
W13.2 - Virtual Memory 
(Part 2)



Acknowledgment

 The material for this topic is primarily assembled from four sources:
 OSPP Textbook, Anderson and Dahlin, Chapter 8, 

http://ospp.cs.washington.edu/slides.html
 Computer Systems: A Programmer's Perspective, 3/E, Bryant and O’Hallaron, 

Chapter 9, http://www.cs.cmu.edu/afs/cs/academic/class/15213-
f15/www/schedule.html

 High Performance Computer Architecture, Milos Prvulovic, 
http://www.cc.gatech.edu/~milos/Teaching/CS6290F07/

 Select slide material of my presentation on Virtual Memory to Intel Colleagues, 
Jan 1995 (no link )

The slide material is attributed to the sources (templates). Minor 
changes to source slides are made where necessary for further 
explanation 

http://ospp.cs.washington.edu/slides.html
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/schedule.html
http://www.cc.gatech.edu/~milos/Teaching/CS6290F07/


What’s Next?

The enormity of single-level page table for today’s 64-bit machines! 
Practical considerations and solutions

Choosing Page Sizes

Timing of Page Hits and Page Faults and what can be done to 
improve access times

Handling Page Faults



Simple Page Table

• Flat organization

– One entry per page

– Entry contains page frame 

number or indicates page is on 

disk or invalid

– Also meta-data (e.g., 

permissions, dirtiness, etc.)

One entry per page
Question: How large could this flat page table become (assume 4KB Pages)?

 32-bit virtual address space?

 64-bit virtual address space?



Multi-Level Page Tables

• Multi-Level organization

– Each level is an indirection

– Entries may be 

• pointers to the next level, or

• null



Choosing a Page Size

• Page size inversely proportional to page table overhead

• Large page size permits more efficient transfer to/from disk

– vs. many small transfers

– like downloading from Internet

• Small page leads to less fragmentation

– Big page likely to have more bytes unused



• Program deals with virtual addresses

– “Load R1 = [R2]” //meaning load the content of memory location pointed to by register R2//

• On memory load instruction

1. Compute virtual address ([R2])

2. Compute virtual page number

3. Compute physical address of page table entry

4. Read page table entry

5. Compute physical address

6. Access Cache (and sometimes memory)

CPU Memory Access



Impact on Performance?

• Every time you load/store, the CPU must perform two (or 

more) accesses!

• Even worse, every fetch requires translation of the PC!

• Observation:

– Once a virtual page is mapped into a physical page, it’ll likely stay 

put for quite some time



Idea: Caching!

• Not caching of data, but caching of 

translations

0K

4K

8K

12K

Virtual

Addresses

0K

4K

8K

12K

16K

20K

24K

28K

Physical

Addresses

8 16

0 20

4 4

12 X
VPN 8

Page Frame 16



Translation Cache: TLB

• TLB = Translation Look-aside Buffer

TLB
Virtual

Address

Cache

Data

Physical

Address

Cache

Tags
Hit?

If TLB hit, no need to

do page table lookup

from memory

Note: data cache

accessed by physical

addresses now



Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Hit

 Page hit: reference to VM word that is in physical memory 

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address



Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Fault

 Page fault: reference to VM word that is not in physical 
memory (DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address



Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
 Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address



Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address



Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address



Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

 Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Key point: Waiting until the miss to copy the page to 
DRAM is known as demand paging



Summary

Virtual Memory (programmer’s view) versus Physical Memory (processor’s 
view)

Cross-referencing of virtual to physical memory 
 Done in the form of pages
 Done by virtue of page table

A flat page table for today’s 64-bit machines is ginormous! Hence we 
implement multi-level page tables

Choosing Page Sizes pros and cons

Timing of Page Hits and Page Faults and what can be done to improve 
access times (Translation Lookaside Buffer Cache)

Handling Page Faults


