
W10: IPC - SIGNALS

Spring 2017



Inter-Process Communication Landscape

 Rendering from Prof. Farrell (Kent State University) 

CSCE-313 SP 2017

2



Inter-Process Communication

 IPC classes

 Pipes and FIFO

 Signals

 Message Passing

 Shared Memory

 Semaphore Sets
 References: 

 Baseline slides: CSCE-313 Spring’14 Bettati & Gu

 Advanced Programming in the UNIX Environment, Third Edition, W. Richard Stevens and Stephen A. 
Rago, Addison-Wesley Professional Computing Series, 2013. Chapters 10, 15

 Understanding Unix/Linux Programming, Bruce Molay, Chapter 6

 Advanced Linux Programming Ch 5

 Some material also directly taken or adapted with changes from Illinois course in System Programming
(Prof. Angrave), UCSD (Prof. Snoeren), and USNA (Prof. Brown)

CSCE-313 SP 2017

3

http://www.advancedlinuxprogramming.com/
https://courses.engr.illinois.edu/cs241/fa2012
http://www.usna.edu/Users/cs/wcbrown/courses/IC221/Calendar.html#April2010


Background: User-Mode Exceptional 
Flow

 So far exceptional control flow features have been 
usable only by the operating system

 Exceptions: 

 Synchronous: faults, traps, aborts

 Asynchronous: interrupts

 All exception handlers run in protected (KERNEL) mode

 Would like similar capabilities for user mode code

 Inter-Process communication to facilitate ‘exceptional 
control flow’ is subject of today’s discussion

 We will discuss them through “Signals” mechanism

 ……but also in a broader context beyond just IPC
CSCE-313 SP 2017

4



Example: What does CTRL-C do?

Taken from: Chapter 6 of “Understanding Unix/Linux Programming” by Bruce Molay
CSCE-313 SP 2017

5



What is a Signal?

 A Signal is a one-word message

A Green Light is a signal, A Referee’s whistle is a 
signal

 These items and events do not contain messages, 
they are messages!

 Each Signal has a numerical code

 So when we press CTRL-C key we ask the Kernel to 
send the interrupt signal to the currently running 
process

CSCE-313 SP 2017

6



Where do Signals come from?

 Today we’ll look at Signals in a broader context

 IPC is one of the contexts

CSCE-313 SP 2017

7

Taken from: Chapter 6 of “Understanding Unix/Linux Programming” by Bruce Molay

 Others are facilitated by Users and Kernel

 [Users] Signals generated by external Input devices

 [Kernel] Exceptions



Where do Signals come from?

(USER) Terminal-generated signals: triggered when user 
presses certain key on terminal. (e.g. ^C)

(KERNEL) Exception-generated signals: CPU execution detects 
condition and notifies kernel. (e.g. SIGFPE divide by 0, 
SIGSEGV invalid memory reference) 

kill(2) function: Sends any signal to another process. 

kill(1) command: The command-line interface to kill(2).

(PROCESSES) Software-condition generated signals: Triggered 
by software event (e.g. SIGPIPE by broken pipe)

8



Signals and the Kernel - Modes

 Many of the signals are generated by the KERNEL in response 
to events and exceptions received
 SIGALRM – timer interrupt
 SIGFPE – FP exception
 SIGILL – Illegal instruction
 SigSEGV – Segment Violation

 Many others are routed through the Kernel, if not originating 
from the Kernel itself
 E.g. SIGHUP (terminal hang), SIGINT (CTRL-C keyboard), SIGTSTP 

(CTRL-Z), SIGKILL (KILL)

 As with SYSTEM calls, the kernel receives the signals from 
hardware and other processes on behalf of a process
 Then Kernel forwards the signal to the appropriate process

CSCE-313 SP 2017

9



/* example: send signal SIGUSR1 to process 1234 */

if (kill(1234, SIGUSR1) == -1)

perror(“Failed to send SIGUSR1 signal”);

/* example: kill parent process */

if (kill(getppid(), SIGTERM) == -1)

perror(“Failed to kill parent”);

Generating Signals: kill(2) and 
raise(3)

#include <signal.h>

int kill(pid_t pid, int sig);

/* send signal ‘sig’ to process ‘pid’ */

#include <signal.h>

int raise(int sig);

/* Sends signal ‘sig’ to itself.

Part of ANSI C library! */

Raise sends a signal to the executing process
Kill sends a signal to the specified process CSCE-313 SP 2017

10



Where can I find a list of Signals?

 Unix provides Signals

 Location: /usr/include/signal.h

 Some example signals along with default behaviors

CSCE-313 SP 2017

11



What can a Process do about a Signal?

Tell the kernel what to do with a signal:

1. Accept Default action. All signals have a default action 
signal (SIGINT, SIG_DFL)

2. Ignore the signal. Works for most signals

signal (SIGINT, SIG_IGN)
cannot ignore SIGKILL and SIGSTOP; also unwise to ignore hardware 
exception signals

3. Catch the signal (call a function). Tell the kernel to 
invoke a given function (signal handler) whenever 
signal occurs. 

signal (SIGINT, foo)
CSCE-313 SP 2017

12



Simple Signal Handling: Example

Taken from: Chapter 6 of “Understanding Unix/Linux Programming” by Bruce Molay

CSCE-313 SP 2017

13



Signals Terminology

CSCE-313 SP 2017

14

 A signal is generated for a process when event that 
causes the signal occurs. (Hardware exception, 
software condition, etc.)

 A signal is delivered when action for a signal is taken.

 During the time between generation and delivery, 
signal is pending.

 A process has the option of blocking the delivery of a 
signal. 

 Signal remains blocked until process either (a) unblocks the 
signal, or (b) changes the action to ignore the signal



Signals Terminology

CSCE-313 SP 2017

15

 The system determines what to do with a 
blocked signal when the signal is delivered, not 
when it is generated.

 What happens when blocked signal is generated 
more than once? (If system delivers the signal 
more than once, the signal is queued)

 signal mask is the mechanism to define set of 
signals that are blocked from delivery.



Pending Signals

 For each process, the Kernel manages two 
bookkeeping variables for signal handling

Pending – a bit vector of signals that are 
currently pending for the process
These signals have been sent to the process, but 

haven’t yet been handled by the process

Each kind of signal has one bit assigned to it
 If a particular signal type is already pending and 

then is sent again, the second signal is dropped

CSCE-313 SP 2017

16



Blocked Signals

 The Kernel also keeps a blocked bit-vector for each 
process

 Each type of signal has a bit assigned to it

 If a particular type of signal is blocked it will not be 
delivered to the process

 When the Kernel calls a signal handler on a process, 
that type of signal is automatically blocked

Generally signal handlers don’t need to worry 
about being interrupted by the same kind of signal 
again

CSCE-313 SP 2017

17



Blocked Signals (2)

 When a signal handler returns, the blocked signal type 
is automatically unblocked

 When handler returns, signals of that type can start to be 
delivered again

 In case of a blocked pending SIGINT, it will subsequently be 
delivered to the process

 Several functions for manipulating these signal bit 
vectors

 sigpending (returns current pending signals for the process)

 sigprocmask (manipulate the set of blocked signals for the 
process)

CSCE-313 SP 2017

18



Blocked Signals - Example

 Example: A process with a SIGINT handler

First SIGINT received causes the SIGINT 
handler to be called

Also causes SIGINT to be blocked for the 
process

If another SIGINT occurs during Handler 
execution, it is recorded in pending bit 
vector but not delivered

CSCE-313 SP 2017

19



Practice: Multiple Signals Handling….Process
20

 A Process receives multiple 
signals
 What happens if SIGY is 

generated while the process is 
in SIGX handler?

 What happens if a second 
SIGX is generated while the 
process is still in SIGX 
handler? Or a third SIGX?

 What happens if a signal is 
generated while the program 
is blocking on input?

SIGALRM

SIGQUIT

SIGINT
SIGINT Handler

SIGALRM Handler

SIGQUIT Handler

CSCE-313 SP 2017



Signals Concept Refresh
21

 Where do signals come from?

User, Kernel, Process

 What can a process tell the Kernel to do about a 
Signal?

Accept Default, Ignore, Catch

 A Signal is “Generated” when …… 

 event that causes the signal occurs

 A Signal is “Delivered” when ……

 action for signal is taken

CSCE-313 SP 2017



Signals Concept Refresh
22

 A Signal is “Blocked” when …..
 it is not allowed to be delivered

 signal mask can be used to control …… 
 set of signals that are blocked from delivery

 When the Kernel calls a signal handler on a 
process, that type of signal is ……
 automatically blocked

 When a signal handler returns, the blocked signal 
type is …….
 automatically unblocked

CSCE-313 SP 2017



SUMMARY: Signals

 Signals share many common traits with hardware 
exception handling
 A user-mode version of hardware exceptions 

 When a signal handler is invoked that type of signal is 
blocked until the handler returns
 Very similar to H/W interrupts

 Signals allow us to leverage exceptional control flow 
in user programs
 Enables powerful techniques in server programming

 Are used in most widely used server programs
 Web servers, email servers, DNS servers, Databases, etc.

CSCE-313 SP 2017

23


