Reading Reference:
Textbook: Chapter 7

W6 — UNIX PROCESS
SCHEDULING

Aakash Tyagi
CSCE 313 Spring 2017

Theme — What we have explored so far

We have seen how computer and operating systems have
evolved, especially in doing multiple things at once
(concurrency and parallelism)

We have talked about the separation of user application
space, hardware, and the middle protective layer called Kernel

We have discussed how certain operations initiated by the
user must be intercepted and furnished by the Kernel

We have also seen how the hardware |O devices get the
attention of the Kernel to serve Interrupts

We have discussed the concept of a process (program in
execution) and talked about how a process can create and
execute a child process

Finally, we have seen what a process lifecycle looks like with
the different stages a process can be in and its various
transition modes

Theme — What we have explored so far

o We have seen how computer and operating systems have

evolved, especially in doing multiple things at once
(concurrency and parallelism)

0o We have talked about the separation of user application
space, hardvvare and the middle protective layer called Kernel

|:| We hay ssed h iIn oper initiated by the
ercepted and fur%
have SO e_m e 10 devices
rogram in

OW a process can create and

execution) and talke
execute a child process

o Finally, we have seen what a process lifecycle looks like with
the different stages a process can be in and its various
transition modes

Theme — What are we moving on to

next?

0 Today we will ask how does a Kernel juggle the
(often) competing requirements of Performance,
Fairness, Utilization, etc. in dealing with

concurrency
C :

Outline of the Lecture

T

0 Scheduling policy: what to do next, when there are
multiple processes ready to run

o Or multiple packets to send, or web requests to serve,
or...

0 Definitions
o response time, throughput, predictability
0 Scheduling policies
o FIFO, round robin, optimal
o multilevel feedback queues as approximation of optimal

Adapted from contemporary courses in OS/Systems taught at Berkeley, UW, TAMU,
UIUC, and Rice. Special acknowledgment to Profs. Guo/Bettati at TAMU,
Joseph at Berkeley, Anderson & Dahlin (Chapter 7)

A Conversation about Scheduling
I T

0 You manage a web site, that suddenly becomes wildly popular. Do you?
o Buy more hardware?
o Implement a different scheduling policy?
o Turn away some users? Which ones?

0 How much worse will performance get if the web site becomes even
more popular?

0 When does scheduling become important?
o Multiple consumers
o Diverse needs for shared resources
0 Consideration must be paid for a number of performance measures
o Customer-Centric: Response Time (wait time + service time)
o System-Centric: Response Time, Fairness, Throughput
0 Overarching Goal: Minimize Response time while maximizing throughput

A Conversation about Scheduling
I
0 How do these systems operate in real life —
o Order counter at a fast food restaurant

o Water server at a sit-down restaurant
o Checkout counter at a supermarket

Terms and Definitions

o Task/Job

o User request: e.g., mouse click, web request, shell command, ...
0 Latency/response time

o How long does a task take to complete?
0 Throughput

o How many tasks can be done per unit of time?
0 Overhead

o How much extra work is done by the scheduler?
o Fairness

o How equal is the performance received by different users?
0 Predictability

o How consistent is the performance over time?

More Terms and Definitions

o 4
0 Workload
o Set of tasks for system to perform
0 Preemptive scheduler
o If we can take resources away from a running task
0 Work-conserving
o Resource is used whenever there is a task to run
o0 Scheduling algorithm
o takes a workload as input
o decides which tasks to do first

o Performance metric (throughput, latency) as output

o Only preemptive, work-conserving schedulers to be
considered

Schedulers

long-term (admission) scheduler

short-term (CPU) scheduler

suspended
ready

A

suspended
blocked .\ Plocked

medium-term (memory) scheduler

CPU Scheduling

f ready queue » CPU
I/O queue * I/O request +
time slice «

expired

child fork a B
executes child h
interrupt wait for an P
occurs interrupt)

0 Question: How is the OS to decide which of several
processes to take off a queue?

o Obvious queue to worry about is ready queue

Scheduling Assumptions

0 The high-level goal: Dole out CPU time to
optimize some desired parameters of
system

st s e s v

TIMe —

Focus: Short-Term Scheduling
I T

0 Recall: Motivation for multiprogramming -- have multiple
processes in memory to keep CPU busy.

0 Typical execution profile of a process:

start
I

I | wait for 1/0

CPU burst

CPU burst

wait for I/0

CPU burst

wait for I/0

terminate
|

CPU burst

« CPU scheduler is managing the execution of CPU
bursts, represented by processes in ready or running

State.

Scheduling Metrics

12—

0 Waiting Time: time the job is waiting in the ready queue

O ,Tirk?e between job’s arrival in the ready queue and launching the
jo

0 Service (Execution) Time: time the job is running

0 Response (Completion) Time:

o Time between job’s arrival in the ready queue and job’s
completion

o Response time is what the user sees:
m Time to echo a keystroke in editor
m Time to compile a program

Response Time = Waiting Time + Service Time

0 Throughput: number of jobs completed per unit of time

o Throughput related to response time, but not same thing:

m Minimizing response time will lead to more context switching than if
you only maximized throughput

Scheduling Policy Goals/Criteria

I T
o Minimize Response Time
o Minimize elapsed time to do an operation (or job)

o Maximize Throughput

o Two parts to maximizing throughput
= Minimize overhead (for example, context-switching)
m Efficient use of resources (CPU, disk, memory, etc)

o Fairness
o Share CPU among processes in some equitable way
o Fairness Is not minimizing average response time

P1: First In First Out (FIFO) or FCFS

SFirst Come First Servedi

0 Schedule tasks in the order they arrive

o Continue running them until they complete or give up
the processor

0 Example: memcached
o Facebook cache of friend lists, ...

0 On what workloads is FIFO particularly bad?

o One really long task, remaining tiny tasks. If the long
task comes first, the rest would wait.

P2: Shortest Job First (SJF)

I
0 Always do the task that has the shortest remaining
amount of work to do

o Also called Shortest Remaining Time First (SRTF)

0 Suppose we have five tasks arrive one right after each
other, but the first one is much longer than the others

o Which completes first in FIFO? Next?

m As name implies, first task in will finish first without pre-emption.
Next will be the one that came right after, and so on

o Which completes first in SJF? Next?

m The shortest task always finishes first. Next shortest task will finish
second, and so on

FIFO vs. SIF — Example showing

extremes
i P

If T1 =10,T2.T5=1

Tasks FIFO
Average response time =

iy | (10+11+12+13+14)/5
2}] =12
(3} [
(4} []
5k D

SJF
(1 |
=2 [FT1 =10, T2.T5 =1
(3} [Average response time =
4} D (1+2+3+4+14)/5
(5} L] =48

T
-

Time

Shortest Job First

T
o Somehow need to predict future

o How can we do this?

o Some systems ask the user
= When you submit a job, have to say how long it will take
m To stop cheating, system Kkills job if takes too long

o I?ﬁut: even non-malicious users have trouble predicting runtime of
their jobs

o Claim: SJF is optimal for average response time

o Why? SJF always picks the shortest job; if it did not, then by definition it
would result in higher average response time. <<see notes for details>>

0 For what workloads is FIFO optimal?

o Why? FIFO is optimal for jobs that have identical characteristics in which
case it does not matter who goes first.

0 Does SJF have any downsides?

o Yes, SIF can lead to starvation because longer jobs would never get any
allocated resources. Imagine a supermarket that implemented SJF!

Predicting the Length of the Next CPU

Burst
o Adaptive: Changing policy based on past behavior
CPU scheduling, in virtual memory, in file systems, etc.

Works because programs have predictable behavior
m |[f program was I/O bound in past, likely in future
= [f computer behavior were random, wouldn'’t help

o Example: SRTF with estimated burst length
Use an estimator function on previous bursts:

Lett ., t ., t a5 etc. be previous CPUr=r=tte=t

Estimate next burst t, = f(t, ,, t.,, {3 \ f
Function f could be one of many diffe: -

estimation schemes (Kalman filters, { .|

P3: Round Robin

N
0 Each task gets resource for a fixed period of time
(time quantum)

o If task doesn’t complete, it goes back in line

0 Need to pick a time quantum
o What if time quantum is too long?

m Infinite?
m Then it will be equivalent to FCFS or FIFO

o What if time quantum is too short?

m One instruction?
m Too much overhead of swapping processes

Round Robin

e

Tasks Round Robin {1 ms time slice)

(1} D rest of task 1

@[]

(3} []

4} []
(5) []

Round RBobin (100 ms time slica)

(1} rest of task 1

(2}]
(3) []

(4} []
(5} []

N

Time

Round Robin vs. FIFO

I T
0 Assuming zero-cost time slice, is Round Robin
always better than FIFO?

o No. Round robin is better for short jobs, but it is
poor for jobs that are the same length.

0o What’s the worst case for Round Robin?
o CPU devoted to Overhead

Round Robin vs. FIFO

2

Tasks Found Robin {1 ms time slice) .
Average Response Time

(1) I: I: I: D I: : (2231 +22+23+24+25)/5
@ | |] |
e

g O o 0O 0 0O
s L L U L L

FIFO and SJF

1 Average Response Time
(1 = (5+10+15+20+25)/5
(2} =15

(3}

(<)

(5}

W

Time

Round Robin vs. Fairness

I
0 Is Round Robin always fair?

0 round robin ensures we don t starve, and gives
everyone a turn, but lets short tasks complete before
long tasks

Mixed Workload

e 000
L'

Tasks 10
\l/{nmpletEE \]/i:-:urnpletes.
iobound []]

T ™

ISSLES gets
[0 CPU
request
CFU bound
CFU bound
>
Time

 1/O task has to wait its turn for the CPU, and the result is that it gets a tiny fraction of the
performance it could get.
« \We could shorten the RR quantum, and that would help, but it would increase overhead.
« What would this do under SJF

« Every time the task returns to the CPU, it would get scheduled immediately!

Discussion

I T
o SJF is the best you can do at minimizing average
response time
o Provably optimal

o Comparison of SJF with FCFS and RR

o What if all jobs the same length?

m SJF becomes the same as FCFS (i.e., FCFS is best can
do if all jobs the same length)

o What if jobs have varying length?
m SJF (and RR): short jobs not stuck behind long ones

Example to illustrate benefits of SRTF

0
_ Cs Cs OC’s
o Three jobs: o 1o 1o

o A,B: CPU bound, each run for a week
C: I/0 bound, loop 1ms CPU, 9ms disk I/O

o If only one at a time, C uses 90% of the disk, A or B use
100% of the CPU

o With FIFO:
o Once A or B get in, keep CPU for one week each

0 What about RR or SRTF?
o Easier to see with a timeline

RR vs. SRTF

N Disk Utilization:
= C A B 9/201 ~ 4.5% J
| I |
| | 1 \
Cs RR 100ms time slice Disk Utilization:
/O ~90% but lots of
wakeups! y
CABAB... C
W
i 1 . .
—_—— RR 1ms time slice
C’s C’s
1/0 1/0
Disk Utilization:
C A A A 90%
| |
|
—_— SRTF
Cs C’s

/1O 1/O

Multi-Level Feedback Scheduling

> quantum = 8
Long-Running
L i Compute tasks
il demoted to
low priority
_»,(FCFS
o Another method for exploiting past behavior

First used in Cambridge Time Sharing System (CTSS)

Multiple queues, each with different priority
m Higher priority queues often considered “foreground” tasks

Each queue has its own scheduling algorithm
meq., foreground RR, background — FCFS

= Sometimes myltiple RR rlorities with quantum increasing
exponentlally%g estl S, next:2ms, next: 4ms, etc.

o Adjust each job’s priority as follows (detalls vary)

Job starts in highest priority queue
If timeout expires, drop one level

Scheduling Details
N T

0 Result approximates SRTF:
o CPU bound jobs drop like a rock
o Short-running I/O bound jobs stay near top

0 Scheduling must be done between the queues
o Fixed priority scheduling:
m Serve all from highest priority, then next priority, etc.
o Time slice:

m Each queue gets a certain amount of CPU time
me.g., 70% to highest, 20% next, 10% lowest

Countermeasure

o Countermeasure: user action that can foll intent of
the OS designer

For multilevel feedback, put in a bunch of
meaningless |/O to keep job’s priority high

Of course, if everyone did this, wouldn’t work!

o Ex: MIT Othello game project (simpler version of
Go game)
Computer playing against competitor’'s computer, so
key was to do computing at higher priority the
competitors.

m Cheater put in printf’s, ran much faster!

Scheduling Fairness

o What about fairness?
trict fixed-priority scheduling between gueues is unfair
au ‘1)i'n SP, then next, etcs'g X
= Long running jobs may never get CPU
= In Multics, shut down machine, found 10-year-old job
Must R/e Ionlg-r%nln? OBS a fraction of the CPU even
whenthere are shorte Jo S to run

;ll'rrﬁgleoff: fairness gained by hurting average response

o How to implement fairness?

Could give each queue some fraction of the CPU
= What if one long-running job and 100 short-running ones?

m Like express lanes in a supermarket—sometimes eﬁpre s lanes
ﬁégo ong, get better service by going into one of the other

Could increase priority of jobs that don’t get service
= What is done in UNIX
m This is ad hoc—what rate should you increase priorities?

How to Evaluate a Scheduling algorithm?

0 Deterministic modeling

o Takes a predetermined workload and compute the performance
of each algorithm for that workload

0 Queuing models
o Mathematical approach for handling stochastic workloads
o0 Implementation/Simulation:

o Build system which allows actual algorithms to be run against
actual data. Most flexible/general.

. . performance
simulation —» statistics

for FCFS

CPU 10
o 21
actual €Rl) 2
process —=|lI/0 112
execution cFlU 2
o) T4y
(IR 178

. . performance
simulation = statistics

for SJF

trace tape

oy

. . performance
simulation —>» statistics

for RR (g = 14)
BR (g = 14)

A Final Word On Scheduling

o When do thﬁ details of the scheduling policy and

alrness really matter?

When there aren’t enough resources to go around
o When should you simply buy a faster computer?

(Or network link, or expanded highway,

ne approach: Buy it when it will pa
%r |ts¢§P IN |mprov3/d response tlm% Y
= Assuming ?/ou’re Pa in% for wgrse. .
response time In reduced productivity,
customer angst, eftc...
Il ig[ht think that you should buy a
aster X when X'is utilized 100%,

ut ysually, response time goes
to mlflnlty Zs utlﬁzatlon:>10 %

o An interesting implication of this curv

awl asuodsay

Utilization

%00T

Most sche lé'%%g'gorith,rqswo[:]k fine in the “linear”

portion of t urve, fail otherwise

Argues for buying a faster X when hit “knee” of curve

Summary
I
0 FCFS is simple and minimizes overhead.

0 If tasks are variable in size, then FCFS can have very
poor average response time.

0 If tasks are equal in size, FCFS is optimal in terms of
average response time.

0 Considering only the processor, SIF is optimal in terms
of average response time.

0 SJF is pessimal in terms of variance in response time.

Summary (contd.)
I

O

O

If tasks are variable in size, Round Robin approximates SJF.

If tasks are equal in size, Round Robin will have very poor
average response time with short time slices.

Tasks that intermix processor and 1/O benefit from SJF and can
do poorly under Round Robin.

Round Robin avoids starvation.

By manipulating the assignment of tasks to priority queues, an
MFQ scheduler can achieve a balance between
responsiveness, low overhead, and fairness.

