W9: PROCESS AND THREAD
SYNCHRONIZATION

- CSCE-313 Spring 2017

Motivation
T

0 Concurrent processes improve Computer System resource
utilization

o But concurrency introduces inherent cost of context
switching

m Threading a process reduces the cost of context switching
because we allow threads to share global context
(memory, |0 State) of their parent process

m But this sharing can be dangerous if not handled properly

Synchronization Motivation

Thread 1

p = someFn();
Initialized = true;

Thread 2

while (! Initialized) ;
q = aFn(p);

if g |=aFn(somekFn())
panic

Goals for This Lecture
T

o Concurrency examples and sharing

0 Synchronization

o Hardware Support for Synchronization

Note: Some slides and/or pictures in the following are adapted and/or used
verbatim from slide content in Silberschatz, Galvin, and Gagne (2014),
Anthony D. Joseph (2014 Berkeley), Tom Anderson (2014 UW), Bettati

(2014 TAMU), Gu (2014 TAMU)

4

Correctness Requirements

o Threaded programs must work for all interleavings of thread instruction
sequences

o Cooperating threads inherently non-deterministic and non-reproducible

o Really hard to debug unless carefully designed!

o Example: Therac-25
o Machine for radiation therapy
m Software control of electron

accelerator and electron beam/

Xray production
m Software control of dosage

m Therac-20 used to accomplish this

in Hardware

o Software errors caused
overdoses and the death of
several patients

m A series of race conditions on
shared variables and poor
software design

m “They determined that data entry speed during editin
In producing the error condition:’If the prescription d
fast pace, the overdose occurred.”

Therao28 Unit

Room
emergency
switch

Turntable
position
monitor

Control
console

Motion enable

Diplay _ itch (footswitch)

terminal

Beam on/off light

Motion power switch

Therapy room
intercom

Room
emergency
switches

Figure 1. Typical Therac-25 facility

was the key factor

a was edited at a

Space Shuttle Example

o Original Space Shuttle launch aborted 20 minutes before launch
o Shuttle has five computers:

Four run the “Primary Avionics
Software System” (PASS)

= Asynchronous and real-time

= Runs all of the control systems
m Results synchronized and compared 440 times per second
The Fifth computer is the “Backup Flight System” (BFS)

m Stays synchronized in case it is heeded

= Written by completely different team than PASS

o Countdown aborted because BFS disagreed with PASS
Bug due to modifications in initialization code of PASS
= A delayed init request placed into timer queue

m As a result, timer queue not empty at expected time to force use of
hardware clock

Bug not found during extensive simulation

BFS

Race Condition
T

0 Race condition: Output of a concurrent program depends on the
order of operations between threads
0 Sequential Model of thinking does not work for concurrent
threads
o Cannot make any assumptions about relative speed at which
the threads operate (i.e. interleaving is a given)
o Program execution can be non-deterministic (scheduler,
processor frequencies, etc.)
o Compilers can reorder instructions

m Out-of-order execution relies on compiler optimizations to
circumvent operand dependencies

Race Condition — Compiler Effect

0 Simple threaded code (assume x=0)
Thread?2

Threadl
X=x+1; X=X+2;

Compiler Generated:
Values of x can be 1, 2, or 3 depending

load r1, X
addr2,rl1, 1 on the order of execution
store X, r2
load r1, x
load r1, x load r1, x
addr2,rl, 1 addr2,rl, 2
store x, r2 store x, r2
load r1. x addr2, rl, 1
odd r2 '” 2 store x, r2
store x, r2
X=1
X=3
8

Concurrency Challenges

]
o Multiple computations (threads) executing
concurrently to

share resources, and/or « Cannot make any
assumptions about
share data relative speed at
Fine grain sharing: which the threads
operate
1 Increase concurrency = better perf. « Program execution
I more complex Cel be_nc_)n-_
deterministic
Coarse grain sharing: - Compilers can

. . reorder instructions
f Simpler to implement

I Lower performance

Atomic Operations

0 To understand a concurrent program, we need to know what the
underlying atomic operations are!

0 Atomic Operation: an operation that always runs to completion or
not at all

o It is indivisible: it cannot be stopped in the middle and state
cannot be modified by someone else in the middle

o Fundamental building block — if no atomic operations, then have
no way for threads to work together

0 On most machines, memory references and assignments (i.e. loads
and stores) of words are atomic

10

Concurrency Coordination Landscape

I N -
Concurrent Applications

Shared Coordinated Objects

Bounded

Flag
Queue

Ordered List Dictionary Barrier

Synchronization Variables

Locks Condition Variables Semaphore Monitors Send/Receive

Atomic Operations
Interrupt Disable/Enable Test-and-Set

Hardware xchng

cmpé&swap
LL + SC

Interrupts Controllers Multiple Processors

fetch&inc
11

Motivation: “Too much milk”

]
o Great thing about OS’s — analogy between
problems in OS and problems in real life

o Help you understand real life problems better
o Example: People need to coordinate:

Time Person A Person B

3:00 Look in Fridge. Out of milk

3:05 Leave for store

3:10 Arrive at store Look in Fridge. Out of milk
3:15 Buy milk Leave for store

3:20 Arrive home, put milk away | Arrive at store

3:25 Buy milk

3:30 Arrive home, put milk away

12

Definitions
T

0 Synchronization: using atomic operations to ensure
cooperation between threads

o For now, only loads and stores are atomic

o Critical Section: piece of code that only one thread can
execute at once

o Mutual Exclusion: ensuring that only one thread executes
critical section

o One thread excludes the other while doing its task

o Critical section and mutual exclusion are two ways of
describing the same thing

13

More Definitions
1

o Lock: prevents someone from doing something
Lock before entering critical section and rv
before accessing shared data
Unlock when leaving, after accessing shared data “
Wait if locked
m Important idea: all synchronization involves waiting

o Example: fix the milk problem by putting a lock on refrigerator

Lock it and take key if you are going to go buy milk
Fixes too much (coarse granularity): roommate angry if only wants

orange juice \\7

Of Course — We don’t know how to make a lock yet

Too Much Milk: Correctness

Properties
R

o Need to be careful about correctness of concurrent programs,
since non-deterministic
o Always write down desired behavior first

o Impulse is to start coding first, then when it doesn’t work, pull hair
out

o Instead, think first, then code

o What are the correctness properties for the “Too much milk”
problem?

o Never more than one person buys (safety)
m i.e. the program never enters a bad state
o Someone buys if needed (liveness)
= i.e. the program eventually achieves a good state

0 Restrict ourselves to use only atomic load and store operations
as building blocks

15

Too Much Milk: Solution #1

-
Use a nqje to avoid buying too
- much mmc y- J |
O Ié?a[\é%ka)note before buying (kind

O l‘:ﬁ%%% e)note after buying (kind of

o Don’t buy if note (wait)

0 Suppos acorp uter tries this
re Fm. er, only memory
ead/write are atomic):

1f (noMilk) {

1f (noNote) {
leave Note;
buy milk;
remove note;

0 Result?

16

Too Much Milk: Solution #1

o Still too much milk but only occasionally!

Thread A Thread B
if (noMilk) {
if (noNote) {

i1f (noMilk) {
1f (noNote) {

leave Note;
buy milk;

remove note;

leave Note;
buy milk;

remove note; }}

O Threlad can get context switched after checking milk and note but before leaving
note!

o Solution makes problem worse since fails intermittently
o Makes it really hard to debug...
o Must work despite what the thread dispatcher does!

Too Much Milk: Solution #1v

o Clearly the Note is not quite blocking
enough

o Let’s try to fix this by placing note first
o Another try at previous solution:

leave Note;

if (noMilk) {
1f (noNote) {
buy milk;
}

}

remove Note;

o What happens here?
o Well, with human, probably nothing bad

With computer: no one ever buys milk

18

Too Much Milk Solution #2

1
o How about labeled notes?

o Now we can leave note before checking

o Algorithm looks like this:

Thread A Thread B

leave note A; leave note B;

1f (noNote B) { 1f (noNote A) {
1f (noMilk) { 1f (noMilk) {

buy Milk; buy Milk;

} }

} }

remove note A; remove note B;

o Does this work?

19

Too Much Milk Solution #2

L Possible for neither thread to buy milk!

Thread A

leave note A;

1f (noNote B)
i1f (noMilk)
buy Milk;

O Really insidious:

Thread B

leave note B;
1f (noNote A) {
if (noMilk) {
buy Milk;
}

remove note B;

— Unlikely that this would happen, but will at worse possible time

20

Too Much Milk Solution #2: problem!

o I’'m not getting milk, You’re getting milk
o This kind of lockup is called “starvation!”

21

Too Much Milk Solution #3
T

o Here is a possible two-note solution:

Thread A Thread B
leave note B;

leave note A;

while (note B) {\\X if (noNote A) {\\Y
do nothing; 1f (noMilk) {

} buy milk;

if (noMilk) { }
buy milk; }

} remove note B;

remove note A;
o Does this work? Yes. Both can guarantee that:
o It is safe to buy, or
o Other will buy, ok to quit
o At X:

o if no note B, safe for A to buy,
o otherwise wait to find out what will happen

o AtY:

o if no note A, safe for B to buy
1 Otherwice A i< either hiivina or waitina for R to At 22

Solution #3 discussion

R
o Our solution protects a single “Critical-Section” piece of code

for each thread:
1f (noMilk) {
buy milk;
}
o Solution #3 works, but it's really unsatisfactory
o Really complex — even for this simple an example
m Hard to convince yourself that this really works
o A's code is different from B’s — what if lots of threads?
m Code would have to be slightly different for each thread

o While A is waiting, it is consuming CPU time
m This is called “busy-waiting”

o There’s a better way

o Have hardware provide better (higher-level) primitives than atomic load
and store

o Build even higher-level programming abstractions on this new
hardware support 23

High-Level Picture

o The abstraction of threads is good:
Maintains sequential execution model
Allows simple parallelism to overlap I/O and computation
o Unfortunately, still too complicated to access state
shared between threads
Consider “too much milk” example

Implementing a concurrent program with only loads and
stores would be tricky and error-prone

o We'll implement higher-level operations on to
atomic operations provided by hardware
Develop a “synchronization toolbox”
Explore some common programming paradigms

Concurrency Coordination Landscape

I N -
Concurrent Applications

Shared Coordinated Objects

Bounded

Flag
Queue

Ordered List Dictionary Barrier

Synchronization Variables

Locks Condition Variables Semaphore Monitors Send/Receive

Atomic Operations
Interrupt Disable/Enable Test-and-Set

Hardware xchng

cmpé&swap
LL + SC

Interrupts Controllers Multiple Processors

fetch&inc
25

Too Much Milk: Solution #4

I
o Suppose we have some sort of implementation of a lock

o Lock.Acquire () —wait until lock is free, then grab
o Lock.Release () —unlock, waking up anyone waiting

o These must be atomic operations — if two threads are waiting for the
lock, only one succeeds to grab the lock

o Then, our milk problem is easy:
milklock.Acquire () ;
1f (nomilk)

buy milk;
milklock.Release() ;

o Once again, section of code between Acquire () and
Release () called a “Critical Section”

26

How to Implement Lock?

0 Lock: prevents someone from accessing
something

o Lock before entering critical section (e.q., before
access?ng shared '&%taS (€0

o Unlock when leaving, after accessing shared data

o Wait if locked

m Important idea: all synchronization involves waiting
m Should sleep if waiting for long time

0 Hardware lock instructions

o Is this a good idea?

o What about putting a task to sleep?

= How to handle interface between hardware and scheduler?
o Complexity?

m Each feature makes hardware more complex and slower

27

Where are we going with
synchronization?

o We are going to implement various higher-level
synchronization primitives using atomic operations

o Everything is pretty painful if only atomic primitives are
load and store

o Need to provide primitives useful at user-level

Nailve use of Interrupt Enable/Disable

I
o How can we build multi-instruction atomic operations?

o Recall: dispatcher gets control in two ways.
= Internal: Thread does something to relinquish the CPU
m External: Interrupts cause dispatcher to take CPU

o On a uniprocessor, can avoid context-switching by:
= Avoiding internal events
= Preventing external events by disabling interrupts

o Consequently, naive Implementation of locks:
LockAcquire { disable Ints; }

LockRelease { enable Ints; }

29

Nailve use of Interrupt Enable/Disable:

Problems
T

o Can't let user do this! Consider following:

LockAcquire () ;
While (TRUE) {;}

o0 Real-Time system—no guarantees on timing!
o Critical Sections might be arbitrarily long

o What happens with /O or other important
events?

o “Reactor about to meltdown. Help?”

30

Better Implementation of Locks by

Disabling Interrupts
]

0 Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE; d

Acquire() { Release () {
disable interrupts; disable interrupts;
if (value == BUSY) { if (anyone on wait queue) {
put thread on wait queue; take thread off wait queue
Go to sleep(); } Plut o{n the ready queue
. else
// Enable interrupts? value = FREE:

} else {
value = BUSY;
} }

enable interrupts;

}

}

enable interrupts;

31

New Lock Implementation: Discussion

I
o Disable interrupts: avoid interrupting between checking and
setting lock value

o Otherwise two threads could think that they both have lock
Acquire () { ~
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();
// Enable interrupts?
} else {
\ value = BUSY; _

enable interrupts;

Critical
Section

L . . .
o Note: unlike previous solution, critical section very short
o User of lock can take as long as they like in their own critical section

o Critical interrupts taken in time
32

Interrupt re-enable In going to sleep
I T

o What about re-enabling ints when going to sleep?

Acquire () { Release () {
disable interrupts; disable interrupts;
if (value == BUSY) { if (anyone on wait queue)

Enable PoSition =

Enable Position =
Enable POSIitioN ==

put thread on wait queue;{

go to sleep(); take thread off wait

queue
} else { Put on the ready queue
value = BUSY; } else {
} value = FREE;
enable interrupts; }
} enable interrupts;

o Before putting thread on the wait queue? }
o Release can check the queue and not wake up thread until next lock acquire/release
o After putting the thread on the wait queue

o Release puts the thread on the ready queue, but the thread still thinks it needs to go to
sleep

o Misses wakeup and still holds lock (deadlock!)

o Want to put it after sleep(). But, how?

33

How to Re-enable After Sleep()?

o Since ints are disabled when you call sleep:
o Responsibility of the next thread to re-enable ints

o When the sleeping thread wakes up, returns to acquire and re-enables
interrupts

Thread A Thread B

disabié ints

sleep % yield return
Switch

enable int

context _ disable int
sleep retufgewiten yield

enable ints

34

Summary

o Introduced important concept: Atomic Operations
An operation that runs to completion or not at all

These are the primitives on which to construct various
synchronization primitives

o Showed construction of Locks using interrupts
Using careful disabling of interrupts

Must be very careful not to waste/tie up machine
resources

= Shouldn’t disable interrupts for long
Key ideas: Use a separate lock variable, and use

hardware mechanisms to protect modifications of that
variable

More HW Assisted Solutions

36

Goals
A
o Atomic Instruction sequence
o Hardware assisted solutions

o Continue with Synchronization Abstractions

o Semaphores (possibly, Monitors and condition
variables)

Atomic Read-Modify-Write

Instructions

o Problems with interrupt-based lock solution:
Can’t give lock implementation to users

Doesn’t work well on multiprocessor

= Disabling interrupts on all processors requires messages and
would be very time consuming

o Alternative: atomic instruction sequences

These Instructions read a value from memory and write a
new value atomically

Hardware is responsible for implementing this correctly

= on both uniprocessors (not too hard)

= and multiprocessors (requires help from cache coherence
protocol)

Unlike disabling interrupts, can be used on both
uniprocessors and multiprocessors

Examples of Read-Modify-Write

=e 0

0 test&set (&address) {/* most architectures */
result = M[address];
Ml[address] = 1;
return result;

J

0 swap (&address, register) { /* x86 */
temp = M[address];
M[address] = register;
register = temp;

J

Implementing Locks with test&set

o Simple solution:
int value = 0; // Free
Acquire () {

while (testé&set (value));

J

Release ()
value =

}
o Simple explanation:

{
0;

result = M[address];
M[address] = 1;
return result;

}

_

/Eest&set (&address) { \\

J

If lock Is free, test&set reads 0 and sets value=1, so lock is now

busy. It returns O so while exits

If lock is busy, test&set reads 1 and sets value=1 (no change). It

returns 1, so while loop continues

When we set value = 0, someone else can get lock

// while busy

Problem: Busy-Waiting for Lock

o Positives for this solution
Machine can receive interrupts
User code can use this lock
Works on a multiprocessor

o Negatives

Inefficient: busy-waiting thread will consume cycles
waiting

Waiting thread may take cycles away from thread holding
lock!

Priority Inversion: If busy-waiting thread has higher
priority than thread holding lock = no progress!

o Priority Inversion problem with original Martian rover

Better Locks using test&set

.00
o Can we build test&set locks without busy-waiting?
o Can't entirely, but can minimize!
o ldea: only busy-wait to atomically check lock value

int guard = 0; //protrts lock value
int value = FREE;

Acquire () { Release () { . .
// Short busy-wait time // Short busy-wait time
while (testé&set(guard)); ngle (testﬁsetfguard));{
if (value == BUSY) { 1L anyone on wait queue

i . take thread off wait queue
put thread on wait queue; Place on ready queue;

go to sleep() & guard = O0; } else {

} else { value = FREE;
value = BUSY; }
guard = 0; guard = 0;

}
}

o Note: sleep has to be sure to reset the guard variable

Locks using test&set vs. Interrupts

o Compare to “disable interrupt” solution
int value = FREE;

@

Acquire() { Release () {
disable interrupts; disable interrupts;
if (value == BUSY) { if (anyone on wait queue) {
put thread on wait queue; take thread off wait queue
Go to sleep(); Place on ready queue;
} else {

// Enable interrupts?
} else {

value = BUSY;
} }
enable interrupts;

}
o Basically replace

o disable interrupts =2 while
(testé&set (guard)) ;

0 enable interrupts = gquard = 0;

value = FREE;
}

enable interrupts;

Locks using test&set vs. Interrupts

o Compare to “disable interrupt” solution e
int value = FREE; “
Acquire () { Release () {
while (testé&set(guard));; while (testé&set(guard));
if (value == BUSY) { if (anyone on wait queue) {
put thread on wait queue; take thread off wait queue
Go to sleep(); Place on ready queue;
// guard = 0; } else {
} else { value = FREE;

}

value = BUSY; guard = 0;

) }
guard = 0;}

o Basically replace

ndisable interrupts =2 while
(testé&set (guard)) ;

0 enable interrupts = gquard = 0;

Recap: LOCkS int value = 0;
S TR

Acquire() { disable interrupts;
disable interrupts; if (value == 1) {
} put thread on wait-queue;
go to sleep() //??
lock.Acquire() ; } else {
value = 1;

L. : enable interrupts;
critical section; Pts;

lock.Release () ; =

Release () { ~ PRelease() {
enable interrupts; // Short busy-wait time
} disable interrupts;
if anyone on wait queue ({

e _ — ™ take thread off wait-queue
If one thread in critical Place on ready queue;
section, no other } else {

value = 0;

activity (including OS) }
\Can run! y enable interrupts;

Recap: Locks int quara
e

e ot busy-wait time

int value = 0; while (testé&set (guard)) ;

0:
0

14
o
14

while (testé&set (value)) ; put thread on wait-queue;
} go to sleep()& guard = 0;
lock.Acquire() ; } else {
value = 1;
critical section; } guard = 0;
.ee }
lock.Release () ; =
Release () { 'Release() {
value = 0; // Short busy-wait time
} while (testé&set(guard))

if anyone on wait queue ({
take thread off wait-queue

4 N) Place on ready queue;
Threads waiting to } else {

enter critical section \ value = 0;

busy-wait uard = 0;
\ J 7

Where are we going with
synchronization?

o We are going to implement various higher-level
synchronization primitives using atomic operations

o Everything is pretty painful if only atomic primitives are
load and store

o Need to provide primitives useful at user-level

Semaphores 3

o Semaphores are a kind of generalized locks

First defined by Dijkstra in late 60s
Main synchronization primitive used in original UNIX

o Definition: a Semaphore has a non-negative integer
value and supports the following two operations:

P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1
m Think of this as the wait() operation
V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, If any
= Think of this as the signal() operation

Semaphores Like Integers Except

o Semaphores are like integers, except
No negative values

Only operations allowed are P and V — can't read or write
value, except to set it initially

Operations must be atomic
m Two P’s together can’'t decrement value below zero

m Similarly, thread going to sleep in P won’t miss wakeup from V —
even if they both happen at same time

o Semaphore from railway analogy
Here hore Initialized to 2 for resource control:

Two Uses of Semaphores

e

o Mutual Exclusion (initial value = 1)
o Also called “Binary Semaphore”.

o Can be used for mutual exclusion:

semaphore.P () ;
// Critical section goes here
semaphore.V () ;

o Scheduling Constraints (initial value = 0)

o Allow thread 1 to wait for a signal from thread 2, i.e., thread 2
schedules thread 1 when a given constrained is satisfied

o Example: suppose you had to implement ThreadJoin which must
wait for thread to terminiate:
Initial value of semaphore = 0

ThreadJoin {
semaphore.P () ;
}

ThreadFinish {
semaphore.V () ;
}

Producer-consumer with a bounded

buffer

o Problem Definition

Producer |—)| Buffer I—)

Consumer

Producer puts things into a shared buffer
Consumer takes them out
Need synchronization to coordinate producer/consumer

o Don’t want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them

Need to synchronize access to this buffer
Producer needs to wait if buffer is full
Consumer needs to wait if buffer is empty

o Example: Coke machine

R

Producer can put limited number of cokes in machine
Consumer can’t take cokes out if machine is empty

Correctness constraints for solution

S5
o Correctness Constraints:

o Consumer must wait for producer to fill slots, if empty (scheduling
constraint)

o Producer must wait for consumer to make room in buffer, if all full
(scheduling constraint)

o Only one thread can manipulate buffer queue at a time (mutual
exclusion)

o General rule of thumb:

Use a separate semaphore for each constraint

O Semaphore fullSlots; // consumer’s constraint
0 Semaphore emptySlots;// producer’s constraint
0 Semaphore mutex; // mutual exclusion

Full Solution to Bounded Buffer

=N
Semaphore fullSlots = 0; // Initially, no coke

Semaphore emptySlots = bufSize;
/Initially,num empty slots

Semaphore mutex = 1; // No one using machine

Producer (item) §)

emptySlots.P // Wait until space
mutex.P () ; // Wait until machine free
Enqueue 1tem);
mutex.V (), .
fullSlots.V(); // Tell consumers there 1is
\ // more coke
Consumer () { .
fullSlots.P(); // Check if there’s a coke
mutex.P () ; // Wait until machine free
1tem = Dequeue () ;
mutex.V (),
emptySlots.V () ; // tell producer need more

return item;

Discussion about Solution

Decrease # of Increase # of
] Why asymmetry? empty slots occupied slots

v v

o Producer does: emptySlots.P (), fullSlots.V ()
o Consumer does: fullSlots.P (), emptySlots.V ()

S~ __—\
Decrease # of Increase # of
occupied slots empty slots

One is creating space, the other is filling space

Discussion about Solution
oss 4
o Is order of P’s important? broducer (item) {
o Is order of V's important? emptySlots.P ()

mutex.P() ;

o What if we have 2 producers gy bem) 7
or 2 consumers? fullSlots.V();

}

Consumer () {
fullSlots.P();
mutex.P() ;
item = Dequeue() ;
mutex.V() ;
emptySlots.V () ;
return item;

Discussion about Solution

I T
o Is order of P’s important?

o Yes! Can cause deadlock

}

Producer (item) {

emptySlots.P() ;
mutex.P () ;
Enqueue (item) ;
mutex.V () ;
fullSlots.V() ;

Consumer () {

fullSlots.P();
mutex.P () ;

item = Dequeue() ;
mutex.V () ;
emptySlots.V() ;
return item;

}

Producer (item) {

mutex.P () ;
emptySlots.P() ;
Enqueue (item) ;
mutex.V () ;
fullSlots.V() ;

Consumer () {

fullSlots.P();
mutex.P () ;

item = Dequeue() ;
mutex.V () ;
emptySlots.V() ;
return item;

Discussion about Solution
A T
o Is order of V's important?
o No, except that it might affect scheduling efficiency

Producer (item) { Producer (item) {

}

emptySlots.P() ;
mutex.P () ;
Enqueue (item) ;
mutex.V () ;
fullSlots.V () ;

Consumer () {

fullSlots.P () ;
mutex.P () ;

item = Dequeue() ;

mutex.V () ;
emptySlots.V() ;
return item;

emptySlots.P() ;
mutex.P () ;
Enqueue (item) ;
fullSlots.V () ;
mutex.V () ;

}

Consumer () {

fullSlots.P();
mutex.P () ;
item = Dequeue() ;
mutex.V () ;
emptySlots.V() ;
return item;

Discussion about Solution
B

o What If we have 2 producers

or 2 consumers?

o Do we need to change anything?

m NO

}

Producer (item) ({

emptySlots.P() ;
mutex.P () ;
Enqueue (item) ;
mutex.V () ;
fullSlots.V() ;

Consumer () {

fullSlots.P() ;
mutex.P () ;

item = Dequeue() ;
mutex.V () ;
emptySlots.V() ;
return item;

Summary

I
0 Threading is great for performance
0 Threading is tricky and carry hazards!

