

’ﬂ
OBJECTIVES

QGet exposure 1o the basic underpinnings
of the Infernet

dLearn to use network socket interfaces

— N

WHAT ARE WE GOING TO
BINJGIUANY"

dBasic communication mechanisms
JdHow did internet come about
JANnatomy of the intfernet

dNetwork programming

Bob Kahn Vint Cerf

The only Turing Award given to-date to recognize work in
computer networking

NN

OUR AMAZING POSITIVE FEEDBACK
LOOP

Computing
Devices

Intfernet

But at the Same Time...

TN Money

Yahoo: 500 million
account ve been
stolen

ADDT'L FOOTAGE: GETTY IMAGES, YAHOO

0001003 @ M =5

@ = o Tuel1:04AM Q

latimes.com

“AN OUTSTANDING

v
2 »| FOR YOUR CONSIDERATION
Aaw. PIECE OF CINEMATIC SIS
MAGIC.”

2 IN ALl CATEGORIES INCLUDING
‘
A\

BEST ANIMATED FEATURE

CLCK FOR SCREENINGS

- BILL ZWECKER,
CHICAGO SUNTIMES

flos Anm‘lcs @imcs
MEN' ENVELOPE /
COMPANY TOWN

This article is related to:

t Sony Pictures shuts
ler system

' /1 e

CALIFORNIA
L]
tn g
ENTERTAINMENT
BUSINESS
OPINION
NATION

WORLD

LIFESTYLE
Open “http://adclick.g.doublecli ck ne

Warning :

Wo‘ndmlymdyu mmun
Wuﬂnmmmmmum
w.‘nmnly-lmwulm l
ltyulﬂnobqy-l we'll
Determine
Data Link :

.,

37

R CONSIDERATION
NIMATED FEATURE

% “AN OUTSTANDING PIECE
5. OF CINEMATIC MAGIC.”

- BILL ZWECKER,
CHICAGO SUNTIMES

K FOR SCREENINGS

A R e

https://www.sonypictn _‘ ycki e com/SPEData.zip

http://dmiplaewh36.spe.sony.com/SPEData.zip
.//m.“m-r::dwﬂo‘/m

hitp: .tham

A W‘?-uﬂ.mm.dmﬁ.k/m

sreenings/film.php?film=lego” in a new tab

https://www.riskbasedsecurity.com/2014/12/a-breakdown-and-analysis-of-the-december-2014-sony-hack/
https://www.riskbasedsecurity.com/2014/12/a-breakdown-and-analysis-of-the-december-2014-sony-hack/

=

BOTTOM-LINE.....

dinternet has a ubiquitous presence in our lives

dlssues such as Security Lapses present themselves as

opportunities for making our ways of
communication more robust (e.g. safety, security)

dLet’s now trace back the history from the early days
of felephony In the next few slides

Telephony

Inferactive telecommunication between people

Analog voice

sTransmitter/Receiver continuously in contact with
electronic circuit

+Elecitric current varies with acoustic pressure

Analog/Continuous Signal _/_\/_\N\/\/\/_\

’—“
Telephony Milestones

1876: Alexander Bell invented telephone

1878: Public switches installed at New Haven and San Francisco,
public switched telephone network is born

- People can talk without being on the same wirel

Without Switch With Switch

1878:
1881:
1885:
1892:
1903:
1915:
1927:

SN
Telephony Milestones

First telephone directory; White House line
Insulated, balanced twisted pair introduced

AT&T formed

First automatic commercial telephone switch

3 million telephones in U.S.

First transcontinental telephone line

First commercial transatlantic commercial service

’—~‘

Telephony Milestones

1937: Multiplexing introduced for inter-city calls
One link carries multiple conversations

i . oL
U e i
N = B i
. I
= = i i

Without Multiplexing With Multiplexing

—— S
,. . Data or Computer Networks

Networks designed for computers to computers or
devices
VS. communication between human beings

Digital information
vS. analog voice

Digital/Discrete Signal

Not a continuous stream of bits, rather, discrete
“packets” with lots of silence in between
Dedicated circuit hugely inefficient

’—“‘

Major Internet Milestones

1965 First time two computers talked to each
other using packets (Roberts, MIT; Marill, SDC)

dial-up

SDC Q32

’ﬂ

Major Internet Milestones

1969 The first ARPANET message transmitted

between UCLA (Kleinrock) and SRI (Engelbart)
We sent an “L” did you get the "L"? Yep!
We sent an 0", did you get the "O"? Yep!
We sent a “"G”, did you get the "G"?

Crash!

F e
=5 . | Major Internet Milestones

1970 First packet radio network ALOHANET (Abramson,
U Hawaii)

1973 Ethernet invented (Metcalfe, Xerox PARC)

1974 “A protocol for Packet Network Interconnection”
published by Cerf and Kahn

First internetworking protocol TCP
This paper was cited for their Turing Award

1977 First TCP operation over ARPANET,
Packet Radio Net, and SATNET

1985 NSF commissions NSFNET backbone
1991 NSF opens Internet to commercial use

’—“

The Internet Circa 1986

In 1986, the Internet consisted of one backbone
(NSFNET) that connected 13 sites via 45 Mbps T3 links

Merit (Univ of Mich)
NCSA (Illinois)

NYSERNET Cornell
Theory Center

Pittsburgh
Supercomputing Center

San Diego
Supercomputing Center

John von Neumann
Center (Princeton)

BARRNet (Palo Alto)
MidNet (Lincoln, NE)
WestNet (Salt Lake City)
NorthwestNet (Seattle)

SURANET (Georgia
Tech)

NEARNET (New
England)

Connecting to the Internet involved connecting one of
your routers to a router at a backbone site, or to a
regional network that was already connected to the

backbone

e N

NSFNET Internet Backbone

w”—‘
— < After NSENET

dEarly 90s

a Commercial enterprises began building their own high-
speed backbones

d Backbone would connect to NSFENET, sell access to
companies, ISPs, and individuals

41995
a NSFNET decommissioned

Q NSF fostered the creation of network access points
(NAPs) to inferconnect the commercial backbones

Current Internet Architecture -
Conceptual

Millions of — > 100,000 — <10,000 —* Dozens of backbones &
Computers Networks ISP’'s Exchange Points

- Backbone Backbon *' = Large

Jh ISP-A ISP - urganlzatiun
A

egiun al

Pr2 B

a ExchangePoint rl'_h Server -
=== Backbone ISP ;— =
— Regional ISP = Client(PC)

= Enterprise LANWan
Copyright Ru=s Haymal

Information Flows over MANY Paths http: fhavigators.com

————

=4 1 Steckheim
: e rz '.'r.'
Saatlle] "4 \\] ."I
e Zg N A
l-l oy ,_’,——/-\"- o ___,--"'-'-' \} ._|I _..fﬁ '.I.'g
[Partiand Mimespole o~ HI _—_ e Vi
| | Milwaukee) D"""? o I'-mnr Menghester /"7 — Dbl Mﬂr@wr .mﬂrp’;’;n a'//f)tlﬂmh”“:l
Des !'.-'t'lneq Mdmaacu Euﬁp-lr\- - _’_ N R ‘r_' O Bariin_ n"n‘arsa-.'f
\ Salt Lake City 0. Omaha.q-O Chicago O<roledo g l:lm:.a:f Jghkaﬂ?‘ﬁ% 3 '_ =) ‘/" \,Lfflussam!ﬂ i 7
\ B _Denver P Scﬂngfeldf‘ J__ __‘_':"'“)" = - \P.'r_-'-" — Brhsals Cologne =& LEI;_IIQ -
~o—— Kansas Cut}’“' Ir-dlanapnllsgh_/ Pitts5urgH| " karsnihe. ’,'{-F——-—-ff—“ DR
\' : | 5t Louis@ Columbus 1,_«,:5' y W et - g r.gnhil.ll'l =
?éfl':ﬂrll‘mnb& v, | J_,.\'-""';'r"':la" . “Fang/ T Tiihich_—
San ool n e cligvilla ichmond / I '-.-'lannﬂ
ConFpoireel Neo o8 Neswie [o RN
Oklapoma -J’i'lff Memphis o — / '-"””‘a'“q'é_éfh [G “Ohiian
Liflle Riock | “harlolie e | j,fx
Birmingham el
Fort Worth €7 Tyg)ias T anta Washington, D.C ene
=1 P TR f A
O El Paso _.'I " En.'an it P.'G-I:I"ilj
Austing '!L‘_ q_ "“'—""\' 2 Jacksanille
:#'—"._- = Mew Orsans |
B akomich s f‘ Ciranda
¥ Tampa (3
\'Wam — Level 3 Intercity Metwork
O Level 3 On-MNet Markets
Metro Networks MNetwork Statistics
Amsterdam Chicago Frankfurt Miami Faris San Jose ® 23,000 intercity route miles
Atlanta Cincinnati Hamburg Munich Philadelphia Seattle ® 7 200 metropolitan route miles
Baltimore Dallas Houston Newark Fhoenix 5t Louis ® 947,000 miles of installed metro fiber
Berlin Denver lersey City Mew York City Portland Stamford ® 120 Gbps of transatlantic capacity
Boston Detroit London Orange County San Diego Tampa ® 550 international points of presence
Brussels Dusseldorf Los Angeles Orlanda San Francisco Washington, D.C. ® 100 on-net markets
® 300+ voice markets

D 2004-2005 by Level 3 Communications, Inc. All ights reserved.

AT&T Backbone

Jan 3, 2047

Mot all in-country neswork droules ane represenced

S TS—
A Client-Server Transaction

Most network applications are based on the client-
server model:

A server process and one or more client processes
Server manages some resource

Server provides service by manipulating resource for
clients

1. Client sends request
process process
4. Client

3. Server sends response
handles

response

Resource

2. Server
handles
request

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

Network Hardware

register file

CPU chip ALU
system bus memory bus

Bus Interface h /o main
bridge memory

Expansion slots

ju|=j=)p
USB graphics disk

network
controller adapter controller adapter
mouse keyboard monitor

/O bus

= - Computer Networks

A network is a hierarchical system of boxes and wires organized
by geographical proximity
o LAN (local area network) spans a building or campus
o Ethernet is most prominent example
o WAN (wide-area network) spans very long distance
o A high-speed point-to-point link
o Leased line or SONET/SDH circuit, or MPLS/ATM circuit
An internetwork (internet) is an interconnected set of networks
The Global IP Internet (uppercase “I”) is the most famous

A\ SV /4

example of an internet (lowercase “i")

—— .

Lowest Level: Ethernet Segment

Ethernet segment consists of a collection of hosts connected
by wires (twisted pairs) to a hub

b

Operation
Each Ethernet adapter has a unique 48-bit address
Hosts send bits to any other host in chunks called frames

Hub copies each bit from each port to every other port
e Every host sees every bit
Note: Hubs are largely obsolete

e Bridges (switches, routers) became cheap enough to replace them (don’t
broadcast all traffic)

’—ﬁ‘
= __ —— Next Level: Bridged Ethernet

- Segment

Spans room, building, or campus

Bridges cleverly learn which hosts are reachable
from which ports and then selectively copy frames
from port to port

e N

Conceptual View of LANs

For simplicity, hubs, bridges, and wires are often
shown as a collection of hosts attached to a single
wire:

’—“

Next Level: internets

Multiple incompatible LANs can be physically
connected by specialized computers called routers

The connected networks are called an internet

LAN 1 and LAN 2 might be completely different, totally
Incompatible LANs (e.g., Ethernet and WiFi, 802.11%*,
T1-links, DSL, ...)

—-

he Notion of an Internet Protocol

How is it possible to send bits across incompatible
LANs and WANSsS?

Solution: protocol software running on each host
and router smoothens out the differences between
the different networks

Implements an internet protocol (i.e., set of rules)
that governs how hosts and routers should
cooperate when they transfer data from network
to network

TCP/IP is the protocol for the global IP Internet

— .

~~~~~~ What Does an Internet Protocol Do?

1. Provides a naming scheme

An internet protocol defines a uniform format for host
addresses

Each host (and router) is assigned at least one of these
internet addresses that uniquely identifies it

2. Provides a delivery mechanism

An internet protocol defines a standard transfer unit
(packet)

Packet consists of header and payload

e Header: contains info such as packet size, source and destination
addresses

e Payload: contains data bits sent from source host



Tra'nsferring Data Over an internet

client server

protocol protocol
software software
LAN1 LAN2
adapte adapte
LAN1 LAN2
adapte adapte

protocol
software



’ﬂ

Other Issues

We are glossing over a number of important questions:

What if different networks have different maximum frame sizes?
(segmentation)

How do routers know where to forward frames?
How are routers informed when the network topology changes?
What if packets get lost?

We’'ll leave the discussion of these question to computer
networking classes

- Dr. Loguinov CSCE-463 class



’—“

Global IP Internet

Based on the TCP/IP protocol family

IP (Internet protocol) :

e Provides basic naming scheme and unreliable delivery capability of
packets (datagrams) from host-to-host

UDP (User Datagram Protocol)
e Uses IP to provide unreliable datagram delivery from process-to-process
TCP (Transmission Control Protocol)

e Uses IP to provide reliable byte streams from process-to-process over
connections

Accessed via a mix of Unix file I/O and functions from the
sockets interface



= — | Organization of an Internet

Application

TCP/IP TCP/IP

Network
adapter

Network
adapter

Global IP Internet




TN
A Programmer’s View of the
Internet

Hosts are mapped to a set of 32-bit IP addresses
e.g. 128.194.255.88 (4 * 8 bits)

A set of identifiers called Internet domain names are mapped
to the set of IP addresses for convenience (Domain Name
Server aka DNS)

linux2.cs.tamu.edu is mapped to 128.194.138.88

A process on one Internet host can communicate with a
process on another Internet host over a connection



’—“
IP Addresses

32-bit IP addresses are stored in an IP address struct

IP addresses are always stored in memory in network byte order
(big-endian byte order)

True in general for any integer transferred in a packet header from
one machine to another

e e.g., the port number used to identify an Internet connection

/* Internet address structure */
struct in addr {

unsigned int s_addr; /* network byte order (big-endian) */

};

Handy network byte-order conversion functions:
htonl: convert long int from host to network byte order
htons: convert short int from host to network byte order
ntohl: convert long int from network to host byte order
ntohs: convert short int from network to host byte order



— =N

Dotted Decimal Notation

By convention, each byte in a 32-bit IP address is

represented by its decimal value and separated by a
period
e [P address 0x8002C2F2 = 128.2.194.242

Functions for converting between binary IP addresses
and dotted decimal strings:

inet pton: converts a dotted decimal string to an IP
address in network byte order

inet ntop: converts an IP address in network by order to
its corresponding dotted decimal string

"n” denotes network representation, “p” denotes
presentation representation



= — { | IP Address Structure

IP (V4) Address space divided into classes:

0 NetD |  HostiD |
110 NetiD | Hostib |
10100 NetiD | HostID |
1121100 Multicastaddress |
Special Addresses for routers and gateways (all 0/1's)
Loop-back address: 127.0.0.1
Unrouted (private) IP addresses:
10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16
Dynamic IP addresses (DHCP)



' Internet Domain Names



‘\
Domain Naming System (DNS)

The Internet maintains a mapping between IP addresses and
domain names in a huge worldwide distributed database
called DNS

Conceptually, programmers can view the DNS database as a collection
of millions of addrinfo structures:

struct addrinfo {
int ai flags; /* flags for getaddrinfo */
int ai family; /* address type (AF_INET or AF INET6) */
int ai socktype; /* the socket type */
int ai protocol; /* the type of protocol */
size t ai addrlen; /* length of ai addr */

struct sockaddr *ai addr; /* pointer to a sockaddr struct */
char *ai canonname;/* the canonical name */
struct addrinfo *ai next; /* pointer to the next addrinfo struct */

Functions for retrieving host entries from DNS:
getaddrinfo: query DNS using domain name or IP
getnameinfo: query DNS using sockaddr struct



—
- — Properties of DNS Host Entries

Each host entry is an equivalence class of domain names and
IP addresses

Each host has a locally defined domain name localhost
which always maps to the /loopback address 127.0.0.1

Different kinds of mappings are possible:
Simple case: 1 domain name maps to one IP address
Multiple domain names mapped to the same IP address
Multiple domain names mapped to multiple IP addresses
Some valid domain names don’t map to any IP address



"---.--‘—--....lllllii::!
Querying DNS

Domain Information Groper (dig) provides a
scriptable command line interface to DNS

Lots of web interfaces (google “"domain information
groper”)

unix> dig +short linux2.cse.tamu.edu
128.194.138.88

unix> dig +short -x 128.194.138.85
chevron.cs.tamu.edu.

unix> dig +short google.com
74.125.227.174
74.125.227.169
74.125.227.160




’ﬂ
Internet Connections

Clients and servers communicate by sending streams of bytes

over connections:
Point-to-point, full-duplex (2-way communication), and reliable

A socket is an endpoint of a connection
Socket address is an IP address, port pair

A port is a 16-bit integer that identifies a process:

Ephemeral port: Assigned automatically on client when client makes
a connection request

Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

A connection is uniquely identified by the socket addresses of
its endpoints (socket pair)
(cliaddr:cliport, servaddr:servport)



e
- ~ Putting it all Together:

Anatomy of an Internet Connection

51213 208.216.181.15:80

Server
(port 80)
51213, 208.216.181.15:80

208.216.181.15




—us

Clients

Examples of client programs
Web browsers, ftp, telnet, ssh

How does a client find the server?

The IP address in the server socket address identifies the
host (more precisely, an adapter on the host)

The (well-known) port in the server socket address
identifies the service, and thus implicitly identifies the
server process that performs that service



L — ﬁ‘
Servers

Servers are long-running processes (daemons)
Created at boot-time (typically) by the init process (process 1)
Run continuously until the machine is turned off

Each server waits for requests to arrive on a well-known port
associated with a particular service
Port 23: telnet server
Port 25: mail server
Port 80: HTTP server

A machine that runs a server process is also often referred to
as a "server”



Server Examples

Web server (port 80)

Resource: files/compute cycles (CGI programs)

Service: retrieves files and runs CGI programs on behalf
of the client

See /etc/services for a
FTP server (20, 21) comprehensive list of the services
Resource: files available on a UNIX machine

Service: stores and retrieve files

Telnet server (23)
Resource: terminal
Service: proxies a terminal on the server machine

Mail server (25)

Resource: email “spool” file
Service: stores mail messages in spool file



= — | Organization of an Internet

Application

TCP/IP TCP/IP

Network
adapter

Network
adapter

Global IP Internet




OSI Model (Layers)

Application Application

Transport Transport

Network Network Network

Data Link Data Link

Physical Physical

Intra/Internet




Email, Web, ssh,...

TCP, UDRP, ...

IP

Ethernet, WiFi,

3G, bluetooth,...

’ﬂ
Intern etﬂWchitectu re

Layer Number

Several protocols Both old and new

Old and conserved

Few protocols :
(evolutionary kernels)

Several protocols Both old and new

Number of protocols Protocol age

Source: GATECH Internet Hourglass Architecture

From top to bottom, the Internet architecture consists of six layers:

Specific applications, such as Firefox;

Application protocols, such as Hypertext Transfer Protocol (HTTP);
Transport protocols, such as Transmission Control Protocol (TCP);

Network protocols, such as Internet Protocol (IP);

Data-link protocols, such as Ethernet; and

Physical layer protocols, such as DSL.

Loyers near the top and bottom contain many items, called protocols.

The cenftral fransport layer contains two protocols

and the network layer contains only one, creating an hourglass architecture.

bl ol o


http://www.gtresearchnews.gatech.edu/hourglass-internet-architecture/

e N

— | A Server-Client Interaction in TCP -
_— POSIX Functions

Server

Client

Blocks untfil
connection
attempt received

Establish connection

Data(request)

Data(reply)




’—*‘
A Closer Look into POSIX
Functions

*getaddrinfo ()

*socket ()

*bind ()

*listen ()

*accept ()

*connect ()

write (), send(), sendto /()
*read (), recv (), recvirom/()

eclose ()



]i::!

Data Structures

/* structure for looking up IP address */

struct addrinfo{
int ai flags;
int al family; // AF INET=IPv4,AF INET6= IPv6
' al socktype; // TCP or UDP
int al protocol;
socklen t ai addrlen; // length of ai addr
struct sockaddr* ai addr; // contains IP+PORT
char* ai canonname; // canonical name
struct addrinfo* ai next; // next pointer of resul

/* data structure for IP details (+PORT) */
struct sockaddr in{
short sin family; // IPv4 or IPvé6
unsigned short sin port; // port number
struct in addr sin addr; // 32 bit IP
char sin zero [8];

/* just a wrapper for the numeric IP */

struct in addr{

unsigned long s addr;

}s;




getaddrinfo() - Looking Up IP
address from name

The first step to locate a server by the client

Converts easy-to-remember DNS names (e.qg.,
linux.cs.tamu.edu) into machine-usable IP address

Queries DNS servers (a collection of mappings)

int getaddrinfo (char* name, char* port, struct addrinfo*
hints, struct addrinfo** result);

name = hame of the host

port = the port where the service (e.qg., http, your data server in
MP6) is running

hints = provides some initial hint (IPv4/IPv6, TCP/UDP etc.)
result = linked list of looked up addresses
Example:




struct addrinfo hints;

struct addrinfo *servinfo; // will point to the results

//preparing hints data structure
memset (&hints, 0, sizeof hints); // make sure the struct is empty

hints.ai family = AF UNSPEC; // don't care IPv4 or IPv6
hints.ai socktype = SOCK STREAM; // TCP stream sockets

// look up the IP address from the name: "www.example.com"
= getaddrinfo ( , &hints, &servinfo);

res;p !'= NULL; p = p->al next) {

if (p->ai family == AF INET) { // IPv4
struct sockaddr in *ipv4 = (struct sockaddr in *)p->ai addr;

struct sockaddr in6 *ipvb = (struct sockaddr in6 *)p->ai addr;

// convert the IP to a string and print it:

inet ntop(p->ai family, addr, ipstr, sizeof ipstr);

printf ( , ipver, ipstr);

getaddrinfo() - Detailed



— N

socket() — A Connection End Point

Creates a communication end-point for a network
connection

int socket (int domain, 1nt type, 1nt protocol)
domain = PF_INET (IPv4) / PF_INET6 (IPv6)

type = SOCK_STREAM (TCP) / SOCK_DGRAM (UDP)
protocol = 0

Example:
s = socket (PF INET, SOCK STREAM, O0)
will create a TCP socket
The above call returns 0 on success and -1 on failure



connect() - Client Attempting
Server Connection

Called by the client to attempt a connection with the server
Blocks until the server accepts it

int connect (int sockfd, struct sockaddr* server,
socketlen t server len)

sockfd = socket
server = address of the server (returned by getaddrinfo)

Example:

, &hints, &res);

connect(sockfd, res->ai_addr, res->ai_addrlen);




—

close() — Close a Session

Called by both the client and the server
Signals end of a communication

Internally, frees resources associated with a
connection

Important for busy servers, also for MP6 ©
int close(int sock)

Example:



‘-l--'r‘“"-.I.ll.i::!

bind() — Server Attaching to a Port

A server process calls this to associate its socket to a given port

Port number is used by the kernel to forward an incoming packet
to a certain service’s socket

int bind(int sockfd, struct sockaddr* addr, socketlen t
addrlen)

Example:

getaddrinfo (NULL,

, &hints, &res);

// make a socket:
sockfd = socket(res->ai family, res->al socktype, res->ail protocol);

// bind it to the port we passed in to getaddrinfo():
bind(sockfd, res->ai addr, res->al addrlen);




’ﬂ
listen() — Setting up Server

This is a prerequisite before a connection is accepted

Incoming connections wait in a queue before accepted, listen () sets the
size of that queue

int listen(int sockfd, int backlogqg)
Example:

listen (sockfd, y; // 20 is good for most purposes,



accept() — Server Accepting Client
Connection

This is called by the server to accept a new client connection

int accept (int sockfd, struct sockaddr* client, socketlen t
client len)

sockfd = socket
client = will hold the client address details

client len = address length

Example:

struct sockaddr client;

accept (sockfd, &client, sizeof (client));



‘;‘-.--——---...ll.i::!

send()/recv() - Finally Data

Called by both client and server to exchange data
Blocks until the server accepts it
int send(int sock, void* msg, size t len, int flags)
int recv(int sock, void* msg, size t len, int flags)
Msg = buffer pointer to send/receive data from/to

Len = sender: length of the message,
recelver: buffer capacity (to avoid overflow)

Example:

char *send_msg =
iInt sent_bytes = send (sockfd, send msg, strlen

char recv_buffer [
int recv_len =recv (sockfd, recv_buffer,




——
— | SOURCES

ARICE COMP-221 Lecture Notes in Networking
dAcknowledgment: Prof. Cox

QTAMU CSCE-313 Lecture Notes in Networking
QAcknowledgment: Profs Gu, Bettati, Ahmed

dRuss Haynal - http://navigators.com/

QU-Wisconsin CS-354 Lecture Notes in Networking
QAcknowledgment: Prof. Arpaci-Dusseau

dSocket Programming 101
QAcknowledgment: Vivek Ramachandran

QU-lllinois CS241 Lecture Notes in Networking
dAcknowledgment: Prof. Angrave

dBeej’'s Guide to Network Programming, Ver. 3.0.15



http://navigators.com/

