
W8 – CONCURRENCY AND
THREADS

Aakash Tyagi
CSCE 313 Spring 2017

Reading Reference: Textbook: Chapter 4

This Week’s Conversation

 Threads
 A bit complex topic but central to our understanding of

modern computer systems (HW and SW)

 We will build concepts incrementally and tie the picture
together at the end

 We will continue the crux of discussion on threading after
the spring break

2

Adapted from contemporary courses in OS/Systems taught at Berkeley, UW, TAMU,

UIUC, and Rice. Some slides are from Anderson and Dahlin Text.

Special acknowledgment to Profs Gu/Bettati at TAMU, Culler and Joseph at Berkeley

Why Processes & Threads?

• Multiprogramming: Run multiple applications concurrently

• Protection: Don’t want a bad application to crash system!

Goals:

• Virtual Machine abstraction: give process illusion it owns machine

(i.e., CPU, Memory, and IO device multiplexing)

• Process: unit of execution and allocation

Solution:

• Process creation & switching expensive

• Need concurrency within same app (e.g., web server)

Challenge:

Thread: Decouple allocation and execution

• Run multiple threads within same process

Solution:

3

Let’s picture this scenario

4

• Two ‘threads’ each draw parts of the scene, a third ‘thread’ manages the user
interface widgets, and a fourth ‘thread’ fetches new data from the remote
server

• In a ‘traditional program’ these will be sequenced

• Key differentiation is “facilitated concurrency”.

• A traditional program is a single ‘thread’

• Inside a program, we can represent each concurrent task as “Thread”

Credit – NASA Earth Observatory

thread
thread

thread
thread

• Multiple programs (processes) doing their individual
functions

• PAYING THE COST OF CONTEXT SWITCHING

• WHAT IF WE COULD REDUCE THE COST

• AT THE EXPENSE OF SOMETHING

• SO THE NET PERFORMANCE IS STILL BETTER

Processes

Motivation for SW Threads

 Operating systems need to be able to handle multiple things at
once (MTAO)

 processes, interrupts, background system maintenance

 Servers need to handle MTAO

 Multiple connections handled simultaneously

 Parallel programs need to handle MTAO

 To achieve better performance

 Programs with user interfaces often need to handle MTAO

 To achieve user responsiveness while doing computation

 Network and disk bound programs need to handle MTAO

 To hide network/disk latency
5

Motivation for HW Threads

MTAO for performance

Assists for SW threads

6

Motto for Threading

7

Multiple Things at OnceMTAO

Programs, Process, Threads, MultiCore, Multithreads…

 Scenario: Warehouse Accountant needs to
 look at the invoice list

 verify it against the purchase order list and

 then issue a check for valid purchases.

 There are multiple sheets of purchase orders and invoices.

 More than one accountant are qualified and allowed to
work on this assignment. Constraint is that an accountant
can only work on his assigned list.

 An accountant must have a TAG before he can work on his
list.

 There is only one tag to go around.

8

Scenario Build

Scenario1: No accountant: Analogous
to a “Program”

9

Scenario Build

Scenario2: Accountant present in
Room1 with a TAG, along with all lists
and a checkbook: Akin to a Process in
execution

10

Scenario Build

 Scenario3: Accountant2 shows up in Room2. At
some point Accountant1 goes on lunch break
 His stopping point and local records are saved (aka PCB).

 Tag and Global lists (invoice and PO) are walked over to
Room2 so Accountant 2 can take over.

 When Accountant 2 takes a break, the tag and lists
are walked over to Room1 again…..Akin to 2
processes and context switch from Process1 to
Process2.

11

Scenario Build

 Scenario4: Now picture Accountants 1 and
2 are sitting in the same room with global
lists visible to both.

Whoever gets the TAG recalls his previous
stopping point and resumes.

There’s no walking across the rooms, carrying
lists etc.

They just have to be careful not to clobber
over each other’s lists. This is akin to Threads.

12

Putting it together: Process

Memory

I/O State

(e.g., file,

socket

contexts)

CPU state

(PC, SP,

registers..)

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

…

(Unix) Process

13

IO

state

Mem.

…

threads

CPU

state

CPU

state

Process

Putting it together: Processes

…

Process 1 Process 2 Process N

CPU

sched.
OS

CPU

(1 core)

1 process

at a time

CPU

state

IO

state

Mem

.

CPU

state

IO

state

Mem

.

CPU

state

IO

state

Mem

.

 Process Switch
overhead: high
 CPU state: low
 Memory/IO state: high

 Process creation: high
 Protection

 CPU: yes
 Memory/IO: yes

 Sharing overhead: high
(involves at least a
context switch)

14

Putting it together: Threads

Process 1

CPU

sched.
OS

CPU

(1 core)

1 thread

at a time

IO

state

Mem

.

…

threads

Process N

IO

state

Mem

.

…

threads

…

 Thread Switch
overhead: low (only
CPU state)

 Thread creation: low

 Protection
 CPU: yes

 Memory/IO: No

 Sharing overhead:
low

CPU

state

CPU

state

CPU

state

CPU

state

15

Putting it together: Multi-Cores

Process 1

CPU

sched.
OS

IO

state

Mem

.

…

threads

Process N

IO

state

Mem

.

…

threads

…

 Switch overhead:
low (only CPU state)

 Thread creation: low

 Protection
 CPU: yes

 Memory/IO: No

 Sharing overhead:
low (thread switch
overhead low)

core 1 Core 2 Core 3 Core 4 CPU

4 threads/process

at a time

CPU

state

CPU

state

CPU

state

CPU

state

16

Hardware Parallelism (only for

reference)

 Hardware technique

 Superscalar processors can
execute multiple instructions
that are independent.

 Hyper-threading duplicates
register state to make a
second “thread,” allowing
more instructions to run.

 Can schedule each thread
as if were separate CPU

 But, sub-linear speedup!

 Original technique called “Simultaneous
Multithreading”

 See
http://www.cs.washington.edu/research/s
mt/index.html

 SPARC, Pentium 4/Xeon
(“Hyperthreading”), Power 5

Colored blocks show instructions executed

17

Triple issue SS arch

P0 P1

http://www.cs.washington.edu/research/smt/index.html

Putting it together: Hyper-Threading

Process 1

CPU

sched.
OS

IO

state

Mem

.

…

threads

Process N

IO

state

Mem

.

…

threads

…

 Switch overhead
between hardware-
threads: very-low
(done in hardware)

 Contention for
ALUs/FPUs may
hurt performance

core 1

CPU

core 2 core 3 core 4

8 threads at

a time

hardware-threads

(hyperthreading)

CPU

state

CPU

state

CPU

state

CPU

state

18

Thread Abstraction

 Infinite number of processors

 Threads execute with variable speed

 Programs must be designed to work with any schedule

19

Programmer vs. Processor View

20

Possible Executions

21

ATM Bank Server

 ATM server problem:
 Service a set of requests
 Do so without corrupting database
 Don’t hand out too much money

22

ATM bank server example

 Suppose we wanted to implement a server process to handle
requests from an ATM network:
BankServer() {

while (TRUE) {
ReceiveRequest(&op, &acctId, &amount);
ProcessRequest(op, acctId, amount);

}
}
ProcessRequest(op, acctId, amount) {

if (op == deposit) Deposit(acctId, amount);
else if …

}
Deposit(acctId, amount) {

acct = GetAccount(acctId); /* may use disk
I/O */

acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}
 How could we speed this up?

 More than one request being processed at once
 Multiple threads (multi-proc, or overlap comp and I/O)

23

Can Threads Help?

 One thread per request!

 Requests proceed to completion, blocking as

required:

Deposit(acctId, amount) {

acct = GetAccount(actId); /* May

use disk I/O */

acct->balance += amount;

StoreAccount(acct); /* Involves

disk I/O */

}
24

Can Threads Help?

 Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load r1, acct->balance

load r1, acct->balance

add r1, amount2

store r1,acct->balance

add r1, amount1

store r1, acct->balance

25

Problem is at the lowest level

 Most of the time, threads are working on separate data,
so scheduling doesn’t matter:

Thread A Thread B
x = 1; y = 2;

 However, What about (Initially, y = 12):
Thread A Thread B

x = 1; y = 2;
x = y+1; y = y*2;

 What are the possible values of x?
Thread A Thread B

x = 1;
x = y+1;

y = 2;
y = y*2

x=13 26

Problem is at the lowest level

 Most of the time, threads are working on separate data,
so scheduling doesn’t matter:

Thread A Thread B
x = 1; y = 2;

 However, What about (Initially, y = 12):
Thread A Thread B

x = 1; y = 2;
x = y+1; y = y*2;

 What are the possible values of x?
Thread A Thread B

y = 2;
y = y*2;

x = 1;
x = y+1;

x=5 27

Problem is at the lowest level

 Most of the time, threads are working on separate data,
so scheduling doesn’t matter:

Thread A Thread B
x = 1; y = 2;

 However, What about (Initially, y = 12):
Thread A Thread B

x = 1; y = 2;
x = y+1; y = y*2;

 What are the possible values of x?
Thread A Thread B

y = 2;
x = 1;

x = y+1;
y= y*2;

x=3 28

Thread Operations API

 thread_create(thread, func, args)

 Create a new thread to run func(args)

 Analogous to UNIX process fork and exec

 thread_yield()

 Relinquish processor voluntarily

 thread_join(thread)

 In parent, wait for forked thread to exit, then return

 Analogous to UNIX process wait

 thread_exit

 Quit thread and clean up, wake up joiner if any

29

Example: threadhello

#define NTHREADS 10

thread_t threads[NTHREADS];

main() {

for (i = 0; i < NTHREADS; i++) thread_create(&threads[i], &go, i);

for (i = 0; i < NTHREADS; i++) {

exitValue = thread_join(threads[i]);

printf("Thread %d returned with %ld\n", i, exitValue);

}

printf("Main thread done.\n");

}

void go (int n) {

printf("Hello from thread %d\n", n);

thread_exit(100 + n);

// REACHED?

}

30

threadhello – Example Output
31

threadhello – Example Output
32

threadhello: Example Output

 Why might the “Hello” message from thread 2 print
after the “Hello” message from thread 5 even though
thread 5 was created after thread 2?

 Why must “thread returned” print in order?

 What is maximum # of threads that could exist when
thread 5 prints hello?

 Minimum?

33

Fork/Join Concurrency

 Threads can create children, and wait for their
completion

 Data only shared before fork (from parent) and
after join (from child)

 Examples:

 Web server: fork a new thread for every new
connection

 As long as the threads are completely independent

 Merge sort

 Parallel memory copy

34

bzero with fork/join concurrency

void blockzero (unsigned char *p, int length) {

int i, j;

thread_t threads[NTHREADS];

struct bzeroparams params[NTHREADS];

// For simplicity, assumes length is divisible by NTHREADS.

for (i = 0, j = 0; i < NTHREADS; i++, j += length/NTHREADS) {

params[i].buffer = p + i * length/NTHREADS;

params[i].length = length/NTHREADS;

thread_create_p(&(threads[i]), &go, ¶ms[i]);

}

for (i = 0; i < NTHREADS; i++) {

thread_join(threads[i]);

}

}

35

Thread Data Structures
36

Thread Lifecycle
37

Location of per thread state for
different life cycle

38

State of Thread Location of TCB Location of Thread

Registers

INIT Being created TCB

READY Ready Queue TCB

RUNNING Running Queue (may be

single or multiple)

CPU

WAITING Synch Variable Waiting List TCB

FINISHED Finished Queue and then

deleted

TCB or deleted

Discussion
39

 Question1: For the threadhello program, when
thread_join returns for thread i, what is thread i’s
thread state?

 Question2: For the threadhello program, what is
the minimum and maximum number of times that
the main thread enters the READY state on a
Uniprocessor?

Implementing Threads

 Kernel-level threads
 Thread abstraction only available to kernel

 To the kernel, a kernel thread and a single threaded
user process look quite similar

 Multithreaded processes using kernel threads
(Linux, MacOS)
 Kernel thread operations available via syscall

 User-level threads
 Thread operations without system calls (for efficiency

purposes, the common cases can be offered as a
library which can then be operated without kernel’s
help)

40

Multithreaded OS Kernel
41

Multithreaded User Processes
42

Implementing threads

 Thread_create(func, args)
 Allocate thread control block

 Allocate stack

 Build stack frame for base of stack (stub)

 Put func, args on stack

 Put thread on ready list

 Will run sometime later (maybe right away!)

 stub(func, args):
 Call (*func)(args)

 If return, call thread_exit()

43

Thread Stack

 What if a thread puts too many procedures on its
stack?

 What happens in Java?

 What happens in the Linux kernel?

 What should happen?

44

Thread Context Switch

 Voluntary

 Thread_yield

 Thread_join (if child is not done yet)

 Involuntary

 Interrupt or exception

 Some other thread is higher priority

45

Multithreaded User Processes (Take 1)

 User thread = kernel thread (Linux, MacOS)

 System calls for thread fork, join, exit (and lock,
unlock,…)

 Kernel does context switch

 Simple, but a lot of transitions between user and kernel
mode

46

Multithreaded User Processes (Take 2)

 Green threads (early Java)

 User-level library, within a single-threaded process

 Library does thread context switch

 Preemption via upcall/UNIX signal on timer interrupt

47

Multithreaded User Processes (Take 3)

 Scheduler activations (Windows 8)

 Kernel allocates processors to user-level library

 Thread library implements context switch

 Thread library decides what thread to run next

• Upcall whenever kernel needs a user-level
scheduling decision
 Process assigned a new processor

 Processor removed from process

 System call blocks in kernel

48

Summary
49

 Threading is great for performance

 Threading is tricky and carry hazards!

 After Spring Break – we will dive into hazard scenarios
and prevention mechanisms

 MP 6, 7, 8 will all build upon coding with threads

