
W10: IPC - SIGNALS

Spring 2017



Inter-Process Communication Landscape

 Rendering from Prof. Farrell (Kent State University) 

CSCE-313 SP 2017

2



Inter-Process Communication

 IPC classes

 Pipes and FIFO

 Signals

 Message Passing

 Shared Memory

 Semaphore Sets
 References: 

 Baseline slides: CSCE-313 Spring’14 Bettati & Gu

 Advanced Programming in the UNIX Environment, Third Edition, W. Richard Stevens and Stephen A. 
Rago, Addison-Wesley Professional Computing Series, 2013. Chapters 10, 15

 Understanding Unix/Linux Programming, Bruce Molay, Chapter 6

 Advanced Linux Programming Ch 5

 Some material also directly taken or adapted with changes from Illinois course in System Programming
(Prof. Angrave), UCSD (Prof. Snoeren), and USNA (Prof. Brown)

CSCE-313 SP 2017

3

http://www.advancedlinuxprogramming.com/
https://courses.engr.illinois.edu/cs241/fa2012
http://www.usna.edu/Users/cs/wcbrown/courses/IC221/Calendar.html#April2010


Background: User-Mode Exceptional 
Flow

 So far exceptional control flow features have been 
usable only by the operating system

 Exceptions: 

 Synchronous: faults, traps, aborts

 Asynchronous: interrupts

 All exception handlers run in protected (KERNEL) mode

 Would like similar capabilities for user mode code

 Inter-Process communication to facilitate ‘exceptional 
control flow’ is subject of today’s discussion

 We will discuss them through “Signals” mechanism

 ……but also in a broader context beyond just IPC
CSCE-313 SP 2017

4



Example: What does CTRL-C do?

Taken from: Chapter 6 of “Understanding Unix/Linux Programming” by Bruce Molay
CSCE-313 SP 2017

5



What is a Signal?

 A Signal is a one-word message

A Green Light is a signal, A Referee’s whistle is a 
signal

 These items and events do not contain messages, 
they are messages!

 Each Signal has a numerical code

 So when we press CTRL-C key we ask the Kernel to 
send the interrupt signal to the currently running 
process

CSCE-313 SP 2017

6



Where do Signals come from?

 Today we’ll look at Signals in a broader context

 IPC is one of the contexts

CSCE-313 SP 2017

7

Taken from: Chapter 6 of “Understanding Unix/Linux Programming” by Bruce Molay

 Others are facilitated by Users and Kernel

 [Users] Signals generated by external Input devices

 [Kernel] Exceptions



Where do Signals come from?

(USER) Terminal-generated signals: triggered when user 
presses certain key on terminal. (e.g. ^C)

(KERNEL) Exception-generated signals: CPU execution detects 
condition and notifies kernel. (e.g. SIGFPE divide by 0, 
SIGSEGV invalid memory reference) 

kill(2) function: Sends any signal to another process. 

kill(1) command: The command-line interface to kill(2).

(PROCESSES) Software-condition generated signals: Triggered 
by software event (e.g. SIGPIPE by broken pipe)

8



Signals and the Kernel - Modes

 Many of the signals are generated by the KERNEL in response 
to events and exceptions received
 SIGALRM – timer interrupt
 SIGFPE – FP exception
 SIGILL – Illegal instruction
 SigSEGV – Segment Violation

 Many others are routed through the Kernel, if not originating 
from the Kernel itself
 E.g. SIGHUP (terminal hang), SIGINT (CTRL-C keyboard), SIGTSTP 

(CTRL-Z), SIGKILL (KILL)

 As with SYSTEM calls, the kernel receives the signals from 
hardware and other processes on behalf of a process
 Then Kernel forwards the signal to the appropriate process

CSCE-313 SP 2017

9



/* example: send signal SIGUSR1 to process 1234 */

if (kill(1234, SIGUSR1) == -1)

perror(“Failed to send SIGUSR1 signal”);

/* example: kill parent process */

if (kill(getppid(), SIGTERM) == -1)

perror(“Failed to kill parent”);

Generating Signals: kill(2) and 
raise(3)

#include <signal.h>

int kill(pid_t pid, int sig);

/* send signal ‘sig’ to process ‘pid’ */

#include <signal.h>

int raise(int sig);

/* Sends signal ‘sig’ to itself.

Part of ANSI C library! */

Raise sends a signal to the executing process
Kill sends a signal to the specified process CSCE-313 SP 2017

10



Where can I find a list of Signals?

 Unix provides Signals

 Location: /usr/include/signal.h

 Some example signals along with default behaviors

CSCE-313 SP 2017

11



What can a Process do about a Signal?

Tell the kernel what to do with a signal:

1. Accept Default action. All signals have a default action 
signal (SIGINT, SIG_DFL)

2. Ignore the signal. Works for most signals

signal (SIGINT, SIG_IGN)
cannot ignore SIGKILL and SIGSTOP; also unwise to ignore hardware 
exception signals

3. Catch the signal (call a function). Tell the kernel to 
invoke a given function (signal handler) whenever 
signal occurs. 

signal (SIGINT, foo)
CSCE-313 SP 2017

12



Simple Signal Handling: Example

Taken from: Chapter 6 of “Understanding Unix/Linux Programming” by Bruce Molay

CSCE-313 SP 2017

13



Signals Terminology

CSCE-313 SP 2017

14

 A signal is generated for a process when event that 
causes the signal occurs. (Hardware exception, 
software condition, etc.)

 A signal is delivered when action for a signal is taken.

 During the time between generation and delivery, 
signal is pending.

 A process has the option of blocking the delivery of a 
signal. 

 Signal remains blocked until process either (a) unblocks the 
signal, or (b) changes the action to ignore the signal



Signals Terminology

CSCE-313 SP 2017

15

 The system determines what to do with a 
blocked signal when the signal is delivered, not 
when it is generated.

 What happens when blocked signal is generated 
more than once? (If system delivers the signal 
more than once, the signal is queued)

 signal mask is the mechanism to define set of 
signals that are blocked from delivery.



Pending Signals

 For each process, the Kernel manages two 
bookkeeping variables for signal handling

Pending – a bit vector of signals that are 
currently pending for the process
These signals have been sent to the process, but 

haven’t yet been handled by the process

Each kind of signal has one bit assigned to it
 If a particular signal type is already pending and 

then is sent again, the second signal is dropped

CSCE-313 SP 2017

16



Blocked Signals

 The Kernel also keeps a blocked bit-vector for each 
process

 Each type of signal has a bit assigned to it

 If a particular type of signal is blocked it will not be 
delivered to the process

 When the Kernel calls a signal handler on a process, 
that type of signal is automatically blocked

Generally signal handlers don’t need to worry 
about being interrupted by the same kind of signal 
again

CSCE-313 SP 2017

17



Blocked Signals (2)

 When a signal handler returns, the blocked signal type 
is automatically unblocked

 When handler returns, signals of that type can start to be 
delivered again

 In case of a blocked pending SIGINT, it will subsequently be 
delivered to the process

 Several functions for manipulating these signal bit 
vectors

 sigpending (returns current pending signals for the process)

 sigprocmask (manipulate the set of blocked signals for the 
process)

CSCE-313 SP 2017

18



Blocked Signals - Example

 Example: A process with a SIGINT handler

First SIGINT received causes the SIGINT 
handler to be called

Also causes SIGINT to be blocked for the 
process

If another SIGINT occurs during Handler 
execution, it is recorded in pending bit 
vector but not delivered

CSCE-313 SP 2017

19



Practice: Multiple Signals Handling….Process
20

 A Process receives multiple 
signals
 What happens if SIGY is 

generated while the process is 
in SIGX handler?

 What happens if a second 
SIGX is generated while the 
process is still in SIGX 
handler? Or a third SIGX?

 What happens if a signal is 
generated while the program 
is blocking on input?

SIGALRM

SIGQUIT

SIGINT
SIGINT Handler

SIGALRM Handler

SIGQUIT Handler

CSCE-313 SP 2017



Signals Concept Refresh
21

 Where do signals come from?

User, Kernel, Process

 What can a process tell the Kernel to do about a 
Signal?

Accept Default, Ignore, Catch

 A Signal is “Generated” when …… 

 event that causes the signal occurs

 A Signal is “Delivered” when ……

 action for signal is taken

CSCE-313 SP 2017



Signals Concept Refresh
22

 A Signal is “Blocked” when …..
 it is not allowed to be delivered

 signal mask can be used to control …… 
 set of signals that are blocked from delivery

 When the Kernel calls a signal handler on a 
process, that type of signal is ……
 automatically blocked

 When a signal handler returns, the blocked signal 
type is …….
 automatically unblocked

CSCE-313 SP 2017



SUMMARY: Signals

 Signals share many common traits with hardware 
exception handling
 A user-mode version of hardware exceptions 

 When a signal handler is invoked that type of signal is 
blocked until the handler returns
 Very similar to H/W interrupts

 Signals allow us to leverage exceptional control flow 
in user programs
 Enables powerful techniques in server programming

 Are used in most widely used server programs
 Web servers, email servers, DNS servers, Databases, etc.

CSCE-313 SP 2017

23


