
W11: INTER-PROCESS
COMMUNICATION

CSCE 313 Spring 2017

Inter-Process Communication

 IPC classes

 Pipes and FIFO

 Message Passing

 Shared Memory

 Semaphore Sets

 Signals
 References:

 Baseline slides: CSCE-313 Spring’17 Ahmed, CSCE-313 Spring’16 Tyagi & Bettati, and Gu

 Understanding Unix/Linux Programming, Bruce Molay, Chapters 10, 15

 Advanced Linux Programming Ch 5

 Some material also directly taken or adapted with changes from Illinois course in System
Programming (Prof. Angrave), UCSD (Prof. Snoeren), and USNA (Prof. Brown)

CSCE-313 Spring 2017

2

http://www.advancedlinuxprogramming.com/
https://courses.engr.illinois.edu/cs241/fa2012
http://www.usna.edu/Users/cs/wcbrown/courses/IC221/Calendar.html

Inter-Process Communication (IPC)

 A process contains everything needed for execution
 An address space (defining all the code and data)

 OS resources (e.g., open files) and accounting information

 Execution state (PC, SP, registers, etc.)

 Each of these resources is exclusive to the process

 Yet sometimes processes may wish to cooperate
(information sharing, performance, modularity, etc.)
 But how to communicate? Each process is an island

 The OS needs to intervene to bridge the gap

 OS provides system calls to support Inter-Process
Communication (IPC)

CSCE-313 Spring 2017

3

Inter-Process Communication Landscape

 Rendering from Prof. Farrell (Kent State University)
CSCE-313 Spring 2017

4

IPC Motivation

 We have come to know that processes have a
limited ability to pass data

Parents get one chance to pass everything at
fork()

But what if the child wants to talk back? What
about processes with different ancestry?

CSCE-313 Spring 2017

5

IPC at a Glance – Explicit Channel

 Un-named Pipes and
Named Pipes (FIFO)

Builds a channel between
processes and exchange
data by reading/writing
from/to file descriptors

Explicit communication
channel

CSCE-313 Spring 2017

6

IPC at a Glance – Explicit Channel

Message Passing: explicit communication
channel provided through send()/receive()
system calls

 A system call is required

Explicit channel

CSCE-313 Spring 2017

7

IPC at a Glance – Implicit Channel

 Shared Memory: multiple
processes can read/write same
physical portion of memory;
implicit channel

 Implicit channel

System call to declare shared
region of memory

No OS mediation required
once memory is mapped

CSCE-313 Spring 2017

8

Communication Over a Pipe

CSCE-313 Spring 2017

9

Unix Pipes (aka Unnamed Pipes)

 #include <unistd.h>

 int pipe(int fildes[2]);
 Returns a pair of file descriptors

 fildes[0] is connected to the read end of the pipe

 fildes[1] is connected to the write end of the pipe

 Create a message pipe

 Anything can be written to the pipe, and read from the other end

 Data is received in the order it was sent

 OS enforces mutual exclusion: only one process at a time

 Accessed by a file descriptor, like an ordinary file

 Processes sharing the pipe must have same parent in common

 Processes communicating via pipes must be running on the same host

CSCE-313 Spring 2017

10

Pipe Creation

 BEFORE
 Shows standard set of file descriptors

Process has some usual files open Kernel creates a pipe and sets file descriptors

BEFORE pipe AFTER pipe

 AFTER

 Shows newly created pipe in the kernel and the two connections to that pipe in
the process

CSCE-313 Spring 2017

11

IPC Pipe - Method

 Is this of any use at all ???

Connects the two

fds as pipe

CSCE-313 Spring 2017

12

Pipe Between Two Processes

child

parent

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <sys/stat.h>

#include <fcntl.h>

int main ()

{

int fds [2];

pipe (fds); // connect the pipe

if (!fork()){ // on the child side

sleep (3);

char * msg = "a test message";

printf ("CHILD: Sending %s\n", msg);

write (fds [1], msg, strlen(msg)+1);

}else{

char buf [100];

read (fds [0], buf, 100);

printf ("PARENT: Received %s\n", buf);

}

return 0;

}
CSCE-313 Spring 2017

13

IPC- FIFO (named PIPE)

CSCE-313 Spring 2017

14

FIFO

 A pipe disappears when no process has it open
 FIFOs (named pipes) are a mechanism that allow for IPC

that's similar to using regular files, except that the kernel
takes care of synchronizing reads and writes, and

 Data is never actually written to disk (instead it is stored in
buffers in memory) so the overhead of disk I/O (which is
huge!) is avoided.

CSCE-313 Spring 2017

15

FIFO vs PIPE

 A FIFO is like an unconnected garden hose lying on
the lawn

 Anyone can put one end of the hose to his ear and
another person can walk up to the hose and speak into
the other end

 Unrelated people may communicate through a hose

 Hose exists even if nobody is using it

CSCE-313 Spring 2017

16

FIFO

 It’s part of the file system

It has a name and path just like a regular file.

Programs can open it for reading and writing,
just like a regular file.

However, the name is simply a convenient
reference for what is actually just a stream of
bytes - no persistent storage or ability to
move backwards of jump forward in the
stream.

CSCE-313 Spring 2017

17

FIFO

 Works like a Bounded Buffer

Bytes travel in First-In-First-Out fashion: hence the
name FIFO.

 Special Cases:

 Read Before Write: Kernel puts the Reader process to
sleep until data is available to read.

 Full Buffer: Writer is put to sleep until a Reader process
has read >=1 Byte

CSCE-313 Spring 2017

18

FIFO - Problems

 We still need to agree on a name ahead of time –
how to communicate that??

RequestChannel*rc = new

RequestChannel(“control”, ..);

 Not concurrency safe

 Like a file used by multiple processes/threads

 Multiple Writers can cause a race condition

CSCE-313 Spring 2017

19

Using FIFO’s

 How do I create a FIFO
 mkfifo (name)

 How do I remove a FIFO
 rm fifoname or unlink(fifoname)

 How do I listen at a FIFO for a connection
 open (fifoname, O_RDONLY)

 How do I open a FIFO in write mode?
 open(fifoname, O_WRONLY)

 How do two processes speak through a FIFO?
 The sending process uses write and the listening process

uses read. When the writing process closes, the reader sees
end of file

CSCE-313 Spring 2017

20

FIFO DEMO

#define FIFO_NAME "test.txt"

int main(void)

{

char s[300];

int num, fd;

mkfifo(FIFO_NAME, 0666); // create

printf("Waiting for readers...\n");

fd = open(FIFO_NAME, O_WRONLY); //open

if (fd < 0)

return 0;

printf("Got a reader--type some

stuff\n");

while (gets(s)) {

if (!strcmp (s, "quit")) break;

if ((num = write(fd, s, strlen(s)))

== -1)

perror("write");

else

printf("SENDER: wrote %d bytes\n",

num);

}

//unlink (FIFO_NAME);

return 0;

}

int main(void)

{

char s[300];

int num, fd;

printf("waiting for writers...\n");

fd = open(FIFO_NAME, O_RDONLY);

printf("got a writer\n");

do{

if ((num = read(fd, s, 300)) == -1)

perror("read");

else {

s[num] = '\0';

printf("RECV: read %d bytes:

\"%s\"\n", num, s);

}

} while (num > 0);

return 0;

}

Reader

Writer

CSCE-313 Spring 2017

21

IPC: Message Passing

CSCE-313 Spring 2017

23

Message Passing

 Mechanism for processes to communicate and to
synchronize their actions

 IPC facility provides two operations:

 send(message)

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

CSCE-313 Spring 2017

24

Typical Implementation Questions

 How is a link established?

 Is a link unidirectional or bi-directional?

 Can a link be associated with more than two
processes?

 How many links can there be between every pair of
communicating processes?

 What is the capacity of a link?

 Can the message size be fixed or variable?

CSCE-313 Spring 2017

25

Message Passing

CSCE-313 Spring 2017

26

Direct Message Passing

 Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically (or implicitly) while

sending/receiving
 A link is associated with exactly one pair of communicating

processes
 Between each pair, there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

 Limitation: Must know the name or id of the process

Process A Process B

CSCE-313 Spring 2017

27

Indirect Message Passing

 Messages are directed to and received from mailboxes
(also referred to as ports)
 Mailbox can be owned by a process or by the OS
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication

links
 Link may be unidirectional or bi-directional

Process P1

Process P2

Process P3

Mailbox A

CSCE-313 Spring 2017

28

Indirect Message Passing

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from
mailbox A

Process P1

Process P2

Process P3

Mailbox A

CSCE-313 Spring 2017

29

Synchronization

 Message passing may be either blocking or non-
blocking

 Blocking is considered synchronous
 Blocking send has the sender block until the message

is received
 Blocking receive has the receiver block until a

message is available

 Non-blocking is considered asynchronous
 Non-blocking send has the sender send the message

and continue
 Non-blocking receive has the receiver receive a valid

message or null

CSCE-313 Spring 2017

30

Buffering

 Queue of messages attached to the link;
implemented in one of three ways

1.Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2.Bounded capacity – finite length of n messages
Sender must wait if link full

3.Unbounded capacity – infinite length
Sender never waits

CSCE-313 Spring 2017

31

IPC Object Creation: Message Queues

#include <sys/msg.h>

int msgget(key_t key, int msgflg);

/* create a message queue with given key and flags. */

Object key identifies object across processes. Can be assigned
as follows:
-- Create some unknown key
-- Pass explicit key (beware of collisions!)
-- Use file system to consistently hash key (using ftok)

Object id is similar to file descriptor.
-- It can be inherited across fork() calls.

CSCE-313 Spring 2017

32

msgtyp action

0 remove first message from queue

> 0 remove first message of type msgtyp from the queue

< 0 remove first message of lowest type that is less than
or equal to absolute value of msgtyp

Operations on Message Queues

#define PERMS (S_IRUSR | S_IWUSR)

int msqid;

if ((msqid = msgget(key, PERMS)) == -1)

perror(“msgget failed);

struct mymsg { /* user defined! */

long msgtype; /* first field must be a long identifier */

char mtext[1]; /* placeholder for message content */

}
int msgsnd(int msqid, const void *msgp,

size_t msgsz, int msgflg)

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz,

long msgtyp, int msgflg);

CSCE-313 Spring 2017

33

Operations on Message Queues (cont.)

int msgctl(int msqid, int cmd, struct msgid_ds *buf)

Cmd description

IPC_RMID remove the message queue msqid and destroy the
corresponding msqid_ds

IPC_SET Set members of the msqid_ds data structure from
buf

IPC_STAT Copy members of the msqid_ds data structure into
buf

CSCE-313 Spring 2017

34

Message Queue – Code Example

struct my_msgbuf {

long mtype;

char mtext[200];

};

int sender(void)

{

struct my_msgbuf buf;

int msqid = msgget(654321, 0644 | IPC_CREAT); // create the msg queue

while(fgets(buf.mtext, sizeof buf.mtext, stdin) != NULL) {

int len = strlen(buf.mtext);

msgsnd(msqid, &buf, len+1, 0);

}

msgctl(msqid, IPC_RMID, NULL); // delete the msg queue

}

int receiver(void)

{

struct my_msgbuf buf;

int msqid = msgget(654321, 0644); // connect (not create)

while(1) {

msgrcv(msqid, &buf, sizeof buf.mtext, 0, 0);

}

printf("Received: %s", buf.mtext);

}
CSCE-313 Spring 2017

35

IPC: Shared Memory

CSCE-313 Spring 2017

36

Shared Memory

 How does data travel through a FIFO?
 ‘write’ copies data from process memory to kernel

buffer and then ‘read’ copies data from a kernel buffer
to process memory

 If both processes are on the same machine living in
different parts of user space, then they may not
need to copy data in and out of the kernel
 They may exchange or share data by using a shared

memory segment

 Shared memory is to processes what global variables
are to threads

CSCE-313 Spring 2017

37

Shared Memory

 Processes share the same segment of memory
directly

 Memory is mapped into the address space of each
sharing process

 Memory is persistent beyond the lifetime of the
creating or modifying processes (until deleted)

 Mutual exclusion must be provided by processes
using the shared memory

CSCE-313 Spring 2017

38

Shared Memory

 Processes request the segment

 OS maintains the segment

 Processes can attach/detach the segment

Process A

OS Address Space

Process B

CSCE-313 Spring 2017

39

Facts about Shared Memory Segments

 A shared memory segment lives in memory
independent of a process

 A shared memory segment has a name, called a key

 A key is an integer

 A shared memory segment has an owner and
permission bits

 Processes may “attach” or “detach” a segment,
obtaining a pointer to the segment

 reads and writes to the memory segment are done
via regular pointer operations

CSCE-313 Spring 2017

40

Shared Memory – POSIX functions

 shmget: create and initialize or access

 shmat: attach memory to process

 shmdt: detach memory from process

 shmctl: control

CSCE-313 Spring 2017

41

POSIX Shared Memory

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

shared-memory
segment created by

shmget

address space of
calling process

P1

system memory

void *shmat(int shmid, const void *shmaddr,

int shmflg);

address space of
calling process

P2
shared-memory

segment mapped by
shmat

shared-memory
segment mapped by

shmat

Ok, we have created a shared-memory segment. Now what?

CSCE-313 Spring 2017

42

Shared Memory Example - Client

CSCE-313 Spring 2017

43

Understanding Unix/Linux Programming, Bruce Molay

Shared Memory Example (SERVER)

44

Understanding Unix/Linux Programming, Bruce

Molay

POSIX IPC: Overview

primitive POSIX function description

message queues msgget

msgctl

msgsnd/msgrcv

create or access
control
send/receive message

semaphores semget

semctl

semop

create or access
control
wait or post operation

shared memory shmget

shmctl

shmat/shmdt

create and init or access
control
attach to / detach from
process

Accessing IPC resources from the shell: ipcs [-a]

CSCE-313 Spring 2017

45

