Machine Problem 4: The UNIX Shell (Due: 03/10/17)

Introduction:
Most useful interaction with a UNIX system occurs through the shell. Using a series of

easy to remember and simple commands, one can navigate the UNIX file system and
issue commands to perform a wide variety of tasks. Even though it may appear simple,
the shell encapsulates many significant components of the operating system.

Basic Shell Features:
Environment

The shell maintains many variables which allow the user to maintain settings and easily
navigate the filesystem. Two of these that are particularly important are the current
working directory and the PATH. As its name implies, the current working directory
variable keeps track of the user's current directory. The PATH variable consists of string
of colon separated pathnames. Whenever you type a name of a command, the kernel
searches in the directories specified by the PATH variable starting with the leftmost
directory first. If the executable is not found in any of the specified directories, then the
shell returns with an error. One may modify the PATH at any time to add and remove
directories to search for executables.

tman@karibot:-$ pwc
me/ak1rfman

rfmangkaribot:~$ echo $PATH
r/localsbin: fusr/bin: fbin: fusr

Figure 1 -- Current Directory & PATH (echo is a built-in command in the bash and C
shells that writes its arguments to standard output.)

Pipelining

UNIX provides a variety of useful programs for you to use (grep, Is, echo, to name a
few). Like instructions in C++, these programs tend to be quite effective at doing one
specific thing (Such as grep searching text, Is printing directories, and echo printing text
to the console). However, programmers/OS users would like to accomplish large tasks
consisting of many individual operations. Doing such requires using results from
previous steps in order to complete a larger problem. The UNIX shell supports this
through the pipe operation (represented by the character \vert). A pipe inbetween two
commands causes the standard output of one to be redirected into the standard input
of another. An example of this is provided below, using the pipe operation to search for
all processes with the name "bash".

akirfmang@karibot:-$ ps -elf | grep "bastk -v grep | awk '{print$lo}"

Figure 2 -- Piping Between Commands

Input/Output Redirection
Many times, the output of a program is not intended for immediate human consumption
(if at all). Even if someone isn't intending to look at the output of your program, it is still
immensely helpful to have it print out status/logging messages during execution. If
something goes wrong, those messages can be reviewed to help pinpoint bugs. Since it is
impractical to have all messages from all system programs print out to a screen to be
reviewed at a later date, sending that data to a file as it is printed is desired.

Other times, a program might require an extensive list of input commands. It would be
an unnecessary waste of programmer time to have to sit and type them out individually.
Instead, pre-written text in a file can be redirected to serve as the input of the program as
if it were entered in the terminal window.

In short, the shell implements input redirection by redirecting the standard input of a
program to an file opened for reading. Similarly, output redirection is implemented by
changing the standard output (and sometimes also standard error) to point to a file opened
for writing.

akirfmangkaribot:-$ echo "This text will go to a file" = temp.txt
akirfmangkaribot:~% cat temp.txt
This text will go to a file

akirfman@karihﬂi: cat < templ.txt
This text came from a file

Figure 3 -- Input/Output Redirection (http./www.linfo.org/cat.html)

http://www.linfo.org/cat.html

Assignment:

For this assignment, you are to design a simple shell which implements a subset of the
functionality of the Bourne Again Shell (Bash). The requirements for your shell are as
follows:

1. Continually prompt for textual user input on a command line.

2. Parse user input according the the provided grammar (see Table 1 below)

3. When a user enters a well formed command, execute it in the same way as a shell.

4. You must use the commands fork and exec to accomplish this. You may NOT
use the C++ system() command.

5. Allow users to pipe the standard output from one command to the input of another
an arbitrary number of times.

6. Support input redirection from a file and output redirection to a file.

7. Allow users to specify whether the process will run in the background or
foreground using an '&'. (Commands to run in the foreground do not have an '&',
and commands that run in the background do)

8. (Bonus) Allow users to specify a custom prompt which supports printing the
current directory, username, current date, and current time.

valid string = unix_command PIPE unix command || unix command REDIRECTION
filename || unix _ command AMP || unix command || special command

unix_command = command name PIPE command name ARGS
special command = cd DIRECTORY || exit

command name = any valid executable/interpreted filename
AMP =&

ARG = string

ARGS = ARG ARGS || ARG

DIRECTORY = absolute path || relative path

PIPE = |

REDIRECTION =< || >

Table 1 -- Simple Shell Grammar

Advanced Concepts:
File Pathnames
The UNIX filesystem is organized as a giant tree. Leaf nodes are files, and non-leaf

nodes are directories which either contain files or other directories. The highest node in
the tree is root, denoted by a forward slash (/). All other files/directories in the system
are child nodes of the root node.

Filenames in a UNIX system are specified by a pathname (such as /bin/bash stating that
the file bash is inside the directory bin which is inside of root). Pathnames are provided
either as absolute pathnames, which are given relative to the root of the filesystem (Ex:
/ust/bin/env), or as relative, which are specified relative to the current working directory
(../../andrew/homework/CSCE\ 313).

Side note: UNIX contains two special paths present in each directory. A single dot stands
for the current directory, and two dots stands for the parent directory. To see these, type
the command Is -1 into a shell.

Process Address Space
The address space of a process is usually divided up into 4 regions, stack segment,
dynamic data, static data, and text segment (See Figure #4).

All code pertaining to the execution of the program is contained in the text segment.
Program data is stored in two sections depending on the type. Static data (global
variables and constants) is defined before the execution of the program. As a result, this
segment is of a fixed size which can be allocated on loading. Dynamic data contains all
data allocated to the process through calls to malloc/new. Since this changes continually
throughout the process's life cycle, this section of the address space grows towards higher
addresses and shrinks back towards lower addresses. Finally, the stack contains data
pertaining to function calls. As with the dynamic data segment, the stack must grow and
shrink with the execution of a process. Therefore, the stack grows downwards from high
addresses towards lower ones and shrinks back to high addresses.

OXFFFFFFFF Stack

l
T

Dynamic Data
(heap)

Static Data

Text
(Program Code)

0x00000000 Reserved

Figure 4 -- Simple Address Space

UNIX man Pages:
One incredibly useful feature of UNIX operating systems that many new developers do
not know about is the built in manual system. Using the command 'man', you can access
information about most aspects of the operating system from general commands all the
way to system call APIs.

The structure of man pages in UNIX are organized into sections by number follows
(Wikimedia Foundation):

General Commands

System Calls

Library Functions (Specifically, the C standard library)
Special Files

File Formats

Games

Miscellanea

XN R WD =

System Administration

You may find the following manual pages useful when creating this assignment. Each
one of these lines can be executed as a valid shell command to open a particular manual
page. Note, the number indicates the manual section that that function resides.

man 3 exec
man 2 fork
man 2 chdir
man 2 pipe

man 2 dup

Grading Rubric:

In MP4, we will test your shell with 9 different test
1. SimpleCommandl [10 points]
a. lIs-t
2. SimpleCommand2 [10 points]
a. pwd -t
3. SimpleArguments] [10 points]
a. Is-la-t
4. SimpleArguments2 [10 points]
a. df-h
5. Redirection [15 points]
a. Hello World > temp_shell
b. Cat <temp_ shell
6. multipleArgs [10 points]
a. Hello World > temp_shell
b. tar -c -v -f temp.tar temp_shell

e

Is -la | grep temp.tar
d. Is-la|grep temp.tar

7. simplePipel [10 points]
a. lIs|cat
8. advancedPipel [10 points]

a. Is|cat|cat|cat
9. advancedPipe2 [15 points]
a. lIs-la|cat-A|cat-A|cat-A

Bibliography:
[1] Bach, Maurice J. The Design of the UNIX Operating System. Englewood Cliffs, NJ:
Prentice-Hall, 1986. Print.
[2] Stevens, W. Richard. Advanced Programming in the UNIX Environment. Reading,
MA: Addison-Wesley Pub., 1992. Print.
[3] "Man Page." Wikipedia. Wikimedia Foundation, n.d. Web. 18 Feb 2017.

