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This Week’s Conversation

 Threads
 A bit complex topic but central to our understanding of 

modern computer systems (HW and SW)

 We will build concepts incrementally and tie the picture 
together at the end

 We will continue the crux of discussion on threading after 
the spring break
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Adapted from contemporary courses in OS/Systems taught at Berkeley, UW, TAMU,

UIUC, and Rice. Some slides are from Anderson and Dahlin Text.

Special acknowledgment to Profs Gu/Bettati at TAMU, Culler and Joseph at Berkeley 



Why Processes & Threads?

• Multiprogramming: Run multiple applications concurrently

• Protection: Don’t want a bad application to crash system!

Goals:

• Virtual Machine abstraction: give process illusion it owns machine 

(i.e., CPU, Memory, and IO device multiplexing)

• Process: unit of execution and allocation

Solution:

• Process creation & switching expensive

• Need concurrency within same app (e.g., web server)  

Challenge:

Thread: Decouple allocation and execution

• Run multiple threads within same process

Solution:
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Let’s picture this scenario
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• Two ‘threads’ each draw parts of the scene, a third ‘thread’ manages the user 
interface widgets, and a fourth ‘thread’ fetches new data from the remote 
server

• In a ‘traditional program’ these will be sequenced

• Key differentiation is “facilitated concurrency”. 

• A traditional program is a single ‘thread’

• Inside a program, we can represent each concurrent task as “Thread”

Credit – NASA Earth Observatory

thread
thread

thread
thread

• Multiple programs (processes) doing their individual 
functions

• PAYING THE COST OF CONTEXT SWITCHING

• WHAT IF WE COULD REDUCE THE COST

• AT THE EXPENSE OF SOMETHING

• SO THE NET PERFORMANCE IS STILL BETTER

Processes



Motivation for SW Threads

 Operating systems need to be able to handle multiple things at 
once (MTAO)

 processes, interrupts, background system maintenance 

 Servers need to handle MTAO

 Multiple connections handled simultaneously

 Parallel programs need to handle MTAO

 To achieve better performance

 Programs with user interfaces often need to handle MTAO

 To achieve user responsiveness while doing computation

 Network and disk bound programs need to handle MTAO

 To hide network/disk latency
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Motivation for HW Threads

MTAO for performance 

Assists for SW threads
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Motto for Threading
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Multiple Things at OnceMTAO



Programs, Process, Threads, MultiCore, Multithreads…

 Scenario: Warehouse Accountant needs to 
 look at the invoice list

 verify it against the purchase order list and 

 then issue a check for valid purchases.

 There are multiple sheets of purchase orders and invoices.

 More than one accountant are qualified and allowed to 
work on this assignment. Constraint is that an accountant 
can only work on his assigned list.

 An accountant must have a TAG before he can work on his 
list. 

 There is only one tag to go around.
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Scenario Build

Scenario1: No accountant: Analogous 
to a “Program”
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Scenario Build

Scenario2: Accountant present in 
Room1 with a TAG, along with all lists 
and a checkbook: Akin to a Process in 
execution
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Scenario Build

 Scenario3: Accountant2 shows up in Room2. At 
some point Accountant1 goes on lunch break 
 His stopping point and local records are saved (aka PCB). 

 Tag and Global lists (invoice and PO) are walked over to 
Room2 so Accountant 2 can take over. 

 When Accountant 2 takes a break, the tag and lists 
are walked over to Room1 again…..Akin to 2 
processes and context switch from Process1 to 
Process2.
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Scenario Build

 Scenario4: Now picture Accountants 1 and 
2 are sitting in the same room with global 
lists visible to both. 

Whoever gets the TAG recalls his previous 
stopping point and resumes.

There’s no walking across the rooms, carrying 
lists etc. 

They just have to be careful not to clobber 
over each other’s lists. This is akin to Threads. 
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Putting it together: Process

Memory

I/O State

(e.g., file, 

socket 

contexts)

CPU state 

(PC, SP, 

registers..)

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

…

(Unix) Process
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IO

state

Mem.

…

threads

CPU

state

CPU

state

Process



Putting it together: Processes

…

Process 1 Process 2 Process N

CPU 

sched.
OS

CPU

(1 core)

1 process 

at a time

CPU

state

IO

state

Mem

.

CPU

state

IO

state

Mem

.

CPU

state

IO

state

Mem

.

 Process Switch 
overhead: high
 CPU state: low
 Memory/IO state: high

 Process creation: high
 Protection

 CPU: yes
 Memory/IO: yes

 Sharing overhead: high
(involves at least a 
context switch)
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Putting it together: Threads

Process 1

CPU 

sched.
OS

CPU

(1 core)

1 thread 

at a time

IO

state

Mem

.

…

threads

Process N

IO

state

Mem

.

…

threads

…

 Thread Switch 
overhead: low (only 
CPU state)

 Thread creation: low

 Protection
 CPU: yes

 Memory/IO: No

 Sharing overhead: 
low

CPU

state

CPU

state

CPU

state

CPU

state
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Putting it together: Multi-Cores

Process 1

CPU 

sched.
OS

IO

state

Mem

.

…

threads

Process N

IO

state

Mem

.

…

threads

…

 Switch overhead: 
low (only CPU state)

 Thread creation: low

 Protection
 CPU: yes

 Memory/IO: No

 Sharing overhead: 
low (thread switch 
overhead low)

core 1 Core 2 Core 3 Core 4 CPU

4 threads/process 

at a time

CPU

state

CPU

state

CPU

state

CPU

state
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Hardware Parallelism (only for 

reference)

 Hardware technique 

 Superscalar processors can
execute multiple instructions
that are independent.

 Hyper-threading duplicates 
register state to make a
second “thread,” allowing 
more instructions to run.

 Can schedule each thread
as if were separate CPU

 But, sub-linear speedup!

 Original technique called “Simultaneous 
Multithreading”

 See 
http://www.cs.washington.edu/research/s
mt/index.html

 SPARC, Pentium 4/Xeon 
(“Hyperthreading”), Power 5

Colored blocks show instructions executed
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Putting it together: Hyper-Threading

Process 1

CPU 

sched.
OS

IO

state

Mem

.

…

threads

Process N

IO

state

Mem

.

…

threads

…

 Switch overhead 
between hardware-
threads: very-low
(done in hardware)

 Contention for 
ALUs/FPUs may 
hurt performance

core 1

CPU

core 2 core 3 core 4

8 threads at 

a time

hardware-threads

(hyperthreading)

CPU

state

CPU

state

CPU

state

CPU

state
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Thread Abstraction

 Infinite number of processors

 Threads execute with variable speed

 Programs must be designed to work with any schedule
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Programmer vs. Processor View
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Possible Executions
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ATM Bank Server

 ATM server problem:
 Service a set of requests
 Do so without corrupting database
 Don’t hand out too much money
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ATM bank server example

 Suppose we wanted to implement a server process to handle 
requests from an ATM network:
BankServer() {

while (TRUE) {
ReceiveRequest(&op, &acctId, &amount);
ProcessRequest(op, acctId, amount);

}
}
ProcessRequest(op, acctId, amount) {

if (op == deposit) Deposit(acctId, amount);
else if …

}
Deposit(acctId, amount) {

acct = GetAccount(acctId); /* may use disk 
I/O */

acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
 How could we speed this up?

 More than one request being processed at once
 Multiple threads (multi-proc, or overlap comp and I/O)
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Can Threads Help?

 One thread per request!

 Requests proceed to completion, blocking as 

required:

Deposit(acctId, amount) {

acct = GetAccount(actId); /* May 

use disk I/O */

acct->balance += amount;

StoreAccount(acct); /* Involves 

disk I/O */

}
24



Can Threads Help?

 Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

load r1, acct->balance

add r1, amount2

store r1,acct->balance

add r1, amount1

store r1, acct->balance
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Problem is at the lowest level

 Most of the time, threads are working on separate data, 
so scheduling doesn’t matter:

Thread A Thread B
x = 1; y = 2;

 However, What about (Initially, y = 12):
Thread A Thread B

x = 1; y = 2;
x = y+1; y = y*2;

 What are the possible values of x?   
Thread A Thread B

x = 1;
x = y+1;

y = 2;
y = y*2

x=13 26



Problem is at the lowest level

 Most of the time, threads are working on separate data, 
so scheduling doesn’t matter:

Thread A Thread B
x = 1; y = 2;

 However, What about (Initially, y = 12):
Thread A Thread B

x = 1; y = 2;
x = y+1; y = y*2;

 What are the possible values of x?   
Thread A Thread B

y = 2;
y = y*2;

x = 1;
x = y+1;

x=5 27



Problem is at the lowest level

 Most of the time, threads are working on separate data, 
so scheduling doesn’t matter:

Thread A Thread B
x = 1; y = 2;

 However, What about (Initially, y = 12):
Thread A Thread B

x = 1; y = 2;
x = y+1; y = y*2;

 What are the possible values of x?   
Thread A Thread B

y = 2;
x = 1;

x = y+1;
y= y*2;

x=3 28



Thread Operations API

 thread_create(thread, func, args)

 Create a new thread to run func(args)

 Analogous to UNIX process fork and exec

 thread_yield()

 Relinquish processor voluntarily

 thread_join(thread)

 In parent, wait for forked thread to exit, then return

 Analogous to UNIX process wait

 thread_exit

 Quit thread and clean up, wake up joiner if any
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Example: threadhello

#define NTHREADS 10

thread_t threads[NTHREADS];

main() {

for (i = 0; i < NTHREADS; i++)  thread_create(&threads[i], &go, i);

for (i = 0; i < NTHREADS; i++) {

exitValue = thread_join(threads[i]);

printf("Thread %d returned with %ld\n", i, exitValue);

}

printf("Main thread done.\n");

}

void go (int n) {

printf("Hello from thread %d\n", n);

thread_exit(100 + n);

// REACHED?

}
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threadhello – Example Output
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threadhello – Example Output
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threadhello: Example Output

 Why might the “Hello” message from thread 2 print 
after the “Hello” message from thread 5 even though 
thread 5 was created after thread 2?

 Why must “thread returned” print in order?

 What is maximum # of threads that could exist when 
thread 5 prints hello?

 Minimum?
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Fork/Join Concurrency

 Threads can create children, and wait for their 
completion

 Data only shared before fork (from parent) and 
after join (from child)

 Examples:

 Web server: fork a new thread for every new 
connection

 As long as the threads are completely independent

 Merge sort

 Parallel memory copy
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bzero with fork/join concurrency

void blockzero (unsigned char *p, int length) {

int i, j;

thread_t threads[NTHREADS];

struct bzeroparams params[NTHREADS];

// For simplicity, assumes length is divisible by NTHREADS.

for (i = 0, j = 0; i < NTHREADS; i++, j += length/NTHREADS) {

params[i].buffer = p + i * length/NTHREADS;

params[i].length = length/NTHREADS;

thread_create_p(&(threads[i]), &go, &params[i]);

}

for (i = 0; i < NTHREADS; i++) {

thread_join(threads[i]);

}

}
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Thread Data Structures
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Thread Lifecycle
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Location of per thread state for 
different life cycle
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State of Thread Location of TCB Location of Thread 

Registers

INIT Being created TCB

READY Ready Queue TCB

RUNNING Running Queue (may be 

single or multiple)

CPU

WAITING Synch Variable Waiting List TCB

FINISHED Finished Queue and then 

deleted

TCB or deleted



Discussion
39

 Question1: For the threadhello program, when 
thread_join returns for thread i, what is thread i’s 
thread state?

 Question2: For the threadhello program, what is 
the minimum and maximum number of times that 
the main thread enters the READY state on a 
Uniprocessor?



Implementing Threads

 Kernel-level threads
 Thread abstraction only available to kernel

 To the kernel, a kernel thread and a single threaded 
user process look quite similar

 Multithreaded processes using kernel threads 
(Linux, MacOS)
 Kernel thread operations available via syscall

 User-level threads
 Thread operations without system calls (for efficiency 

purposes, the common cases can be offered as a 
library which can then be operated without kernel’s 
help)
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Multithreaded OS Kernel
41



Multithreaded User Processes
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Implementing threads

 Thread_create(func, args)
 Allocate thread control block

 Allocate stack

 Build stack frame for base of stack (stub)

 Put func, args on stack

 Put thread on ready list

 Will run sometime later (maybe right away!)

 stub(func, args): 
 Call (*func)(args)

 If return, call thread_exit()

43



Thread Stack

 What if a thread puts too many procedures on its 
stack?

 What happens in Java?

 What happens in the Linux kernel?

 What should happen?
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Thread Context Switch

 Voluntary

 Thread_yield

 Thread_join (if child is not done yet)

 Involuntary

 Interrupt or exception

 Some other thread is higher priority
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Multithreaded User Processes (Take 1)

 User thread = kernel thread (Linux, MacOS)

 System calls for thread fork, join, exit (and lock, 
unlock,…)

 Kernel does context switch

 Simple, but a lot of transitions between user and kernel 
mode
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Multithreaded User Processes (Take 2)

 Green threads (early Java)

 User-level library, within a single-threaded process

 Library does thread context switch

 Preemption via upcall/UNIX signal on timer interrupt
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Multithreaded User Processes (Take 3)

 Scheduler activations (Windows 8)

 Kernel allocates processors to user-level library

 Thread library implements context switch

 Thread library decides what thread to run next

• Upcall whenever kernel needs a user-level 
scheduling decision
 Process assigned a new processor

 Processor removed from process

 System call blocks in kernel
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Summary
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 Threading is great for performance

 Threading is tricky and carry hazards!

 After Spring Break – we will dive into hazard scenarios 
and prevention mechanisms

 MP 6, 7, 8 will all build upon coding with threads


