
High-dimensional statistics 2: assignment 4

Due Weds Mar 8, 2017

1. Matrix sampling and concentration

Theorem 1 (Tropp’s matrix Bernstein inequality). Suppose that X ∈ Rd1×d2 is a random
matrix with ‖X‖ ≤ R always (here ‖X‖ denotes the matrix operator norm) and with

ν = max
{∥∥E [X>X]∥∥ ,∥∥E [XX>]∥∥} .

Let X1, . . . , Xn
iid∼ X . Then

E

[∥∥∥∥∥
n∑
t=1

(Xt − E [X])

∥∥∥∥∥
]
≤
√
n ·
√

2ν log(d1 + d2) +
2

3
R log(d1 + d2) .

We will use this theorem to study the behavior of the random sampling operator for a ma-
trix completion problem. Recall that for uniform sampling, in class we discussed the matrix
“mask” Ω ∈ Rd1×d2 which has a 1 in every observed location and a 0 elsewhere. This is
equivalent to drawing a sample of size n, without replacement, from the set of all possible
locations in the matrix. We can approximate Ω with another matrix where we instead sample
with replacement (to get things to be iid):

M =

n∑
t=1

Xt

where Xt is a matrix with a 1 in a single location drawn uniformly at random, and a 0 else-
where.

(a) Calculate E [M ], and use the theorem to prove a bound on E [‖M − E [M ]‖].
(b) Suppose that the sampling is no longer uniformly at random, but instead each Xt has

a single 1 in location (i, j) with probability pij (where
∑
i

∑
j pij = 1 gives a prob-

ability distribution over the set of locations). Suppose that the row and column prob-
abilities are bounded as maxi

∑
j pij ≤

L
d1

, maxj
∑
i pij ≤

L
d2

. Calculate E [M ]
again. Calculate E [‖M − E [M ]‖] again now in terms of L. (Note: when L is very
large (e.g. scaling with dimension rather than with a constant), this will be extremely
large, and so instead of using nuclear norm for matrix completion we would want to
use a reweighted penalty; see http://arxiv.org/abs/1106.4251 and http:
//arxiv.org/abs/1009.2118 if you’re interested in this case.)

2. Gaussian width
Recall that the Gaussian width for a cone S ⊂ Rd is given by

ω(S) = E
[

sup
x∈S∩Sd−1

〈x, g〉
]
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where g ∼ N(0, Id).

Let S = {all k-sparse vectors}. Prove that ω(S) .
√
k log(d/k). You can use the χ2 tail

bound
P
{
χ2
m ≥ m+ 2

√
mt+ 2t

}
≤ e−t.

Roughly speaking this bound on ω(S) means that the sample complexity for learning a k-
sparse vector is n ∼ k log(d/k).

3. Rademacher complexity & Gaussian complexity
Recall that the Rademacher complexity of a class of functions F is defined by

Rn(F) = E

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(Zi)

∣∣∣∣∣
)

where σ1, . . . , σn are Rademacher random variables. The expectation is taken over both the
σi’s and the sample (the Zi’s).

Define also the Gaussian complexity

Gn(F) = E

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

gif(Zi)

∣∣∣∣∣
)

where gi
iid∼ N(0, 1).

(a) Prove that Rn(F) ≤ C · Gn(F) where C is an explicit constant you should calculate.
(Hint: let σi = sign(gi).)

(b) It is known that Gaussian complexity is bounded by Rademacher complexity, up to a log
factor. We will not prove this but will prove something intuitively similar. First, we will
show that for any fixed w1, . . . , wn ∈ [−1, 1], the “weighted Rademacher complexity”
is no larger than the Rademacher complexity:

E

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

wi · σif(Zi)

∣∣∣∣∣
)
≤ Rn(F).

To see why, let τi ∈ {±1} be independent such that E [τi] = wi, and consider instead
bounding the complexity measure

E

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

τi · σif(Zi)

∣∣∣∣∣
)
≤ Rn(F),

then use this to prove the “weighted Rademacher” bound above.

(c) As the next step, take Wi to be random independent and symmetric variables with Wi ∈
[−B,B]. Prove that

E

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

Wif(Zi)

∣∣∣∣∣
)
≤ BRn(F)

using your work in the part above.
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4. Simulation: approximate isometries via non-Gaussian matrices
It is known that if the matrix A ∈ Rn×p has i.i.d. N(0, 1) entries, for p � n, then with high
probability it acts as an approximate isometry on any sufficiently restricted class of vectors,
e.g. sparse vectors, meaning that 1√

n
‖Ax‖2 ≈ ‖x‖2 is true simultaneously for all restricted

vectors x; this allows for much of the theory for high dimensional sparse regression and other
statistical problems.

In this problem, we’ll see whether the same phenomenon holds when the entries ofA are i.i.d.
but non-Gaussian. In particular, it may be more efficient to store the matrix A if it is highly
sparse, so we will consider the case that

Aij =


1√
ρ , with probability ρ/2,

− 1√
ρ , with probability ρ/2,

0, with probability 1− ρ.

where ρ ∈ [0, 1] controls the amount of sparsity. (The reason for signs is that E [Aij ] = 0; the
reason for the scaling on the nonzero entries is so that E

[
A2
ij

]
= 1.)

(a) Write a function that approximates the “maximum sparse eigenvalue” of A: given a
sparsity level k, our goal is to calculate

Sk(A) := max {‖Au‖2 : u ∈ Rp, ‖u‖2 ≤ 1, ‖u‖0 ≤ k} .

We can rewrite this as:

Sk(A) := max
{
v>Au : u ∈ Rp, ‖u‖2 ≤ 1, ‖u‖0 ≤ k; v ∈ Rn, ‖v‖2 ≤ 1

}
.

To approximate this, we can use an alternating maximization:

• Initialize with a random unit vector u ∈ Rp

• Update v: v = Au
‖Au‖2

• Update u: u = arg max
{
u>(A>v) : ‖u‖2 ≤ 1, ‖u‖0 ≤ k

}
. (Hint: sort the entries

of A>v.)
• Iterate the two above steps.
• Then repeat ∼100 times with different initial random choices for u, and take the

largest output (since this is an alternating maximization algorithm, it’s nonconvex,
and is actually extremely sensitive to the initialization.)

(b) Fix p � n large. Plot the average “maximum sparse eigenvalue” of A against k, for
each of your distributions on A—that is, for Gaussian A, and for signed Bernoulli A
as described above with various values of ρ (we are particularly interested in how the
behavior degrades as ρ gets extremely small). Recall from class that the scaling for a
Gaussian matrix A should be something like

√
n +

√
k log(p) (where the second term

comes from Gaussian width) — so if you fix n and p, try plotting Sk(A) against
√
k to

look for linearity. You can also investigate how the empirical outcome varies with n, p, k
jointly.
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