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Motivation

 Concurrent processes improve Computer System resource 
utilization

 But concurrency introduces inherent cost of context 
switching

 Threading a process reduces the cost of context switching 
because we allow threads to share global context
(memory, IO State) of their parent process
 But this sharing can be dangerous if not handled properly
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Synchronization Motivation

Thread 1

p = someFn();

Initialized = true; 

Thread 2

while (! Initialized ) ; 

q = aFn(p); 

if q != aFn(someFn())

panic
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Goals for This Lecture

 Concurrency examples and sharing

 Synchronization

 Hardware Support for Synchronization

Note: Some slides and/or pictures in the following are adapted and/or used 

verbatim from slide content  in Silberschatz, Galvin, and Gagne (2014), 

Anthony D. Joseph (2014 Berkeley), Tom Anderson (2014 UW), Bettati 

(2014 TAMU), Gu (2014 TAMU)
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 Threaded programs must work for all interleavings of thread instruction 
sequences

 Cooperating threads inherently non-deterministic and non-reproducible

 Really hard to debug unless carefully designed!

 Example: Therac-25

 Machine for radiation therapy
 Software control of electron

accelerator and electron beam/
Xray production

 Software control of dosage
 Therac-20 used to accomplish this

in Hardware

 Software errors caused 
overdoses and the death of 
several patients
 A series of race conditions on 

shared variables and poor 
software design

 “They determined that data entry speed during editing was the key factor 
in producing the error condition: If the prescription data was edited at a 
fast pace, the overdose occurred.”

Correctness Requirements
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Space Shuttle Example

 Original Space Shuttle launch aborted 20 minutes before launch

 Shuttle has five computers:

 Four run the “Primary Avionics 
Software System” (PASS)

 Asynchronous and real-time

 Runs all of the control systems

 Results synchronized and compared 440 times per second

 The Fifth computer is the “Backup Flight System” (BFS)

 Stays synchronized in case it is needed

 Written by completely different team than PASS

 Countdown aborted because BFS disagreed with PASS
 Bug due to modifications in initialization code of PASS

 A delayed init request placed into timer queue

 As a result, timer queue not empty at expected time to force use of 
hardware clock

 Bug not found during extensive simulation

PASS

BFS
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Race Condition

 Race condition: Output of a concurrent program depends on the 
order of operations between threads

 Sequential Model of thinking does not work for concurrent 
threads

 Cannot make any assumptions about relative speed at which 
the threads operate (i.e. interleaving is a given)

 Program execution can be non-deterministic (scheduler, 
processor frequencies, etc.)

 Compilers can reorder instructions

Out-of-order execution relies on compiler optimizations to 
circumvent operand dependencies
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Race Condition – Compiler Effect

 Simple threaded code (assume x=0)
Thread1 Thread2
x=x+1; x=x+2;
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Compiler Generated:

load r1, x

add r2, r1, 1

store x, r2

Values of x can be 1, 2, or 3 depending 

on the order of execution

load r1, x

add r2, r1, 1

store x, r2

load r1, x

add r2, r1, 2

store x, r2

load r1, x

add r2, r1, 1

store x, r2

load r1, x

add r2, r1, 2

store x, r2

X=1
X=3



Concurrency Challenges

 Multiple computations (threads) executing 

concurrently to 

 share resources, and/or

 share data

• Fine grain sharing: 

⇑ Increase concurrency  better perf.

⇓ more complex

• Coarse grain sharing:

⇑ Simpler to implement

⇓ Lower performance
9

• Cannot make any 

assumptions about 

relative speed at 

which the threads 

operate

• Program execution 

can be non-

deterministic

• Compilers can 

reorder instructions



Atomic Operations

 To understand a concurrent program, we need to know what the 
underlying atomic operations are!

 Atomic Operation: an operation that always runs to completion or 
not at all
 It is indivisible: it cannot be stopped in the middle and state 

cannot be modified by someone else in the middle
 Fundamental building block – if no atomic operations, then have 

no way for threads to work together

 On most machines, memory references and assignments (i.e. loads 
and stores) of words are atomic
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Concurrency Coordination Landscape

Concurrent Applications

Shared Coordinated Objects

Synchronization Variables

Atomic Operations

Hardware

Bounded 

Queue
Ordered List Dictionary Barrier

Locks SemaphoreCondition Variables Monitors

Interrupt Disable/Enable Test-and-Set

Interrupts Controllers Multiple Processors
cmp&swap

xchng

fetch&inc
LL + SC

Flag

Send/Receive
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Motivation: “Too much milk”

 Great thing about OS’s – analogy between 

problems in OS and problems in real life

 Help you understand real life problems better

 Example: People need to coordinate:

Arrive home, put milk away3:30

Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

12



Definitions

 Synchronization: using atomic operations to ensure 
cooperation between threads

 For now, only loads and stores are atomic

 Critical Section: piece of code that only one thread can 
execute at once

 Mutual Exclusion: ensuring that only one thread executes 
critical section

 One thread excludes the other while doing its task

 Critical section and mutual exclusion are two ways of 
describing the same thing
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More Definitions

 Lock: prevents someone from doing something
 Lock before entering critical section and 

before accessing shared data

 Unlock when leaving, after accessing shared data

 Wait if locked
 Important idea: all synchronization involves waiting

 Example: fix the milk problem by putting a lock on refrigerator
 Lock it and take key if you are going to go buy milk

 Fixes too much (coarse granularity): roommate angry if only wants 
orange juice

 Of Course – We don’t know how to make a lock yet

14



Too Much Milk: Correctness 

Properties

 Need to be careful about correctness of concurrent programs, 
since non-deterministic
 Always write down desired behavior first

 Impulse is to start coding first, then when it doesn’t work, pull hair 
out

 Instead, think first, then code

 What are the correctness properties for the “Too much milk” 
problem?
 Never more than one person buys (safety)

 i.e. the program never enters a bad state

 Someone buys if needed (liveness)
 i.e. the program eventually achieves a good state

 Restrict ourselves to use only atomic load and store operations 
as building blocks
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Too Much Milk: Solution #1

 Use a note to avoid buying too 
much milk:
 Leave a note before buying (kind 

of “lock”)
 Remove note after buying (kind of 

“unlock”)
 Don’t buy if note (wait)

 Suppose a computer tries this 
(remember, only memory 
read/write are atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

 Result?  
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 Still too much milk but only occasionally!
Thread A Thread B

if (noMilk) {         

if (noNote) {

if (noMilk)   {       

if (noNote) {

leave Note;
buy milk;

remove note;

}

}

leave Note;
buy milk;

remove note; }}

 Thread can get context switched after checking milk and note but before leaving 
note!

 Solution makes problem worse since fails intermittently
 Makes it really hard to debug…

 Must work despite what the thread dispatcher does!

Too Much Milk: Solution #1
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Too Much Milk: Solution #1½ 

 Clearly the Note is not quite blocking 
enough
 Let’s try to fix this by placing note first

 Another try at previous solution:

leave Note;

if (noMilk) {
if (noNote) {

buy milk;
}

}

remove Note;

 What happens here?
 Well, with human, probably nothing bad

18
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Too Much Milk Solution #2

 How about labeled notes?  
 Now we can leave note before checking

 Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (noNote A) {

if (noMilk) { if (noMilk){
buy Milk; buy Milk;

} }
} }
remove note A; remove note B;

 Does this work?
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Too Much Milk Solution #2
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 Possible for neither thread to buy milk!

Thread A Thread B
leave note A;

leave note B;
if (noNote A) {

if (noMilk) {
buy Milk;

}
}

if (noNote B) {

if (noMilk) {

buy Milk;             

…

remove note B;

 Really insidious: 

– Unlikely that this would happen, but will at worse possible time



Too Much Milk Solution #2: problem!

 I’m not getting milk, You’re getting milk

 This kind of lockup is called “starvation!”
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Too Much Milk Solution #3

 Here is a possible two-note solution:

Thread A Thread B

leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

 Does this work? Yes. Both can guarantee that: 

 It is safe to buy, or

 Other will buy, ok to quit

 At X: 

 if no note B, safe for A to buy, 

 otherwise wait to find out what will happen

 At Y: 

 if no note A, safe for B to buy

 Otherwise, A is either buying or waiting for B to quit
22



Solution #3 discussion

 Our solution protects a single “Critical-Section” piece of code 
for each thread:

if (noMilk) {
buy milk;

}

 Solution #3 works, but it’s really unsatisfactory
 Really complex – even for this simple an example

 Hard to convince yourself that this really works

 A’s code is different from B’s – what if lots of threads?
 Code would have to be slightly different for each thread

 While A is waiting, it is consuming CPU time
 This is called “busy-waiting”

 There’s a better way
 Have hardware provide better (higher-level) primitives than atomic load 

and store

 Build even higher-level programming abstractions on this new 
hardware support 23



High-Level Picture

 The abstraction of threads is good:

 Maintains sequential execution model 

 Allows simple parallelism to overlap I/O and computation

 Unfortunately, still too complicated to access state 
shared between threads 

 Consider “too much milk” example

 Implementing a concurrent program with only loads and 
stores would be tricky and error-prone

 We’ll implement higher-level operations on top of 
atomic operations provided by hardware

 Develop a “synchronization toolbox”

 Explore some common programming paradigms
24



Concurrency Coordination Landscape

Concurrent Applications

Shared Coordinated Objects

Synchronization Variables

Atomic Operations

Hardware

Bounded 

Queue
Ordered List Dictionary Barrier

Locks SemaphoreCondition Variables Monitors

Interrupt Disable/Enable Test-and-Set

Interrupts Controllers Multiple Processors
cmp&swap

xchng

fetch&inc
LL + SC

Flag

Send/Receive
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Too Much Milk: Solution #4

 Suppose we have some sort of implementation of a lock

 Lock.Acquire() – wait until lock is free, then grab

 Lock.Release() – unlock, waking up anyone waiting

 These must be atomic operations – if two threads are waiting for the 

lock, only one succeeds to grab the lock

 Then, our milk problem is easy:

milklock.Acquire();

if (nomilk)

buy milk;

milklock.Release();

 Once again, section of code between Acquire() and 

Release() called a “Critical Section”
26



How to Implement Lock?

 Lock: prevents someone from accessing 
something
 Lock before entering critical section (e.g., before 

accessing shared data)
 Unlock when leaving, after accessing shared data
 Wait if locked
 Important idea: all synchronization involves waiting
 Should sleep if waiting for long time

 Hardware lock instructions
 Is this a good idea?
 What about putting a task to sleep?
 How to handle interface between hardware and scheduler?

 Complexity?
 Each feature makes hardware more complex and slower
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Where are we going with 

synchronization?

 We are going to implement various higher-level 
synchronization primitives using atomic operations

 Everything is pretty painful if only atomic primitives are 
load and store

 Need to provide primitives useful at user-level

Load/Store    Disable Ints   Test&Set   Comp&Swap

Locks   Semaphores   Monitors   Send/Receive

Shared Memory

Hardware

Higher-
level 

API

Programs
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 How can we build multi-instruction atomic operations?

 Recall: dispatcher gets control in two ways. 

 Internal: Thread does something to relinquish the CPU

 External: Interrupts cause dispatcher to take CPU

 On a uniprocessor, can avoid context-switching by:

 Avoiding internal events

 Preventing external events by disabling interrupts

 Consequently, naïve Implementation of locks:

LockAcquire { disable Ints; }

LockRelease { enable Ints; }

Naïve use of Interrupt Enable/Disable
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 Can’t let user do this! Consider following:

LockAcquire();

While(TRUE) {;}

 Real-Time system—no guarantees on timing! 

 Critical Sections might be arbitrarily long

 What happens with I/O or other important 

events?

 “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable: 

Problems
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Better Implementation of Locks by 

Disabling Interrupts

 Key idea: maintain a lock variable and impose mutual 

exclusion only during operations on that variable

int value = FREE;

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

Go to sleep();

// Enable interrupts?

} else {

value = BUSY;

}

enable interrupts;

}

Release() {

disable interrupts;

if (anyone on wait queue) {

take thread off wait queue

Put on the ready queue

} else {

value = FREE;

}

enable interrupts;

}
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New Lock Implementation: Discussion

 Disable interrupts: avoid interrupting between checking and 

setting lock value

 Otherwise two threads could think that they both have lock

 Note: unlike previous solution, critical section very short

 User of lock can take as long as they like in their own critical section

 Critical interrupts taken in time

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

Go to sleep();

// Enable interrupts?

} else {

value = BUSY;

}

enable interrupts;

}

Critical
Section
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Interrupt re-enable in going to sleep

 What about re-enabling ints when going to sleep?

 Before putting thread on the wait queue?

 Release can check the queue and not wake up thread until next lock acquire/release

 After putting the thread on the wait queue

 Release puts the thread on the ready queue, but the thread still thinks it needs to go to 

sleep

 Misses wakeup and still holds lock (deadlock!)

 Want to put it after sleep(). But, how?

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

go to sleep();

} else {

value = BUSY;

}

enable interrupts;

}

Enable Position

33

Release() {

disable interrupts;

if (anyone on wait queue) 

{

take thread off wait 

queue

Put on the ready queue

} else {

value = FREE;

}

enable interrupts;

}

Enable Position

Enable Position



How to Re-enable After Sleep()?

 Since ints are disabled when you call sleep:
 Responsibility of the next thread to re-enable ints

 When the sleeping thread wakes up, returns to acquire and re-enables 
interrupts

Thread A Thread B
.
.

disable ints
sleep

sleep return
enable ints

.

.

.

disable int
sleep

sleep return
enable ints

.

.

yield return

enable int

disable int

yield
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Summary

 Introduced important concept: Atomic Operations
 An operation that runs to completion or not at all

 These are the primitives on which to construct various 
synchronization primitives

 Showed construction of Locks using interrupts
 Using careful disabling of interrupts

 Must be very careful not to waste/tie up machine 
resources
 Shouldn’t disable interrupts for long

 Key ideas: Use a separate lock variable, and use 
hardware mechanisms to protect modifications of that 
variable
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More HW Assisted Solutions
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Goals

 Atomic instruction sequence

 Hardware assisted solutions

 Continue with Synchronization Abstractions

 Semaphores (possibly, Monitors and condition 

variables)
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Atomic Read-Modify-Write 

instructions

 Problems with interrupt-based lock solution:
 Can’t give lock implementation to users

 Doesn’t work well on multiprocessor
 Disabling interrupts on all processors requires messages and 

would be very time consuming

 Alternative: atomic instruction sequences
 These instructions read a value from memory and write a 

new value atomically

 Hardware is responsible for implementing this correctly 
 on both uniprocessors (not too hard) 

 and multiprocessors (requires help from cache coherence 
protocol)

 Unlike disabling interrupts, can be used on both 
uniprocessors and multiprocessors
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Examples of Read-Modify-Write 

 test&set (&address) {/* most architectures */
result = M[address];
M[address] = 1;
return result;

}

 swap (&address, register) { /* x86 */
temp = M[address];
M[address] = register;
register = temp;

}
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Implementing Locks with test&set

 Simple solution:

int value = 0; // Free

Acquire() {
while (test&set(value)); // while busy

}

Release() {
value = 0;

}

 Simple explanation:
 If lock is free, test&set reads 0 and sets value=1, so lock is now 

busy.  It returns 0 so while exits

 If lock is busy, test&set reads 1 and sets value=1 (no change). It 
returns 1, so while loop continues

 When we set value = 0, someone else can get lock

test&set (&address) {

result = M[address];

M[address] = 1;

return result;

}
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Problem: Busy-Waiting for Lock

 Positives for this solution

 Machine can receive interrupts

 User code can use this lock

 Works on a multiprocessor

 Negatives

 Inefficient: busy-waiting thread will consume cycles 
waiting

 Waiting thread may take cycles away from thread holding 
lock! 

 Priority Inversion: If busy-waiting thread has higher 
priority than thread holding lock  no progress!

 Priority Inversion problem with original Martian rover 
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Better Locks using test&set

 Can we build test&set locks without busy-waiting?

 Can’t entirely, but can minimize!

 Idea: only busy-wait to atomically check lock value

 Note: sleep has to be sure to reset the guard variable

Release() {

// Short busy-wait time

while (test&set(guard));

if anyone on wait queue {

take thread off wait queue

Place on ready queue;

} else {

value = FREE;

}

guard = 0;

int guard = 0; //protects lock value

int value = FREE;

Acquire() {

// Short busy-wait time

while (test&set(guard));

if (value == BUSY) {

put thread on wait queue;

go to sleep() & guard = 0;

} else {

value = BUSY;

guard = 0;

}

}
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Locks using test&set vs. Interrupts

 Compare to “disable interrupt” solution

}

 Basically replace 

 disable interrupts  while 
(test&set(guard));

 enable interrupts  guard = 0;

int value = FREE;

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

Go to sleep();

// Enable interrupts?

} else {

value = BUSY;

}

enable interrupts;

Release() {

disable interrupts;

if (anyone on wait queue) {

take thread off wait queue

Place on ready queue;

} else {

value = FREE;

}

enable interrupts;

}
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Locks using test&set vs. Interrupts

 Compare to “disable interrupt” solution

 Basically replace 

 disable interrupts  while 
(test&set(guard));

 enable interrupts  guard = 0;

int value = FREE;

Acquire() {

while (test&set(guard));

if (value == BUSY) {

put thread on wait queue;

Go to sleep();

// guard = 0;

} else {

value = BUSY;

}

guard = 0;}

Release() {

while (test&set(guard));

if (anyone on wait queue) {

take thread off wait queue

Place on ready queue;

} else {

value = FREE;

}

guard = 0;

}
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Recap: Locks
int value = 0;

Acquire() {

// Short busy-wait time

disable interrupts;

if (value == 1) {

put thread on wait-queue;

go to sleep() //?? 

} else {

value = 1;

enable interrupts;

}

}

Release() {

// Short busy-wait time

disable interrupts;

if anyone on wait queue {

take thread off wait-queue

Place on ready queue;

} else {

value = 0;

}

enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

Acquire() {

disable interrupts;

}

Release() {

enable interrupts;

}

If one thread in critical 

section, no other 

activity (including OS) 

can run! 
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Recap: Locks int guard = 0;

int value = 0;

Acquire() {

// Short busy-wait time

while(test&set(guard));

if (value == 1) {

put thread on wait-queue;

go to sleep()& guard = 0;

} else {

value = 1;

guard = 0;

}

}

Release() {

// Short busy-wait time

while (test&set(guard));

if anyone on wait queue {

take thread off wait-queue

Place on ready queue;

} else {

value = 0;

}

guard = 0;

}

lock.Acquire();

…

critical section;

…

lock.Release();

int value = 0;

Acquire() {

while(test&set(value));

}

Release() {

value = 0;

}

Threads waiting to 

enter critical section 

busy-wait
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Where are we going with 

synchronization?

 We are going to implement various higher-level 
synchronization primitives using atomic operations

 Everything is pretty painful if only atomic primitives are 
load and store

 Need to provide primitives useful at user-level

Load/Store    Disable Ints   Test&Set   Comp&Swap

Locks   Semaphores   Monitors   Send/Receive

Shared Programs

Hardware

Higher-
level 

API

Programs
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Semaphores

 Semaphores are a kind of generalized locks

 First defined by Dijkstra in late 60s

 Main synchronization primitive used in original UNIX

 Definition: a Semaphore has a non-negative integer 
value and supports the following two operations:

 P(): an atomic operation that waits for semaphore to 
become positive, then decrements it by 1 

 Think of this as the wait() operation

 V(): an atomic operation that increments the semaphore 
by 1, waking up a waiting P, if any

 Think of this as the signal() operation
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Value=2Value=1Value=0

Semaphores Like Integers Except

 Semaphores are like integers, except
 No negative values

 Only operations allowed are P and V – can’t read or write 
value, except to set it initially

 Operations must be atomic
 Two P’s together can’t decrement value below zero

 Similarly, thread going to sleep in P won’t miss wakeup from V –
even if they both happen at same time

 Semaphore from railway analogy
 Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=2
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Two Uses of Semaphores

 Mutual Exclusion (initial value = 1)
 Also called “Binary Semaphore”.

 Can be used for mutual exclusion:
semaphore.P();
// Critical section goes here
semaphore.V();

 Scheduling Constraints (initial value = 0)
 Allow thread 1 to wait for a signal from thread 2, i.e., thread 2 

schedules thread 1 when a given constrained is satisfied

 Example: suppose you had to implement ThreadJoin which must 
wait for thread to terminiate:

Initial value of semaphore = 0

ThreadJoin {
semaphore.P();

}

ThreadFinish {
semaphore.V();

}
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Producer-consumer with a bounded 

buffer

 Problem Definition
 Producer puts things into a shared buffer

 Consumer takes them out

 Need synchronization to coordinate producer/consumer

 Don’t want producer and consumer to have to work in 
lockstep, so put a fixed-size buffer between them
 Need to synchronize access to this buffer

 Producer needs to wait if buffer is full

 Consumer needs to wait if buffer is empty

 Example: Coke machine
 Producer can put limited number of cokes in machine

 Consumer can’t take cokes out if machine is empty

Producer ConsumerBuffer
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Correctness constraints for solution

 Correctness Constraints:

 Consumer must wait for producer to fill slots, if empty (scheduling 

constraint)

 Producer must wait for consumer to make room in buffer, if all full 

(scheduling constraint)

 Only one thread can manipulate buffer queue at a time (mutual 

exclusion)

 General rule of thumb: 

Use a separate semaphore for each constraint
 Semaphore fullSlots; // consumer’s constraint

 Semaphore emptySlots;// producer’s constraint

 Semaphore mutex;       // mutual exclusion
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Full Solution to Bounded Buffer

Semaphore fullSlots = 0; // Initially, no coke

Semaphore emptySlots = bufSize;
//Initially,num empty slots

Semaphore mutex = 1; // No one using machine

Producer(item) {
emptySlots.P(); // Wait until space
mutex.P(); // Wait until machine free
Enqueue(item);
mutex.V();
fullSlots.V(); // Tell consumers there is

// more coke
}

Consumer() {
fullSlots.P(); // Check if there’s a coke
mutex.P(); // Wait until machine free
item = Dequeue();
mutex.V();
emptySlots.V(); // tell producer need more
return item;

}
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Discussion about Solution

 Why asymmetry?

 Producer does: emptySlots.P(), fullSlots.V()

 Consumer does: fullSlots.P(), emptySlots.V()

Decrease # of 

empty slots
Increase # of 

occupied slots

Increase # of 

empty slots
Decrease # of 

occupied slots
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One is creating space, the other is filling space



Discussion about Solution

 Is order of P’s important?

 Is order of V’s important?

 What if we have 2 producers 

or 2 consumers?

Producer(item) {
emptySlots.P(); 
mutex.P(); 
Enqueue(item);
mutex.V();
fullSlots.V();

}

Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}
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Discussion about Solution

 Is order of P’s important?

 Yes!  Can cause deadlock

Producer(item) {
mutex.P(); 
emptySlots.P(); 
Enqueue(item);
mutex.V();
fullSlots.V();

}

Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}
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Producer(item) {
emptySlots.P(); 
mutex.P(); 
Enqueue(item);
mutex.V();
fullSlots.V();

}

Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}

BEFORE AFTER



Discussion about Solution

 Is order of V’s important?

 No, except that it might affect scheduling efficiency

Producer(item) {
emptySlots.P(); 
mutex.P(); 
Enqueue(item);
fullSlots.V();
mutex.V();
}

Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}
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Producer(item) {
emptySlots.P(); 
mutex.P(); 
Enqueue(item);
mutex.V();
fullSlots.V();

}

Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}

BEFORE AFTER



Discussion about Solution

 What if we have 2 producers 

or 2 consumers?

 Do we need to change anything?

 NO

Producer(item) {
emptySlots.P(); 
mutex.P(); 
Enqueue(item);
mutex.V();
fullSlots.V();

}

Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}
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Summary
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 Threading is great for performance

 Threading is tricky and carry hazards!


