
W6 – UNIX PROCESS
SCHEDULING

Aakash Tyagi
CSCE 313 Spring 2017

Reading Reference:

Textbook: Chapter 7

Theme – What we have explored so far

 We have seen how computer and operating systems have
evolved, especially in doing multiple things at once
(concurrency and parallelism)

 We have talked about the separation of user application
space, hardware, and the middle protective layer called Kernel

 We have discussed how certain operations initiated by the
user must be intercepted and furnished by the Kernel

 We have also seen how the hardware IO devices get the
attention of the Kernel to serve Interrupts

 We have discussed the concept of a process (program in
execution) and talked about how a process can create and
execute a child process

 Finally, we have seen what a process lifecycle looks like with
the different stages a process can be in and its various
transition modes

2

Theme – What we have explored so far

 We have seen how computer and operating systems have
evolved, especially in doing multiple things at once
(concurrency and parallelism)

 We have talked about the separation of user application
space, hardware, and the middle protective layer called Kernel

 We have discussed how certain operations initiated by the
user must be intercepted and furnished by the Kernel

 We have also seen how the hardware IO devices get the
attention of the Kernel to serve Interrupts

 We have discussed the concept of a process (program in
execution) and talked about how a process can create and
execute a child process

 Finally, we have seen what a process lifecycle looks like with
the different stages a process can be in and its various
transition modes

ready running

blocked

Exit

(terminated)

Create

(new)

preempt

dispatch

I/O or event wait
I/O or

Event complete

3

Theme – What are we moving on to
next?

 Today we will ask how does a Kernel juggle the
(often) competing requirements of Performance,
Fairness, Utilization, etc. in dealing with
concurrency

Proc 1 Proc 2 Proc n

Kernel

4

Outline of the Lecture

 Scheduling policy: what to do next, when there are
multiple processes ready to run

 Or multiple packets to send, or web requests to serve,
or...

 Definitions

 response time, throughput, predictability

 Scheduling policies

 FIFO, round robin, optimal

 multilevel feedback queues as approximation of optimal

Adapted from contemporary courses in OS/Systems taught at Berkeley, UW, TAMU,

UIUC, and Rice. Special acknowledgment to Profs. Guo/Bettati at TAMU,

Joseph at Berkeley, Anderson & Dahlin (Chapter 7)

5

A Conversation about Scheduling

 You manage a web site, that suddenly becomes wildly popular. Do you?
 Buy more hardware?

 Implement a different scheduling policy?

 Turn away some users? Which ones?

 How much worse will performance get if the web site becomes even
more popular?

 When does scheduling become important?
 Multiple consumers

 Diverse needs for shared resources

 Consideration must be paid for a number of performance measures
 Customer-Centric: Response Time (wait time + service time)

 System-Centric: Response Time, Fairness, Throughput

 Overarching Goal: Minimize Response time while maximizing throughput

6

A Conversation about Scheduling

 How do these systems operate in real life –

Order counter at a fast food restaurant

Water server at a sit-down restaurant

Checkout counter at a supermarket

7

Terms and Definitions

 Task/Job

 User request: e.g., mouse click, web request, shell command, …

 Latency/response time

 How long does a task take to complete?

 Throughput

 How many tasks can be done per unit of time?

 Overhead

 How much extra work is done by the scheduler?

 Fairness

 How equal is the performance received by different users?

 Predictability

 How consistent is the performance over time?

8

More Terms and Definitions

 Workload
 Set of tasks for system to perform

 Preemptive scheduler
 If we can take resources away from a running task

 Work-conserving
 Resource is used whenever there is a task to run

 Scheduling algorithm
 takes a workload as input
 decides which tasks to do first
 Performance metric (throughput, latency) as output
 Only preemptive, work-conserving schedulers to be

considered

9

Schedulers

start

blocked

ready running
suspended

ready

suspended

blocked

long-term (admission) scheduler

medium-term (memory) scheduler

short-term (CPU) scheduler

10

CPU Scheduling

 Question: How is the OS to decide which of several
processes to take off a queue?
 Obvious queue to worry about is ready queue

11

Scheduling Assumptions

 The high-level goal: Dole out CPU time to
optimize some desired parameters of
system

USER1 USER2 USER3 USER1 USER2

Time

12

Focus: Short-Term Scheduling

 Recall: Motivation for multiprogramming -- have multiple
processes in memory to keep CPU busy.

 Typical execution profile of a process:

CPU burst

wait for I/O

CPU burst

wait for I/O

CPU burst

wait for I/O

CPU burst

start terminate

• CPU scheduler is managing the execution of CPU

bursts, represented by processes in ready or running

state.

13

Scheduling Metrics

 Waiting Time: time the job is waiting in the ready queue
 Time between job’s arrival in the ready queue and launching the

job
 Service (Execution) Time: time the job is running
 Response (Completion) Time:

 Time between job’s arrival in the ready queue and job’s
completion

 Response time is what the user sees:
 Time to echo a keystroke in editor
 Time to compile a program

Response Time = Waiting Time + Service Time

 Throughput: number of jobs completed per unit of time
 Throughput related to response time, but not same thing:

 Minimizing response time will lead to more context switching than if
you only maximized throughput

14

Scheduling Policy Goals/Criteria

 Minimize Response Time

 Minimize elapsed time to do an operation (or job)

 Maximize Throughput

 Two parts to maximizing throughput

 Minimize overhead (for example, context-switching)

 Efficient use of resources (CPU, disk, memory, etc)

 Fairness

 Share CPU among processes in some equitable way

 Fairness is not minimizing average response time

15

P1: First In First Out (FIFO) or FCFS
(First Come First Served)

 Schedule tasks in the order they arrive

 Continue running them until they complete or give up
the processor

 Example: memcached

 Facebook cache of friend lists, …

 On what workloads is FIFO particularly bad?

 One really long task, remaining tiny tasks. If the long
task comes first, the rest would wait.

16

P2: Shortest Job First (SJF)

 Always do the task that has the shortest remaining
amount of work to do
 Also called Shortest Remaining Time First (SRTF)

 Suppose we have five tasks arrive one right after each
other, but the first one is much longer than the others
 Which completes first in FIFO? Next?

 As name implies, first task in will finish first without pre-emption.
Next will be the one that came right after, and so on

 Which completes first in SJF? Next?
 The shortest task always finishes first. Next shortest task will finish

second, and so on

17

FIFO vs. SJF – Example showing
extremes

If T1 = 10, T2..T5 = 1

Average response time =

(10+11+12+13+14)/5

= 12

If T1 = 10, T2..T5 = 1

Average response time =

(1+2+3+4+14)/5

= 4.8

18

Shortest Job First

 Somehow need to predict future
 How can we do this?
 Some systems ask the user

 When you submit a job, have to say how long it will take
 To stop cheating, system kills job if takes too long

 But: even non-malicious users have trouble predicting runtime of
their jobs

 Claim: SJF is optimal for average response time
 Why? SJF always picks the shortest job; if it did not, then by definition it

would result in higher average response time. <<see notes for details>>

 For what workloads is FIFO optimal?
 Why? FIFO is optimal for jobs that have identical characteristics in which

case it does not matter who goes first.

 Does SJF have any downsides?
 Yes, SJF can lead to starvation because longer jobs would never get any

allocated resources. Imagine a supermarket that implemented SJF!

19

Predicting the Length of the Next CPU
Burst

 Adaptive: Changing policy based on past behavior
 CPU scheduling, in virtual memory, in file systems, etc.

 Works because programs have predictable behavior
 If program was I/O bound in past, likely in future

 If computer behavior were random, wouldn’t help

 Example: SRTF with estimated burst length

 Use an estimator function on previous bursts:

Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.

Estimate next burst n = f(tn-1, tn-2, tn-3, …)

 Function f could be one of many different time series
estimation schemes (Kalman filters, etc.)

20

P3: Round Robin

 Each task gets resource for a fixed period of time
(time quantum)

 If task doesn’t complete, it goes back in line

 Need to pick a time quantum

 What if time quantum is too long?

 Infinite?

 Then it will be equivalent to FCFS or FIFO

 What if time quantum is too short?

 One instruction?

 Too much overhead of swapping processes

21

Round Robin
22

Round Robin vs. FIFO

 Assuming zero-cost time slice, is Round Robin
always better than FIFO?

 No. Round robin is better for short jobs, but it is
poor for jobs that are the same length.

 What’s the worst case for Round Robin?

 CPU devoted to Overhead

23

Round Robin vs. FIFO

Average Response Time

= (21+22+23+24+25)/5

= 23

Average Response Time

= (5+10+15+20+25)/5

= 15

24

Round Robin vs. Fairness

 Is Round Robin always fair?

 round robin ensures we don’t starve, and gives

everyone a turn, but lets short tasks complete before

long tasks

25

Mixed Workload

• I/O task has to wait its turn for the CPU, and the result is that it gets a tiny fraction of the

performance it could get.

• We could shorten the RR quantum, and that would help, but it would increase overhead.

• What would this do under SJF

• Every time the task returns to the CPU, it would get scheduled immediately!

26

Discussion

 SJF is the best you can do at minimizing average
response time

 Provably optimal

 Comparison of SJF with FCFS and RR

 What if all jobs the same length?

 SJF becomes the same as FCFS (i.e., FCFS is best can
do if all jobs the same length)

 What if jobs have varying length?
 SJF (and RR): short jobs not stuck behind long ones

28

Example to illustrate benefits of SRTF

 Three jobs:
 A,B: CPU bound, each run for a week

C: I/O bound, loop 1ms CPU, 9ms disk I/O

 If only one at a time, C uses 90% of the disk, A or B use
100% of the CPU

 With FIFO:
 Once A or B get in, keep CPU for one week each

 What about RR or SRTF?
 Easier to see with a timeline

C

C’s

I/O

C’s

I/O

C’s

I/O

A or B

29

RR vs. SRTF

C’s

I/O

CABAB… C

C’s

I/O

RR 1ms time slice

C’s

I/O

C’s

I/O

CA BC

RR 100ms time slice

C’s

I/O

AC

C’s

I/O

AA

SRTF

Disk Utilization:

~90% but lots of

wakeups!

Disk Utilization:

90%

Disk Utilization:

9/201 ~ 4.5%
30

Multi-Level Feedback Scheduling

 Another method for exploiting past behavior
 First used in Cambridge Time Sharing System (CTSS)
 Multiple queues, each with different priority

 Higher priority queues often considered “foreground” tasks
 Each queue has its own scheduling algorithm

 e.g., foreground – RR, background – FCFS
 Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc.)

 Adjust each job’s priority as follows (details vary)
 Job starts in highest priority queue
 If timeout expires, drop one level

Long-Running

Compute tasks

demoted to
low priority

31

Scheduling Details

 Result approximates SRTF:
 CPU bound jobs drop like a rock
 Short-running I/O bound jobs stay near top

 Scheduling must be done between the queues
 Fixed priority scheduling:

 Serve all from highest priority, then next priority, etc.

 Time slice:
 Each queue gets a certain amount of CPU time
 e.g., 70% to highest, 20% next, 10% lowest

32

Countermeasure

 Countermeasure: user action that can foil intent of
the OS designer
 For multilevel feedback, put in a bunch of

meaningless I/O to keep job’s priority high

 Of course, if everyone did this, wouldn’t work!

 Ex: MIT Othello game project (simpler version of
Go game)
 Computer playing against competitor’s computer, so

key was to do computing at higher priority the
competitors.
 Cheater put in printf’s, ran much faster!

33

Scheduling Fairness

 What about fairness?
 Strict fixed-priority scheduling between queues is unfair

(run highest, then next, etc):
 Long running jobs may never get CPU
 In Multics, shut down machine, found 10-year-old job

 Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run

 Tradeoff: fairness gained by hurting average response
time!

 How to implement fairness?
 Could give each queue some fraction of the CPU

 What if one long-running job and 100 short-running ones?
 Like express lanes in a supermarket—sometimes express lanes

get so long, get better service by going into one of the other
lines

 Could increase priority of jobs that don’t get service
 What is done in UNIX
 This is ad hoc—what rate should you increase priorities?

34

How to Evaluate a Scheduling algorithm?

 Deterministic modeling
 Takes a predetermined workload and compute the performance

of each algorithm for that workload
 Queuing models

 Mathematical approach for handling stochastic workloads
 Implementation/Simulation:

 Build system which allows actual algorithms to be run against
actual data. Most flexible/general.

35

A Final Word On Scheduling

 When do the details of the scheduling policy and
fairness really matter?
 When there aren’t enough resources to go around

 When should you simply buy a faster computer?
 (Or network link, or expanded highway, or …)
 One approach: Buy it when it will pay

for itself in improved response time
 Assuming you’re paying for worse

response time in reduced productivity,
customer angst, etc…

 Might think that you should buy a
faster X when X is utilized 100%,
but usually, response time goes
to infinity as utilization100%

 An interesting implication of this curve:
 Most scheduling algorithms work fine in the “linear”

portion of the load curve, fail otherwise
 Argues for buying a faster X when hit “knee” of curve

Utilization

R
e
s
p

o
n

s
e
 tim

e

1
0

0
%

36

Summary

 FCFS is simple and minimizes overhead.

 If tasks are variable in size, then FCFS can have very
poor average response time.

 If tasks are equal in size, FCFS is optimal in terms of
average response time.

 Considering only the processor, SJF is optimal in terms
of average response time.

 SJF is pessimal in terms of variance in response time.

37

Summary (contd.)

 If tasks are variable in size, Round Robin approximates SJF.

 If tasks are equal in size, Round Robin will have very poor
average response time with short time slices.

 Tasks that intermix processor and I/O benefit from SJF and can
do poorly under Round Robin.

 Round Robin avoids starvation.

 By manipulating the assignment of tasks to priority queues, an
MFQ scheduler can achieve a balance between
responsiveness, low overhead, and fairness.

38

