
W12 - NETWORKING

OBJECTIVES

Get exposure to the basic underpinnings
of the Internet

Learn to use network socket interfaces

WHAT ARE WE GOING TO
DISCUSS?

Basic communication mechanisms

How did internet come about

Anatomy of the internet

Network programming

The 2004 Turing Award

"For pioneering work on internetworking, including the design
and implementation of the Internet's basic communications
protocols, TCP/IP, and for inspired leadership in networking."

The only Turing Award given to-date to recognize work in
computer networking

Bob Kahn Vint Cerf

Computing

Devices Internet

OUR AMAZING POSITIVE FEEDBACK
LOOP

5

6

But at the Same Time...

Source: Akamai Technologies, Inc.

Daily, e.g. 110 attacks from

China; 26 attacks from USA
2/24/2008 YouTube traffic

mis-routed to PakistanQ2/2008 1000s of Netherlands

DSL customers lost service due to

network configuration error11/10/2008 CTBC (Brazil) black-holed

all Internet traffic in some parts of Brazil
2/16/2009 Supro (Czech) routing messages

triggered a Cisco router bug world-wide
5/2009 AfNOG (Africa) routing messages

triggered buffer overflow in open-source

routing software Quagga world-wide

https://www.riskbasedsecurity.com/2014/12/a-breakdown-and-analysis-of-the-december-2014-sony-hack/
https://www.riskbasedsecurity.com/2014/12/a-breakdown-and-analysis-of-the-december-2014-sony-hack/

BOTTOM-LINE…..

Internet has a ubiquitous presence in our lives

Issues such as Security Lapses present themselves as
opportunities for making our ways of
communication more robust (e.g. safety, security)

Let’s now trace back the history from the early days
of telephony in the next few slides

Telephony

Interactive telecommunication between people

Analog voice

Transmitter/Receiver continuously in contact with

electronic circuit

Electric current varies with acoustic pressure

Analog/Continuous Signal

Telephony Milestones

1876: Alexander Bell invented telephone

1878: Public switches installed at New Haven and San Francisco,

public switched telephone network is born

• People can talk without being on the same wire!

Without Switch With Switch

Telephony Milestones

1878: First telephone directory; White House line

1881: Insulated, balanced twisted pair introduced

1885: AT&T formed

1892: First automatic commercial telephone switch

1903: 3 million telephones in U.S.

1915: First transcontinental telephone line

1927: First commercial transatlantic commercial service

Telephony Milestones

1937: Multiplexing introduced for inter-city calls

One link carries multiple conversations

Without Multiplexing
With Multiplexing

Data or Computer Networks

Networks designed for computers to computers or
devices

vs. communication between human beings

Digital information

vs. analog voice

Not a continuous stream of bits, rather, discrete
“packets” with lots of silence in between

Dedicated circuit hugely inefficient

Digital/Discrete Signal

Major Internet Milestones

1965 First time two computers talked to each
other using packets (Roberts, MIT; Marill, SDC)

MIT TX-2
SDC Q32

dial-up

Major Internet Milestones

Crash!

1969 The first ARPANET message transmitted

between UCLA (Kleinrock) and SRI (Engelbart)

We sent an “L”, did you get the “L”? Yep!

We sent an “O”, did you get the “O”? Yep!

We sent a “G”, did you get the “G”?

Major Internet Milestones

• 1970 First packet radio network ALOHANET (Abramson,
U Hawaii)

• 1973 Ethernet invented (Metcalfe, Xerox PARC)

• 1974 “A protocol for Packet Network Interconnection”
published by Cerf and Kahn
– First internetworking protocol TCP

– This paper was cited for their Turing Award

• 1977 First TCP operation over ARPANET,
Packet Radio Net, and SATNET

• 1985 NSF commissions NSFNET backbone

• 1991 NSF opens Internet to commercial use

The Internet Circa 1986

 Merit (Univ of Mich)

 NCSA (Illinois)

 NYSERNET Cornell
Theory Center

 Pittsburgh
Supercomputing Center

 San Diego
Supercomputing Center

 John von Neumann
Center (Princeton)

 BARRNet (Palo Alto)

 MidNet (Lincoln, NE)

 WestNet (Salt Lake City)

 NorthwestNet (Seattle)

 SESQUINET (Rice)

 SURANET (Georgia
Tech)

 NEARNET (New
England)

In 1986, the Internet consisted of one backbone
(NSFNET) that connected 13 sites via 45 Mbps T3 links

Connecting to the Internet involved connecting one of
your routers to a router at a backbone site, or to a
regional network that was already connected to the
backbone

NSFNET Internet Backbone

source: www.eef.org

After NSFNET

Early 90s

 Commercial enterprises began building their own high-

speed backbones

 Backbone would connect to NSFNET, sell access to

companies, ISPs, and individuals

1995

 NSFNET decommissioned

 NSF fostered the creation of network access points

(NAPs) to interconnect the commercial backbones

Current Internet Architecture -
Conceptual

Level 3 Backbone

AT&T Backbone

A Client-Server Transaction

Most network applications are based on the client-
server model:

 A server process and one or more client processes

 Server manages some resource

 Server provides service by manipulating resource for
clients

Client

process

Server

process

1. Client sends request

2. Server

handles

request

3. Server sends response4. Client

handles

response

Resource

Note: clients and servers are processes running on hosts

(can be the same or different hosts)

Network Hardware

main

memory
I/O

bridge
Bus Interface

ALU

register file

CPU chip

system bus memory bus

disk

controller

graphics

adapter

USB

controller

mouse keyboard monitor

disk

I/O bus

Expansion slots

network

adapter

network

Computer Networks

A network is a hierarchical system of boxes and wires organized
by geographical proximity

o LAN (local area network) spans a building or campus

o Ethernet is most prominent example

o WAN (wide-area network) spans very long distance

o A high-speed point-to-point link

o Leased line or SONET/SDH circuit, or MPLS/ATM circuit

An internetwork (internet) is an interconnected set of networks

 The Global IP Internet (uppercase “I”) is the most famous
example of an internet (lowercase “i”)

Lowest Level: Ethernet Segment

Ethernet segment consists of a collection of hosts connected
by wires (twisted pairs) to a hub

Operation
 Each Ethernet adapter has a unique 48-bit address

 Hosts send bits to any other host in chunks called frames

 Hub copies each bit from each port to every other port
• Every host sees every bit

 Note: Hubs are largely obsolete
• Bridges (switches, routers) became cheap enough to replace them (don’t

broadcast all traffic)

host host host

hub
100 Mb/s100 Mb/s

ports

Next Level: Bridged Ethernet
Segment

Spans room, building, or campus

Bridges cleverly learn which hosts are reachable
from which ports and then selectively copy frames
from port to port

host host host host host

hub hubbridge
100 Mb/s 100 Mb/s

host

host
1 Gb/s 1 Gb/s

1-10 Gb/s

host host host

bridge

hosthost

bridge

1 Gb/s

Conceptual View of LANs

For simplicity, hubs, bridges, and wires are often
shown as a collection of hosts attached to a single
wire:

host host host...

Next Level: internets

Multiple incompatible LANs can be physically
connected by specialized computers called routers

The connected networks are called an internet

host host host

LAN 1

...
host host host

LAN 2

...

router router router
WAN WAN

LAN 1 and LAN 2 might be completely different, totally

incompatible LANs (e.g., Ethernet and WiFi, 802.11*,

T1-links, DSL, …)

The Notion of an Internet Protocol

How is it possible to send bits across incompatible
LANs and WANs?

Solution: protocol software running on each host
and router smoothens out the differences between
the different networks

Implements an internet protocol (i.e., set of rules)
that governs how hosts and routers should
cooperate when they transfer data from network
to network

 TCP/IP is the protocol for the global IP Internet

What Does an Internet Protocol Do?

1. Provides a naming scheme

 An internet protocol defines a uniform format for host
addresses

 Each host (and router) is assigned at least one of these
internet addresses that uniquely identifies it

2. Provides a delivery mechanism

 An internet protocol defines a standard transfer unit
(packet)

 Packet consists of header and payload

• Header: contains info such as packet size, source and destination
addresses

• Payload: contains data bits sent from source host

Transferring Data Over an internet

protocol

software

LAN1

adapter

Host A

data

data PH FH1

data PH

data PH FH2

LAN1 LAN2

data

data PH

FH1

data PH FH2

(1)

(2)

(3)

(4) (5)

(6)

(7)

(8)

internet packet

LAN2 frame

protocol

software

LAN1

adapter

LAN2

adapter

Router

FH1

LAN1 frame

data PH FH2

protocol

software

LAN2

adapter

Host B

client server

Other Issues

We are glossing over a number of important questions:

 What if different networks have different maximum frame sizes?
(segmentation)

 How do routers know where to forward frames?

 How are routers informed when the network topology changes?

 What if packets get lost?

We’ll leave the discussion of these question to computer
networking classes

 Dr. Loguinov CSCE-463 class

Global IP Internet

Based on the TCP/IP protocol family

 IP (Internet protocol) :

• Provides basic naming scheme and unreliable delivery capability of
packets (datagrams) from host-to-host

 UDP (User Datagram Protocol)

• Uses IP to provide unreliable datagram delivery from process-to-process

 TCP (Transmission Control Protocol)

• Uses IP to provide reliable byte streams from process-to-process over
connections

Accessed via a mix of Unix file I/O and functions from the
sockets interface

Organization of an Internet
Application

TCP/IP

Client

Network

adapter

Global IP Internet

TCP/IP

Server

Network

adapter

Internet client Internet server

Sockets interface

(system calls)

Hardware interface

(interrupts)

User code

Kernel code

Hardware

and firmware

A Programmer’s View of the
Internet

Hosts are mapped to a set of 32-bit IP addresses

 e.g. 128.194.255.88 (4 * 8 bits)

A set of identifiers called Internet domain names are mapped
to the set of IP addresses for convenience (Domain Name
Server aka DNS)

 linux2.cs.tamu.edu is mapped to 128.194.138.88

 A process on one Internet host can communicate with a
process on another Internet host over a connection

IP Addresses

32-bit IP addresses are stored in an IP address struct
 IP addresses are always stored in memory in network byte order

(big-endian byte order)

 True in general for any integer transferred in a packet header from
one machine to another

• e.g., the port number used to identify an Internet connection

/* Internet address structure */

struct in_addr {

unsigned int s_addr; /* network byte order (big-endian) */

};

Handy network byte-order conversion functions:
htonl: convert long int from host to network byte order

htons: convert short int from host to network byte order

ntohl: convert long int from network to host byte order

ntohs: convert short int from network to host byte order

Dotted Decimal Notation

By convention, each byte in a 32-bit IP address is
represented by its decimal value and separated by a
period

• IP address 0x8002C2F2 = 128.2.194.242

Functions for converting between binary IP addresses
and dotted decimal strings:
 inet_pton: converts a dotted decimal string to an IP

address in network byte order

 inet_ntop: converts an IP address in network by order to

its corresponding dotted decimal string

 “n” denotes network representation, “p” denotes

presentation representation

IP Address Structure

IP (V4) Address space divided into classes:

Special Addresses for routers and gateways (all 0/1’s)

Loop-back address: 127.0.0.1

Unrouted (private) IP addresses:
 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16

Dynamic IP addresses (DHCP)

Class A

Class B

Class C

Class D

Class E

0 1 2 3 8 16 24 31
0 Net ID Host ID

1 0

1 1 0

Host ID

Host IDNet ID

Net ID

1 1 0

1 11 1

1 Multicast address

Reserved for experiments

Internet Domain Names

.net .edu .gov .com

rice berkeleymit

clear cs

bell
128.42.151.14

unnamed root

crystal
128.42.151.13

amazon

www

72.21.210.11

First-level domain names

Second-level domain names

Third-level domain names

Domain Naming System (DNS)
The Internet maintains a mapping between IP addresses and
domain names in a huge worldwide distributed database
called DNS

 Conceptually, programmers can view the DNS database as a collection
of millions of addrinfo structures:

Functions for retrieving host entries from DNS:

 getaddrinfo: query DNS using domain name or IP

 getnameinfo: query DNS using sockaddr struct

struct addrinfo {

int ai_flags; /* flags for getaddrinfo */

int ai_family; /* address type (AF_INET or AF_INET6) */

int ai_socktype; /* the socket type */

int ai_protocol; /* the type of protocol */

size_t ai_addrlen; /* length of ai_addr */

struct sockaddr *ai_addr; /* pointer to a sockaddr struct */

char *ai_canonname;/* the canonical name */

struct addrinfo *ai_next; /* pointer to the next addrinfo struct */

};

Properties of DNS Host Entries

Each host entry is an equivalence class of domain names and
IP addresses

Each host has a locally defined domain name localhost
which always maps to the loopback address 127.0.0.1

Different kinds of mappings are possible:

 Simple case: 1 domain name maps to one IP address

 Multiple domain names mapped to the same IP address

 Multiple domain names mapped to multiple IP addresses

 Some valid domain names don’t map to any IP address

Querying DNS

Domain Information Groper (dig) provides a
scriptable command line interface to DNS

 Lots of web interfaces (google “domain information
groper”)

unix> dig +short linux2.cse.tamu.edu

128.194.138.88

unix> dig +short -x 128.194.138.85

chevron.cs.tamu.edu.

unix> dig +short google.com

74.125.227.174

74.125.227.169

74.125.227.160

Internet Connections

Clients and servers communicate by sending streams of bytes
over connections:

 Point-to-point, full-duplex (2-way communication), and reliable

A socket is an endpoint of a connection

 Socket address is an IP address, port pair

A port is a 16-bit integer that identifies a process:

 Ephemeral port: Assigned automatically on client when client makes
a connection request

 Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

A connection is uniquely identified by the socket addresses of
its endpoints (socket pair)

 (cliaddr:cliport, servaddr:servport)

Putting it all Together:
Anatomy of an Internet Connection

Connection socket pair

(128.2.194.242:51213, 208.216.181.15:80)

Server

(port 80)
Client

Client socket address

128.2.194.242:51213

Server socket address

208.216.181.15:80

Client host address

128.2.194.242

Server host address

208.216.181.15

Clients

Examples of client programs

 Web browsers, ftp, telnet, ssh

How does a client find the server?

 The IP address in the server socket address identifies the
host (more precisely, an adapter on the host)

 The (well-known) port in the server socket address
identifies the service, and thus implicitly identifies the
server process that performs that service

Servers

Servers are long-running processes (daemons)
 Created at boot-time (typically) by the init process (process 1)

 Run continuously until the machine is turned off

Each server waits for requests to arrive on a well-known port
associated with a particular service
 Port 23: telnet server

 Port 25: mail server

 Port 80: HTTP server

A machine that runs a server process is also often referred to
as a “server”

Server Examples

Web server (port 80)

 Resource: files/compute cycles (CGI programs)

 Service: retrieves files and runs CGI programs on behalf
of the client

FTP server (20, 21)

 Resource: files

 Service: stores and retrieve files

Telnet server (23)

 Resource: terminal

 Service: proxies a terminal on the server machine

Mail server (25)

 Resource: email “spool” file

 Service: stores mail messages in spool file

See /etc/services for a

comprehensive list of the services

available on a UNIX machine

Organization of an Internet
Application

TCP/IP

Client

Network

adapter

Global IP Internet

TCP/IP

Server

Network

adapter

Internet client Internet server

Sockets interface

(system calls)

Hardware interface

(interrupts)

User code

Kernel code

Hardware

and firmware

OSI Model (Layers)

Transport

Application

Client Server

Network

Data Link

Physical

Transport

Application

Network

Data Link

Physical

Network

Data Link

Physical

Router

Intra/Internet

50

Internet Hourglass Architecture

Ethernet, WiFi,

3G, bluetooth,...

IP

TCP, UDP, …

Email, Web, ssh,...

Source: GATECH Internet Hourglass Architecture

From top to bottom, the Internet architecture consists of six layers:
1. Specific applications, such as Firefox;
2. Application protocols, such as Hypertext Transfer Protocol (HTTP);
3. Transport protocols, such as Transmission Control Protocol (TCP);
4. Network protocols, such as Internet Protocol (IP);

5. Data-link protocols, such as Ethernet; and
6. Physical layer protocols, such as DSL.
Layers near the top and bottom contain many items, called protocols.
The central transport layer contains two protocols
and the network layer contains only one, creating an hourglass architecture.

http://www.gtresearchnews.gatech.edu/hourglass-internet-architecture/

socket()

bind()

listen()

accept
()

read()

write()

close()

Blocks until

connection

attempt received

Server

socket()

connect()

write()

Client

read()

close()

Establish connection

Data(request)

Data(reply)

A Server-Client Interaction in TCP –
POSIX Functions

A Closer Look into POSIX
Functions

•getaddrinfo()

•socket()

•bind()

•listen()

•accept()

•connect()

•write(), send(), sendto()

•read(), recv(), recvfrom()

•close()

Data Structures
/* structure for looking up IP address */

struct addrinfo{

 int ai_flags;

 int ai_family; // AF_INET=IPv4,AF_INET6= IPv6

 int ai_socktype; // TCP or UDP

 int ai_protocol;

 socklen_t ai_addrlen; // length of ai_addr

 struct sockaddr* ai_addr; // contains IP+PORT

 char* ai_canonname; // canonical name

 struct addrinfo* ai_next; // next pointer of result

link list

};

/* data structure for IP details (+PORT) */

struct sockaddr_in{

 short sin_family; // IPv4 or IPv6

 unsigned short sin_port; // port number

 struct in_addr sin_addr; // 32 bit IP

 char sin_zero [8];

};

/* just a wrapper for the numeric IP */

struct in_addr{

 unsigned long s_addr;

};

getaddrinfo() – Looking Up IP
address from name

• The first step to locate a server by the client

• Converts easy-to-remember DNS names (e.g.,
linux.cs.tamu.edu) into machine-usable IP address

• Queries DNS servers (a collection of mappings)

int getaddrinfo(char* name, char* port, struct addrinfo*

hints, struct addrinfo** result);

name = name of the host

port = the port where the service (e.g., http, your data server in

MP6) is running

hints = provides some initial hint (IPv4/IPv6, TCP/UDP etc.)

result = linked list of looked up addresses

• Example:

getaddrinfo("www.example.com", "3490", &hints,

&res);

getaddrinfo() - Detailed
int status;
struct addrinfo hints;
struct addrinfo *servinfo; // will point to the results

//preparing hints data structure

memset(&hints, 0, sizeof hints); // make sure the struct is empty
hints.ai_family = AF_UNSPEC; // don't care IPv4 or IPv6
hints.ai_socktype = SOCK_STREAM; // TCP stream sockets

// look up the IP address from the name: "www.example.com"

status = getaddrinfo("www.example.net", "3490", &hints, &servinfo);

for(p = res;p != NULL; p = p->ai_next) {
 void *addr;
 char *ipver;
 // get the pointer to the address itself,
 // different fields in IPv4 and IPv6:
 if (p->ai_family == AF_INET) { // IPv4
 struct sockaddr_in *ipv4 = (struct sockaddr_in *)p->ai_addr;
 addr = &(ipv4->sin_addr);
 ipver = "IPv4";
 } else { // IPv6
 struct sockaddr_in6 *ipv6 = (struct sockaddr_in6 *)p->ai_addr;
 addr = &(ipv6->sin6_addr);
 ipver = "IPv6";
 }
 // convert the IP to a string and print it:
 inet_ntop(p->ai_family, addr, ipstr, sizeof ipstr);
 printf(" %s: %s\n", ipver, ipstr);
}

socket() – A Connection End Point

• Creates a communication end-point for a network
connection

int socket (int domain, int type, int protocol)

domain = PF_INET (IPv4) / PF_INET6 (IPv6)

type = SOCK_STREAM (TCP) / SOCK_DGRAM (UDP)

protocol = 0

• Example:

s = socket (PF_INET, SOCK_STREAM, 0)

will create a TCP socket

• The above call returns 0 on success and -1 on failure

connect() – Client Attempting
Server Connection

• Called by the client to attempt a connection with the server

• Blocks until the server accepts it

int connect(int sockfd, struct sockaddr* server,

socketlen_t server_len)

sockfd = socket

server = address of the server (returned by getaddrinfo)

• Example:

// lookup

getaddrinfo("www.example.com", "3490", &hints, &res);

// make a socket:

sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

// connect to server. Once successful, the socket becomes ready as the

endpoint

connect(sockfd, res->ai_addr, res->ai_addrlen);

close() – Close a Session

• Called by both the client and the server

• Signals end of a communication

• Internally, frees resources associated with a
connection

• Important for busy servers, also for MP6 
int close(int sock)

• Example:

close (sock)

bind() – Server Attaching to a Port

• A server process calls this to associate its socket to a given port

• Port number is used by the kernel to forward an incoming packet
to a certain service’s socket

int bind(int sockfd, struct sockaddr* addr, socketlen_t

addrlen)

• Example:

// lookup

getaddrinfo(NULL, "3490", &hints, &res);

// make a socket:

sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

// bind it to the port we passed in to getaddrinfo():

bind(sockfd, res->ai_addr, res->ai_addrlen);

listen() – Setting up Server

• This is a prerequisite before a connection is accepted

• Incoming connections wait in a queue before accepted, listen () sets the
size of that queue

int listen(int sockfd, int backlog)

• Example:

listen (sockfd, 20); // 20 is good for most purposes, at least

for your data server in MP6

accept() – Server Accepting Client
Connection

• This is called by the server to accept a new client connection

int accept(int sockfd, struct sockaddr* client, socketlen_t

client_len)

sockfd = socket

client = will hold the client address details

client_len = address length

• Example:

struct sockaddr client;

accept (sockfd, &client, sizeof (client));

send()/recv() – Finally Data

• Called by both client and server to exchange data

• Blocks until the server accepts it

int send(int sock, void* msg, size_t len, int flags)

int recv(int sock, void* msg, size_t len, int flags)

Msg = buffer pointer to send/receive data from/to

Len = sender: length of the message,

receiver: buffer capacity (to avoid overflow)

• Example:

char *send_msg = "a sample message";

int sent_bytes = send (sockfd, send_msg, strlen

(send_msg)+1, 0);

char recv_buffer [1024];

int recv_len = recv (sockfd, recv_buffer, 1024, 0);

SOURCES

RICE COMP-221 Lecture Notes in Networking

Acknowledgment: Prof. Cox

TAMU CSCE-313 Lecture Notes in Networking

Acknowledgment: Profs Gu, Bettati, Ahmed

Russ Haynal - http://navigators.com/

U-Wisconsin CS-354 Lecture Notes in Networking

Acknowledgment: Prof. Arpaci-Dusseau

Socket Programming 101

Acknowledgment: Vivek Ramachandran

U-Illinois CS241 Lecture Notes in Networking

Acknowledgment: Prof. Angrave

Beej’s Guide to Network Programming, Ver. 3.0.15

http://navigators.com/

