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Motivation

 Concurrent processes improve Computer System resource 
utilization

 But concurrency introduces inherent cost of context 
switching

 Threading a process reduces the cost of context switching 
because we allow threads to share global context
(memory, IO State) of their parent process
 But this sharing can be dangerous if not handled properly
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Synchronization Motivation

Thread 1

p = someFn();

Initialized = true; 

Thread 2

while (! Initialized ) ; 

q = aFn(p); 

if q != aFn(someFn())

panic
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Goals for This Lecture

 Concurrency examples and sharing

 Synchronization

 Hardware Support for Synchronization

Note: Some slides and/or pictures in the following are adapted and/or used 

verbatim from slide content  in Silberschatz, Galvin, and Gagne (2014), 

Anthony D. Joseph (2014 Berkeley), Tom Anderson (2014 UW), Bettati 

(2014 TAMU), Gu (2014 TAMU)
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 Threaded programs must work for all interleavings of thread instruction 
sequences

 Cooperating threads inherently non-deterministic and non-reproducible

 Really hard to debug unless carefully designed!

 Example: Therac-25

 Machine for radiation therapy
 Software control of electron

accelerator and electron beam/
Xray production

 Software control of dosage
 Therac-20 used to accomplish this

in Hardware

 Software errors caused 
overdoses and the death of 
several patients
 A series of race conditions on 

shared variables and poor 
software design

 “They determined that data entry speed during editing was the key factor 
in producing the error condition: If the prescription data was edited at a 
fast pace, the overdose occurred.”

Correctness Requirements
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Space Shuttle Example

 Original Space Shuttle launch aborted 20 minutes before launch

 Shuttle has five computers:

 Four run the “Primary Avionics 
Software System” (PASS)

 Asynchronous and real-time

 Runs all of the control systems

 Results synchronized and compared 440 times per second

 The Fifth computer is the “Backup Flight System” (BFS)

 Stays synchronized in case it is needed

 Written by completely different team than PASS

 Countdown aborted because BFS disagreed with PASS
 Bug due to modifications in initialization code of PASS

 A delayed init request placed into timer queue

 As a result, timer queue not empty at expected time to force use of 
hardware clock

 Bug not found during extensive simulation

PASS

BFS
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Race Condition

 Race condition: Output of a concurrent program depends on the 
order of operations between threads

 Sequential Model of thinking does not work for concurrent 
threads

 Cannot make any assumptions about relative speed at which 
the threads operate (i.e. interleaving is a given)

 Program execution can be non-deterministic (scheduler, 
processor frequencies, etc.)

 Compilers can reorder instructions

Out-of-order execution relies on compiler optimizations to 
circumvent operand dependencies
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Race Condition – Compiler Effect

 Simple threaded code (assume x=0)
Thread1 Thread2
x=x+1; x=x+2;
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Compiler Generated:

load r1, x

add r2, r1, 1

store x, r2

Values of x can be 1, 2, or 3 depending 

on the order of execution

load r1, x

add r2, r1, 1

store x, r2

load r1, x

add r2, r1, 2

store x, r2

load r1, x

add r2, r1, 1

store x, r2

load r1, x

add r2, r1, 2

store x, r2

X=1
X=3



Concurrency Challenges

 Multiple computations (threads) executing 

concurrently to 

 share resources, and/or

 share data

• Fine grain sharing: 

⇑ Increase concurrency  better perf.

⇓ more complex

• Coarse grain sharing:

⇑ Simpler to implement

⇓ Lower performance
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• Cannot make any 

assumptions about 

relative speed at 

which the threads 

operate

• Program execution 

can be non-

deterministic

• Compilers can 

reorder instructions



Atomic Operations

 To understand a concurrent program, we need to know what the 
underlying atomic operations are!

 Atomic Operation: an operation that always runs to completion or 
not at all
 It is indivisible: it cannot be stopped in the middle and state 

cannot be modified by someone else in the middle
 Fundamental building block – if no atomic operations, then have 

no way for threads to work together

 On most machines, memory references and assignments (i.e. loads 
and stores) of words are atomic
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Concurrency Coordination Landscape

Concurrent Applications

Shared Coordinated Objects

Synchronization Variables

Atomic Operations

Hardware

Bounded 

Queue
Ordered List Dictionary Barrier

Locks SemaphoreCondition Variables Monitors

Interrupt Disable/Enable Test-and-Set

Interrupts Controllers Multiple Processors
cmp&swap

xchng

fetch&inc
LL + SC

Flag

Send/Receive
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Motivation: “Too much milk”

 Great thing about OS’s – analogy between 

problems in OS and problems in real life

 Help you understand real life problems better

 Example: People need to coordinate:

Arrive home, put milk away3:30

Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime
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Definitions

 Synchronization: using atomic operations to ensure 
cooperation between threads

 For now, only loads and stores are atomic

 Critical Section: piece of code that only one thread can 
execute at once

 Mutual Exclusion: ensuring that only one thread executes 
critical section

 One thread excludes the other while doing its task

 Critical section and mutual exclusion are two ways of 
describing the same thing
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More Definitions

 Lock: prevents someone from doing something
 Lock before entering critical section and 

before accessing shared data

 Unlock when leaving, after accessing shared data

 Wait if locked
 Important idea: all synchronization involves waiting

 Example: fix the milk problem by putting a lock on refrigerator
 Lock it and take key if you are going to go buy milk

 Fixes too much (coarse granularity): roommate angry if only wants 
orange juice

 Of Course – We don’t know how to make a lock yet
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Too Much Milk: Correctness 

Properties

 Need to be careful about correctness of concurrent programs, 
since non-deterministic
 Always write down desired behavior first

 Impulse is to start coding first, then when it doesn’t work, pull hair 
out

 Instead, think first, then code

 What are the correctness properties for the “Too much milk” 
problem?
 Never more than one person buys (safety)

 i.e. the program never enters a bad state

 Someone buys if needed (liveness)
 i.e. the program eventually achieves a good state

 Restrict ourselves to use only atomic load and store operations 
as building blocks
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Too Much Milk: Solution #1

 Use a note to avoid buying too 
much milk:
 Leave a note before buying (kind 

of “lock”)
 Remove note after buying (kind of 

“unlock”)
 Don’t buy if note (wait)

 Suppose a computer tries this 
(remember, only memory 
read/write are atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

 Result?  
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 Still too much milk but only occasionally!
Thread A Thread B

if (noMilk) {         

if (noNote) {

if (noMilk)   {       

if (noNote) {

leave Note;
buy milk;

remove note;

}

}

leave Note;
buy milk;

remove note; }}

 Thread can get context switched after checking milk and note but before leaving 
note!

 Solution makes problem worse since fails intermittently
 Makes it really hard to debug…

 Must work despite what the thread dispatcher does!

Too Much Milk: Solution #1
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Too Much Milk: Solution #1½ 

 Clearly the Note is not quite blocking 
enough
 Let’s try to fix this by placing note first

 Another try at previous solution:

leave Note;

if (noMilk) {
if (noNote) {

buy milk;
}

}

remove Note;

 What happens here?
 Well, with human, probably nothing bad
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With computer: no one ever buys milk



Too Much Milk Solution #2

 How about labeled notes?  
 Now we can leave note before checking

 Algorithm looks like this:

Thread A Thread B
leave note A; leave note B;
if (noNote B) { if (noNote A) {

if (noMilk) { if (noMilk){
buy Milk; buy Milk;

} }
} }
remove note A; remove note B;

 Does this work?
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Too Much Milk Solution #2

20

 Possible for neither thread to buy milk!

Thread A Thread B
leave note A;

leave note B;
if (noNote A) {

if (noMilk) {
buy Milk;

}
}

if (noNote B) {

if (noMilk) {

buy Milk;             

…

remove note B;

 Really insidious: 

– Unlikely that this would happen, but will at worse possible time



Too Much Milk Solution #2: problem!

 I’m not getting milk, You’re getting milk

 This kind of lockup is called “starvation!”
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Too Much Milk Solution #3

 Here is a possible two-note solution:

Thread A Thread B

leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

 Does this work? Yes. Both can guarantee that: 

 It is safe to buy, or

 Other will buy, ok to quit

 At X: 

 if no note B, safe for A to buy, 

 otherwise wait to find out what will happen

 At Y: 

 if no note A, safe for B to buy

 Otherwise, A is either buying or waiting for B to quit
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Solution #3 discussion

 Our solution protects a single “Critical-Section” piece of code 
for each thread:

if (noMilk) {
buy milk;

}

 Solution #3 works, but it’s really unsatisfactory
 Really complex – even for this simple an example

 Hard to convince yourself that this really works

 A’s code is different from B’s – what if lots of threads?
 Code would have to be slightly different for each thread

 While A is waiting, it is consuming CPU time
 This is called “busy-waiting”

 There’s a better way
 Have hardware provide better (higher-level) primitives than atomic load 

and store

 Build even higher-level programming abstractions on this new 
hardware support 23



High-Level Picture

 The abstraction of threads is good:

 Maintains sequential execution model 

 Allows simple parallelism to overlap I/O and computation

 Unfortunately, still too complicated to access state 
shared between threads 

 Consider “too much milk” example

 Implementing a concurrent program with only loads and 
stores would be tricky and error-prone

 We’ll implement higher-level operations on top of 
atomic operations provided by hardware

 Develop a “synchronization toolbox”

 Explore some common programming paradigms
24



Concurrency Coordination Landscape

Concurrent Applications

Shared Coordinated Objects

Synchronization Variables

Atomic Operations

Hardware

Bounded 

Queue
Ordered List Dictionary Barrier

Locks SemaphoreCondition Variables Monitors

Interrupt Disable/Enable Test-and-Set

Interrupts Controllers Multiple Processors
cmp&swap

xchng

fetch&inc
LL + SC

Flag

Send/Receive
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Too Much Milk: Solution #4

 Suppose we have some sort of implementation of a lock

 Lock.Acquire() – wait until lock is free, then grab

 Lock.Release() – unlock, waking up anyone waiting

 These must be atomic operations – if two threads are waiting for the 

lock, only one succeeds to grab the lock

 Then, our milk problem is easy:

milklock.Acquire();

if (nomilk)

buy milk;

milklock.Release();

 Once again, section of code between Acquire() and 

Release() called a “Critical Section”
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How to Implement Lock?

 Lock: prevents someone from accessing 
something
 Lock before entering critical section (e.g., before 

accessing shared data)
 Unlock when leaving, after accessing shared data
 Wait if locked
 Important idea: all synchronization involves waiting
 Should sleep if waiting for long time

 Hardware lock instructions
 Is this a good idea?
 What about putting a task to sleep?
 How to handle interface between hardware and scheduler?

 Complexity?
 Each feature makes hardware more complex and slower
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Where are we going with 

synchronization?

 We are going to implement various higher-level 
synchronization primitives using atomic operations

 Everything is pretty painful if only atomic primitives are 
load and store

 Need to provide primitives useful at user-level

Load/Store    Disable Ints   Test&Set   Comp&Swap

Locks   Semaphores   Monitors   Send/Receive

Shared Memory

Hardware

Higher-
level 

API

Programs

28



 How can we build multi-instruction atomic operations?

 Recall: dispatcher gets control in two ways. 

 Internal: Thread does something to relinquish the CPU

 External: Interrupts cause dispatcher to take CPU

 On a uniprocessor, can avoid context-switching by:

 Avoiding internal events

 Preventing external events by disabling interrupts

 Consequently, naïve Implementation of locks:

LockAcquire { disable Ints; }

LockRelease { enable Ints; }

Naïve use of Interrupt Enable/Disable
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 Can’t let user do this! Consider following:

LockAcquire();

While(TRUE) {;}

 Real-Time system—no guarantees on timing! 

 Critical Sections might be arbitrarily long

 What happens with I/O or other important 

events?

 “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable: 

Problems
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Better Implementation of Locks by 

Disabling Interrupts

 Key idea: maintain a lock variable and impose mutual 

exclusion only during operations on that variable

int value = FREE;

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

Go to sleep();

// Enable interrupts?

} else {

value = BUSY;

}

enable interrupts;

}

Release() {

disable interrupts;

if (anyone on wait queue) {

take thread off wait queue

Put on the ready queue

} else {

value = FREE;

}

enable interrupts;

}
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New Lock Implementation: Discussion

 Disable interrupts: avoid interrupting between checking and 

setting lock value

 Otherwise two threads could think that they both have lock

 Note: unlike previous solution, critical section very short

 User of lock can take as long as they like in their own critical section

 Critical interrupts taken in time

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

Go to sleep();

// Enable interrupts?

} else {

value = BUSY;

}

enable interrupts;

}

Critical
Section
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Interrupt re-enable in going to sleep

 What about re-enabling ints when going to sleep?

 Before putting thread on the wait queue?

 Release can check the queue and not wake up thread until next lock acquire/release

 After putting the thread on the wait queue

 Release puts the thread on the ready queue, but the thread still thinks it needs to go to 

sleep

 Misses wakeup and still holds lock (deadlock!)

 Want to put it after sleep(). But, how?

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

go to sleep();

} else {

value = BUSY;

}

enable interrupts;

}

Enable Position

33

Release() {

disable interrupts;

if (anyone on wait queue) 

{

take thread off wait 

queue

Put on the ready queue

} else {

value = FREE;

}

enable interrupts;

}

Enable Position

Enable Position



How to Re-enable After Sleep()?

 Since ints are disabled when you call sleep:
 Responsibility of the next thread to re-enable ints

 When the sleeping thread wakes up, returns to acquire and re-enables 
interrupts

Thread A Thread B
.
.

disable ints
sleep

sleep return
enable ints

.

.

.

disable int
sleep

sleep return
enable ints

.

.

yield return

enable int

disable int

yield
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Summary

 Introduced important concept: Atomic Operations
 An operation that runs to completion or not at all

 These are the primitives on which to construct various 
synchronization primitives

 Showed construction of Locks using interrupts
 Using careful disabling of interrupts

 Must be very careful not to waste/tie up machine 
resources
 Shouldn’t disable interrupts for long

 Key ideas: Use a separate lock variable, and use 
hardware mechanisms to protect modifications of that 
variable
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More HW Assisted Solutions
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Goals

 Atomic instruction sequence

 Hardware assisted solutions

 Continue with Synchronization Abstractions

 Semaphores (possibly, Monitors and condition 

variables)

37



Atomic Read-Modify-Write 

instructions

 Problems with interrupt-based lock solution:
 Can’t give lock implementation to users

 Doesn’t work well on multiprocessor
 Disabling interrupts on all processors requires messages and 

would be very time consuming

 Alternative: atomic instruction sequences
 These instructions read a value from memory and write a 

new value atomically

 Hardware is responsible for implementing this correctly 
 on both uniprocessors (not too hard) 

 and multiprocessors (requires help from cache coherence 
protocol)

 Unlike disabling interrupts, can be used on both 
uniprocessors and multiprocessors
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Examples of Read-Modify-Write 

 test&set (&address) {/* most architectures */
result = M[address];
M[address] = 1;
return result;

}

 swap (&address, register) { /* x86 */
temp = M[address];
M[address] = register;
register = temp;

}
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Implementing Locks with test&set

 Simple solution:

int value = 0; // Free

Acquire() {
while (test&set(value)); // while busy

}

Release() {
value = 0;

}

 Simple explanation:
 If lock is free, test&set reads 0 and sets value=1, so lock is now 

busy.  It returns 0 so while exits

 If lock is busy, test&set reads 1 and sets value=1 (no change). It 
returns 1, so while loop continues

 When we set value = 0, someone else can get lock

test&set (&address) {

result = M[address];

M[address] = 1;

return result;

}
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Problem: Busy-Waiting for Lock

 Positives for this solution

 Machine can receive interrupts

 User code can use this lock

 Works on a multiprocessor

 Negatives

 Inefficient: busy-waiting thread will consume cycles 
waiting

 Waiting thread may take cycles away from thread holding 
lock! 

 Priority Inversion: If busy-waiting thread has higher 
priority than thread holding lock  no progress!

 Priority Inversion problem with original Martian rover 
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Better Locks using test&set

 Can we build test&set locks without busy-waiting?

 Can’t entirely, but can minimize!

 Idea: only busy-wait to atomically check lock value

 Note: sleep has to be sure to reset the guard variable

Release() {

// Short busy-wait time

while (test&set(guard));

if anyone on wait queue {

take thread off wait queue

Place on ready queue;

} else {

value = FREE;

}

guard = 0;

int guard = 0; //protects lock value

int value = FREE;

Acquire() {

// Short busy-wait time

while (test&set(guard));

if (value == BUSY) {

put thread on wait queue;

go to sleep() & guard = 0;

} else {

value = BUSY;

guard = 0;

}

}
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Locks using test&set vs. Interrupts

 Compare to “disable interrupt” solution

}

 Basically replace 

 disable interrupts  while 
(test&set(guard));

 enable interrupts  guard = 0;

int value = FREE;

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

Go to sleep();

// Enable interrupts?

} else {

value = BUSY;

}

enable interrupts;

Release() {

disable interrupts;

if (anyone on wait queue) {

take thread off wait queue

Place on ready queue;

} else {

value = FREE;

}

enable interrupts;

}
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Locks using test&set vs. Interrupts

 Compare to “disable interrupt” solution

 Basically replace 

 disable interrupts  while 
(test&set(guard));

 enable interrupts  guard = 0;

int value = FREE;

Acquire() {

while (test&set(guard));

if (value == BUSY) {

put thread on wait queue;

Go to sleep();

// guard = 0;

} else {

value = BUSY;

}

guard = 0;}

Release() {

while (test&set(guard));

if (anyone on wait queue) {

take thread off wait queue

Place on ready queue;

} else {

value = FREE;

}

guard = 0;

}
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Recap: Locks
int value = 0;

Acquire() {

// Short busy-wait time

disable interrupts;

if (value == 1) {

put thread on wait-queue;

go to sleep() //?? 

} else {

value = 1;

enable interrupts;

}

}

Release() {

// Short busy-wait time

disable interrupts;

if anyone on wait queue {

take thread off wait-queue

Place on ready queue;

} else {

value = 0;

}

enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

Acquire() {

disable interrupts;

}

Release() {

enable interrupts;

}

If one thread in critical 

section, no other 

activity (including OS) 

can run! 
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Recap: Locks int guard = 0;

int value = 0;

Acquire() {

// Short busy-wait time

while(test&set(guard));

if (value == 1) {

put thread on wait-queue;

go to sleep()& guard = 0;

} else {

value = 1;

guard = 0;

}

}

Release() {

// Short busy-wait time

while (test&set(guard));

if anyone on wait queue {

take thread off wait-queue

Place on ready queue;

} else {

value = 0;

}

guard = 0;

}

lock.Acquire();

…

critical section;

…

lock.Release();

int value = 0;

Acquire() {

while(test&set(value));

}

Release() {

value = 0;

}

Threads waiting to 

enter critical section 

busy-wait
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Where are we going with 

synchronization?

 We are going to implement various higher-level 
synchronization primitives using atomic operations

 Everything is pretty painful if only atomic primitives are 
load and store

 Need to provide primitives useful at user-level

Load/Store    Disable Ints   Test&Set   Comp&Swap

Locks   Semaphores   Monitors   Send/Receive

Shared Programs

Hardware

Higher-
level 

API

Programs
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Semaphores

 Semaphores are a kind of generalized locks

 First defined by Dijkstra in late 60s

 Main synchronization primitive used in original UNIX

 Definition: a Semaphore has a non-negative integer 
value and supports the following two operations:

 P(): an atomic operation that waits for semaphore to 
become positive, then decrements it by 1 

 Think of this as the wait() operation

 V(): an atomic operation that increments the semaphore 
by 1, waking up a waiting P, if any

 Think of this as the signal() operation
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Value=2Value=1Value=0

Semaphores Like Integers Except

 Semaphores are like integers, except
 No negative values

 Only operations allowed are P and V – can’t read or write 
value, except to set it initially

 Operations must be atomic
 Two P’s together can’t decrement value below zero

 Similarly, thread going to sleep in P won’t miss wakeup from V –
even if they both happen at same time

 Semaphore from railway analogy
 Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=2

49



Two Uses of Semaphores

 Mutual Exclusion (initial value = 1)
 Also called “Binary Semaphore”.

 Can be used for mutual exclusion:
semaphore.P();
// Critical section goes here
semaphore.V();

 Scheduling Constraints (initial value = 0)
 Allow thread 1 to wait for a signal from thread 2, i.e., thread 2 

schedules thread 1 when a given constrained is satisfied

 Example: suppose you had to implement ThreadJoin which must 
wait for thread to terminiate:

Initial value of semaphore = 0

ThreadJoin {
semaphore.P();

}

ThreadFinish {
semaphore.V();

}
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Producer-consumer with a bounded 

buffer

 Problem Definition
 Producer puts things into a shared buffer

 Consumer takes them out

 Need synchronization to coordinate producer/consumer

 Don’t want producer and consumer to have to work in 
lockstep, so put a fixed-size buffer between them
 Need to synchronize access to this buffer

 Producer needs to wait if buffer is full

 Consumer needs to wait if buffer is empty

 Example: Coke machine
 Producer can put limited number of cokes in machine

 Consumer can’t take cokes out if machine is empty

Producer ConsumerBuffer
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Correctness constraints for solution

 Correctness Constraints:

 Consumer must wait for producer to fill slots, if empty (scheduling 

constraint)

 Producer must wait for consumer to make room in buffer, if all full 

(scheduling constraint)

 Only one thread can manipulate buffer queue at a time (mutual 

exclusion)

 General rule of thumb: 

Use a separate semaphore for each constraint
 Semaphore fullSlots; // consumer’s constraint

 Semaphore emptySlots;// producer’s constraint

 Semaphore mutex;       // mutual exclusion
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Full Solution to Bounded Buffer

Semaphore fullSlots = 0; // Initially, no coke

Semaphore emptySlots = bufSize;
//Initially,num empty slots

Semaphore mutex = 1; // No one using machine

Producer(item) {
emptySlots.P(); // Wait until space
mutex.P(); // Wait until machine free
Enqueue(item);
mutex.V();
fullSlots.V(); // Tell consumers there is

// more coke
}

Consumer() {
fullSlots.P(); // Check if there’s a coke
mutex.P(); // Wait until machine free
item = Dequeue();
mutex.V();
emptySlots.V(); // tell producer need more
return item;

}
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Discussion about Solution

 Why asymmetry?

 Producer does: emptySlots.P(), fullSlots.V()

 Consumer does: fullSlots.P(), emptySlots.V()

Decrease # of 

empty slots
Increase # of 

occupied slots

Increase # of 

empty slots
Decrease # of 

occupied slots

54

One is creating space, the other is filling space



Discussion about Solution

 Is order of P’s important?

 Is order of V’s important?

 What if we have 2 producers 

or 2 consumers?

Producer(item) {
emptySlots.P(); 
mutex.P(); 
Enqueue(item);
mutex.V();
fullSlots.V();

}

Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}
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Discussion about Solution

 Is order of P’s important?

 Yes!  Can cause deadlock

Producer(item) {
mutex.P(); 
emptySlots.P(); 
Enqueue(item);
mutex.V();
fullSlots.V();

}

Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}
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Producer(item) {
emptySlots.P(); 
mutex.P(); 
Enqueue(item);
mutex.V();
fullSlots.V();

}

Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}

BEFORE AFTER



Discussion about Solution

 Is order of V’s important?

 No, except that it might affect scheduling efficiency

Producer(item) {
emptySlots.P(); 
mutex.P(); 
Enqueue(item);
fullSlots.V();
mutex.V();
}

Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}
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Producer(item) {
emptySlots.P(); 
mutex.P(); 
Enqueue(item);
mutex.V();
fullSlots.V();

}

Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}

BEFORE AFTER



Discussion about Solution

 What if we have 2 producers 

or 2 consumers?

 Do we need to change anything?

 NO

Producer(item) {
emptySlots.P(); 
mutex.P(); 
Enqueue(item);
mutex.V();
fullSlots.V();

}

Consumer() {
fullSlots.P();
mutex.P();
item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}
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Summary
59

 Threading is great for performance

 Threading is tricky and carry hazards!


