robin
22

Round Robin vs. FIFO

 Assuming zero-cost time slice, is Round Robin
always better than FIFO?

 No. Round robin is better for short jobs, but it is
poor for jobs that are the same length.

 What’s the worst case for Round Robin?

 CPU devoted to Overhead

23

Round Robin vs. FIFO

Average Response Time

= (21+22+23+24+25)/5

= 23

Average Response Time

= (5+10+15+20+25)/5

= 15

24

Round Robin vs. Fairness

 Is Round Robin always fair?

 round robin ensures we don’t starve, and gives

everyone a turn, but lets short tasks complete before

long tasks

25

Mixed Workload

• I/O task has to wait its turn for the CPU, and the result is that it gets a tiny fraction of the

performance it could get.

• We could shorten the RR quantum, and that would help, but it would increase overhead.

• What would this do under SJF

• Every time the task returns to the CPU, it would get scheduled immediately!

26

Discussion

 SJF is the best you can do at minimizing average
response time

 Provably optimal

 Comparison of SJF with FCFS and RR

 What if all jobs the same length?

 SJF becomes the same as FCFS (i.e., FCFS is best can
do if all jobs the same length)

 What if jobs have varying length?
 SJF (and RR): short jobs not stuck behind long ones

28

Example to illustrate benefits of SRTF

 Three jobs:
 A,B: CPU bound, each run for a week

C: I/O bound, loop 1ms CPU, 9ms disk I/O

 If only one at a time, C uses 90% of the disk, A or B use
100% of the CPU

 With FIFO:
 Once A or B get in, keep CPU for one week each

 What about RR or SRTF?
 Easier to see with a timeline

C

C’s

I/O

C’s

I/O

C’s

I/O

A or B

29

RR vs. SRTF

C’s

I/O

CABAB… C

C’s

I/O

RR 1ms time slice

C’s

I/O

C’s

I/O

CA BC

RR 100ms time slice

C’s

I/O

AC

C’s

I/O

AA

SRTF

Disk Utilization:

~90% but lots of

wakeups!

Disk Utilization:

90%

Disk Utilization:

9/201 ~ 4.5%
30

Multi-Level Feedback Scheduling

 Another method for exploiting past behavior
 First used in Cambridge Time Sharing System (CTSS)
 Multiple queues, each with different priority

 Higher priority queues often considered “foreground” tasks
 Each queue has its own scheduling algorithm

 e.g., foreground – RR, background – FCFS
 Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc.)

 Adjust each job’s priority as follows (details vary)
 Job starts in highest priority queue
 If timeout expires, drop one level

Long-Running

Compute tasks

demoted to
low priority

31

Scheduling Details

 Result approximates SRTF:
 CPU bound jobs drop like a rock
 Short-running I/O bound jobs stay near top

 Scheduling must be done between the queues
 Fixed priority scheduling:

 Serve all from highest priority, then next priority, etc.

 Time slice:
 Each queue gets a certain amount of CPU time
 e.g., 70% to highest, 20% next, 10% lowest

32

Countermeasure

 Countermeasure: user action that can foil intent of
the OS designer
 For multilevel feedback, put in a bunch of

meaningless I/O to keep job’s priority high

 Of course, if everyone did this, wouldn’t work!

 Ex: MIT Othello game project (simpler version of
Go game)
 Computer playing against competitor’s computer, so

key was to do computing at higher priority the
competitors.
 Cheater put in printf’s, ran much faster!

33

Scheduling Fairness

 What about fairness?
 Strict fixed-priority scheduling between queues is unfair

(run highest, then next, etc):
 Long running jobs may never get CPU
 In Multics, shut down machine, found 10-year-old job

 Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run

 Tradeoff: fairness gained by hurting average response
time!

 How to implement fairness?
 Could give each queue some fraction of the CPU

 What if one long-running job and 100 short-running ones?
 Like express lanes in a supermarket—sometimes express lanes

get so long, get better service by going into one of the other
lines

 Could increase priority of jobs that don’t get service
 What is done in UNIX
 This is ad hoc—what rate should you increase priorities?

34

How to Evaluate a Scheduling algorithm?

 Deterministic modeling
 Takes a predetermined workload and compute the performance

of each algorithm for that workload
 Queuing models

 Mathematical approach for handling stochastic workloads
 Implementation/Simulation:

 Build system which allows actual algorithms to be run against
actual data. Most flexible/general.

35

A Final Word On Scheduling

 When do the details of the scheduling policy and
fairness really matter?
 When there aren’t enough resources to go around

 When should you simply buy a faster computer?
 (Or network link, or expanded highway, or …)
 One approach: Buy it when it will pay

for itself in improved response time
 Assuming you’re paying for worse

response time in reduced productivity,
customer angst, etc…

 Might think that you should buy a
faster X when X is utilized 100%,
but usually, response time goes
to infinity as utilization100%

 An interesting implication of this curve:
 Most scheduling algorithms work fine in the “linear”

portion of the load curve, fail otherwise
 Argues for buying a faster X when hit “knee” of curve

Utilization

R
e
s
p

o
n

s
e
 tim

e

1
0

0
%

36

Summary

 FCFS is simple and minimizes overhead.

 If tasks are variable in size, then FCFS can have very
poor average response time.

 If tasks are equal in size, FCFS is optimal in terms of
average response time.

 Considering only the processor, SJF is optimal in terms
of average response time.

 SJF is pessimal in terms of variance in response time.

37

Summary (contd.)

 If tasks are variable in size, Round Robin approximates SJF.

 If tasks are equal in size, Round Robin will have very poor
average response time with short time slices.

 Tasks that intermix processor and I/O benefit from SJF and can
do poorly under Round Robin.

 Round Robin avoids starvation.

 By manipulating the assignment of tasks to priority queues, an
MFQ scheduler can achieve a balance between
responsiveness, low overhead, and fairness.

38

