
W11: INTER-PROCESS
COMMUNICATION

CSCE 313 Spring 2017

Inter-Process Communication

 IPC classes

 Pipes and FIFO

 Message Passing

 Shared Memory

 Semaphore Sets

 Signals
 References:

 Baseline slides: CSCE-313 Spring’17 Ahmed, CSCE-313 Spring’16 Tyagi & Bettati, and Gu

 Understanding Unix/Linux Programming, Bruce Molay, Chapters 10, 15

 Advanced Linux Programming Ch 5

 Some material also directly taken or adapted with changes from Illinois course in System
Programming (Prof. Angrave), UCSD (Prof. Snoeren), and USNA (Prof. Brown)

CSCE-313 Spring 2017

2

http://www.advancedlinuxprogramming.com/
https://courses.engr.illinois.edu/cs241/fa2012
http://www.usna.edu/Users/cs/wcbrown/courses/IC221/Calendar.html

Inter-Process Communication (IPC)

 A process contains everything needed for execution
 An address space (defining all the code and data)

 OS resources (e.g., open files) and accounting information

 Execution state (PC, SP, registers, etc.)

 Each of these resources is exclusive to the process

 Yet sometimes processes may wish to cooperate
(information sharing, performance, modularity, etc.)
 But how to communicate? Each process is an island

 The OS needs to intervene to bridge the gap

 OS provides system calls to support Inter-Process
Communication (IPC)

CSCE-313 Spring 2017

3

Inter-Process Communication Landscape

 Rendering from Prof. Farrell (Kent State University)
CSCE-313 Spring 2017

4

IPC Motivation

 We have come to know that processes have a
limited ability to pass data

Parents get one chance to pass everything at
fork()

But what if the child wants to talk back? What
about processes with different ancestry?

CSCE-313 Spring 2017

5

IPC at a Glance – Explicit Channel

 Un-named Pipes and
Named Pipes (FIFO)

Builds a channel between
processes and exchange
data by reading/writing
from/to file descriptors

Explicit communication
channel

CSCE-313 Spring 2017

6

IPC at a Glance – Explicit Channel

Message Passing: explicit communication
channel provided through send()/receive()
system calls

 A system call is required

Explicit channel

CSCE-313 Spring 2017

7

IPC at a Glance – Implicit Channel

 Shared Memory: multiple
processes can read/write same
physical portion of memory;
implicit channel

 Implicit channel

System call to declare shared
region of memory

No OS mediation required
once memory is mapped

CSCE-313 Spring 2017

8

Communication Over a Pipe

CSCE-313 Spring 2017

9

Unix Pipes (aka Unnamed Pipes)

 #include <unistd.h>

 int pipe(int fildes[2]);
 Returns a pair of file descriptors

 fildes[0] is connected to the read end of the pipe

 fildes[1] is connected to the write end of the pipe

 Create a message pipe

 Anything can be written to the pipe, and read from the other end

 Data is received in the order it was sent

 OS enforces mutual exclusion: only one process at a time

 Accessed by a file descriptor, like an ordinary file

 Processes sharing the pipe must have same parent in common

 Processes communicating via pipes must be running on the same host

CSCE-313 Spring 2017

10

Pipe Creation

 BEFORE
 Shows standard set of file descriptors

Process has some usual files open Kernel creates a pipe and sets file descriptors

BEFORE pipe AFTER pipe

 AFTER

 Shows newly created pipe in the kernel and the two connections to that pipe in
the process

CSCE-313 Spring 2017

11

IPC Pipe - Method

 Is this of any use at all ???

Connects the two

fds as pipe

CSCE-313 Spring 2017

12

Pipe Between Two Processes

child

parent

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <sys/stat.h>

#include <fcntl.h>

int main ()

{

int fds [2];

pipe (fds); // connect the pipe

if (!fork()){ // on the child side

sleep (3);

char * msg = "a test message";

printf ("CHILD: Sending %s\n", msg);

write (fds [1], msg, strlen(msg)+1);

}else{

char buf [100];

read (fds [0], buf, 100);

printf ("PARENT: Received %s\n", buf);

}

return 0;

}
CSCE-313 Spring 2017

13

IPC- FIFO (named PIPE)

CSCE-313 Spring 2017

14

FIFO

 A pipe disappears when no process has it open
 FIFOs (named pipes) are a mechanism that allow for IPC

that's similar to using regular files, except that the kernel
takes care of synchronizing reads and writes, and

 Data is never actually written to disk (instead it is stored in
buffers in memory) so the overhead of disk I/O (which is
huge!) is avoided.

CSCE-313 Spring 2017

15

FIFO vs PIPE

 A FIFO is like an unconnected garden hose lying on
the lawn

 Anyone can put one end of the hose to his ear and
another person can walk up to the hose and speak into
the other end

 Unrelated people may communicate through a hose

 Hose exists even if nobody is using it

CSCE-313 Spring 2017

16

FIFO

 It’s part of the file system

It has a name and path just like a regular file.

Programs can open it for reading and writing,
just like a regular file.

However, the name is simply a convenient
reference for what is actually just a stream of
bytes - no persistent storage or ability to
move backwards of jump forward in the
stream.

CSCE-313 Spring 2017

17

FIFO

 Works like a Bounded Buffer

Bytes travel in First-In-First-Out fashion: hence the
name FIFO.

 Special Cases:

 Read Before Write: Kernel puts the Reader process to
sleep until data is available to read.

 Full Buffer: Writer is put to sleep until a Reader process
has read >=1 Byte

CSCE-313 Spring 2017

18

FIFO - Problems

 We still need to agree on a name ahead of time –
how to communicate that??

RequestChannel*rc = new

RequestChannel(“control”, ..);

 Not concurrency safe

 Like a file used by multiple processes/threads

 Multiple Writers can cause a race condition

CSCE-313 Spring 2017

19

Using FIFO’s

 How do I create a FIFO
 mkfifo (name)

 How do I remove a FIFO
 rm fifoname or unlink(fifoname)

 How do I listen at a FIFO for a connection
 open (fifoname, O_RDONLY)

 How do I open a FIFO in write mode?
 open(fifoname, O_WRONLY)

 How do two processes speak through a FIFO?
 The sending process uses write and the listening process

uses read. When the writing process closes, the reader sees
end of file

CSCE-313 Spring 2017

20

FIFO DEMO

#define FIFO_NAME "test.txt"

int main(void)

{

char s[300];

int num, fd;

mkfifo(FIFO_NAME, 0666); // create

printf("Waiting for readers...\n");

fd = open(FIFO_NAME, O_WRONLY); //open

if (fd < 0)

return 0;

printf("Got a reader--type some

stuff\n");

while (gets(s)) {

if (!strcmp (s, "quit")) break;

if ((num = write(fd, s, strlen(s)))

== -1)

perror("write");

else

printf("SENDER: wrote %d bytes\n",

num);

}

//unlink (FIFO_NAME);

return 0;

}

int main(void)

{

char s[300];

int num, fd;

printf("waiting for writers...\n");

fd = open(FIFO_NAME, O_RDONLY);

printf("got a writer\n");

do{

if ((num = read(fd, s, 300)) == -1)

perror("read");

else {

s[num] = '\0';

printf("RECV: read %d bytes:

\"%s\"\n", num, s);

}

} while (num > 0);

return 0;

}

Reader

Writer

CSCE-313 Spring 2017

21

IPC: Message Passing

CSCE-313 Spring 2017

23

Message Passing

 Mechanism for processes to communicate and to
synchronize their actions

 IPC facility provides two operations:

 send(message)

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

CSCE-313 Spring 2017

24

Typical Implementation Questions

 How is a link established?

 Is a link unidirectional or bi-directional?

 Can a link be associated with more than two
processes?

 How many links can there be between every pair of
communicating processes?

 What is the capacity of a link?

 Can the message size be fixed or variable?

CSCE-313 Spring 2017

25

Message Passing

CSCE-313 Spring 2017

26

Direct Message Passing

 Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically (or implicitly) while

sending/receiving
 A link is associated with exactly one pair of communicating

processes
 Between each pair, there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

 Limitation: Must know the name or id of the process

Process A Process B

CSCE-313 Spring 2017

27

Indirect Message Passing

 Messages are directed to and received from mailboxes
(also referred to as ports)
 Mailbox can be owned by a process or by the OS
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication

links
 Link may be unidirectional or bi-directional

Process P1

Process P2

Process P3

Mailbox A

CSCE-313 Spring 2017

28

Indirect Message Passing

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from
mailbox A

Process P1

Process P2

Process P3

Mailbox A

CSCE-313 Spring 2017

29

Synchronization

 Message passing may be either blocking or non-
blocking

 Blocking is considered synchronous
 Blocking send has the sender block until the message

is received
 Blocking receive has the receiver block until a

message is available

 Non-blocking is considered asynchronous
 Non-blocking send has the sender send the message

and continue
 Non-blocking receive has the receiver receive a valid

message or null

CSCE-313 Spring 2017

30

Buffering

 Queue of messages attached to the link;
implemented in one of three ways

1.Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2.Bounded capacity – finite length of n messages
Sender must wait if link full

3.Unbounded capacity – infinite length
Sender never waits

CSCE-313 Spring 2017

31

IPC Object Creation: Message Queues

#include <sys/msg.h>

int msgget(key_t key, int msgflg);

/* create a message queue with given key and flags. */

Object key identifies object across processes. Can be assigned
as follows:
-- Create some unknown key
-- Pass explicit key (beware of collisions!)
-- Use file system to consistently hash key (using ftok)

Object id is similar to file descriptor.
-- It can be inherited across fork() calls.

CSCE-313 Spring 2017

32

msgtyp action

0 remove first message from queue

> 0 remove first message of type msgtyp from the queue

< 0 remove first message of lowest type that is less than
or equal to absolute value of msgtyp

Operations on Message Queues

#define PERMS (S_IRUSR | S_IWUSR)

int msqid;

if ((msqid = msgget(key, PERMS)) == -1)

perror(“msgget failed);

struct mymsg { /* user defined! */

long msgtype; /* first field must be a long identifier */

char mtext[1]; /* placeholder for message content */

}
int msgsnd(int msqid, const void *msgp,

size_t msgsz, int msgflg)

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz,

long msgtyp, int msgflg);

CSCE-313 Spring 2017

33

Operations on Message Queues (cont.)

int msgctl(int msqid, int cmd, struct msgid_ds *buf)

Cmd description

IPC_RMID remove the message queue msqid and destroy the
corresponding msqid_ds

IPC_SET Set members of the msqid_ds data structure from
buf

IPC_STAT Copy members of the msqid_ds data structure into
buf

CSCE-313 Spring 2017

34

Message Queue – Code Example

struct my_msgbuf {

long mtype;

char mtext[200];

};

int sender(void)

{

struct my_msgbuf buf;

int msqid = msgget(654321, 0644 | IPC_CREAT); // create the msg queue

while(fgets(buf.mtext, sizeof buf.mtext, stdin) != NULL) {

int len = strlen(buf.mtext);

msgsnd(msqid, &buf, len+1, 0);

}

msgctl(msqid, IPC_RMID, NULL); // delete the msg queue

}

int receiver(void)

{

struct my_msgbuf buf;

int msqid = msgget(654321, 0644); // connect (not create)

while(1) {

msgrcv(msqid, &buf, sizeof buf.mtext, 0, 0);

}

printf("Received: %s", buf.mtext);

}
CSCE-313 Spring 2017

35

IPC: Shared Memory

CSCE-313 Spring 2017

36

Shared Memory

 How does data travel through a FIFO?
 ‘write’ copies data from process memory to kernel

buffer and then ‘read’ copies data from a kernel buffer
to process memory

 If both processes are on the same machine living in
different parts of user space, then they may not
need to copy data in and out of the kernel
 They may exchange or share data by using a shared

memory segment

 Shared memory is to processes what global variables
are to threads

CSCE-313 Spring 2017

37

Shared Memory

 Processes share the same segment of memory
directly

 Memory is mapped into the address space of each
sharing process

 Memory is persistent beyond the lifetime of the
creating or modifying processes (until deleted)

 Mutual exclusion must be provided by processes
using the shared memory

CSCE-313 Spring 2017

38

Shared Memory

 Processes request the segment

 OS maintains the segment

 Processes can attach/detach the segment

Process A

OS Address Space

Process B

CSCE-313 Spring 2017

39

Facts about Shared Memory Segments

 A shared memory segment lives in memory
independent of a process

 A shared memory segment has a name, called a key

 A key is an integer

 A shared memory segment has an owner and
permission bits

 Processes may “attach” or “detach” a segment,
obtaining a pointer to the segment

 reads and writes to the memory segment are done
via regular pointer operations

CSCE-313 Spring 2017

40

Shared Memory – POSIX functions

 shmget: create and initialize or access

 shmat: attach memory to process

 shmdt: detach memory from process

 shmctl: control

CSCE-313 Spring 2017

41

POSIX Shared Memory

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

shared-memory
segment created by

shmget

address space of
calling process

P1

system memory

void *shmat(int shmid, const void *shmaddr,

int shmflg);

address space of
calling process

P2
shared-memory

segment mapped by
shmat

shared-memory
segment mapped by

shmat

Ok, we have created a shared-memory segment. Now what?

CSCE-313 Spring 2017

42

Shared Memory Example - Client

CSCE-313 Spring 2017

43

Understanding Unix/Linux Programming, Bruce Molay

Shared Memory Example (SERVER)

44

Understanding Unix/Linux Programming, Bruce

Molay

POSIX IPC: Overview

primitive POSIX function description

message queues msgget

msgctl

msgsnd/msgrcv

create or access
control
send/receive message

semaphores semget

semctl

semop

create or access
control
wait or post operation

shared memory shmget

shmctl

shmat/shmdt

create and init or access
control
attach to / detach from
process

Accessing IPC resources from the shell: ipcs [-a]

CSCE-313 Spring 2017

45

