
CS553 Lecture Lattice Theoretic Framework for DFA 1

Generalizing Data-flow Analysis

Announcements
– Assignment 1 peer review assignments are out and due Thursday Feb 9
– Final revised submission for Assignment 1 is due February 16th

– Assignment 2 is out, and it is strongly recommended that you start
working on it.

Today
– Abstracting data-flow analysis

What’s common among the different analyses?
– Lattices for representing the in and out sets in data-flow analysis.
– Tuples of lattices
– Why iterative solutions to data-flow analysis converge

CS553 Lecture Lattice Theoretic Framework for DFA 2

guaranteed or possible

forward or backward

variables, definitions, ...

universal or empty set

universal or empty set

universal or empty set

due to semantics of stmt what is removed from set

due to semantics of stmt what is added to set

how sets from two control paths compose

Must or may Information

Direction

Flow values

Initial guess

Initial in or out set

Conservative value

Kill

Gen

Merge

Aspects of Data-flow Analysis

CS553 Lecture Lattice Theoretic Framework for DFA 3

Available Expressions

Definition
– An expression, x+y, is available at node n if every path from the

entry node to n evaluates x+y, and there are no definitions of x or y
after the last evaluation

...x+y...

...x+y...

...x+y...

entry

n

x and y not defined
along blue edges

CS553 Lecture Lattice Theoretic Framework for DFA 4

Must

Forward

Sets of expressions

Universal set

Empty set

Universal set

Set of expressions killed by statement s

Set of expressions evaluated by s

Intersection

Must or may Information?

Direction?

Flow values?

Initial guess?

First in set?

Conservative value?

Kill?

Gen?

Merge?

Defining Available Expressions Analysis

CS553 Lecture Lattice Theoretic Framework for DFA 5

1 a = . . .;
2 b = . . .;
3 for (. . .) {
4 x = a + b;
5 . . .
6 }

To determine whether it’s legal to move statement 4
out of the loop, we need to ensure that there are no
reaching definitions of a or b inside the loop

Reaching Definitions

Definition
– A definition (statement) d of a variable v reaches

node n if there is a path from d to n such that v is
not redefined along that path

Uses of reaching definitions
– Build use/def chains
– Constant propagation
– Loop invariant code motion

v :=...d

n

Reaching definitions of a and b

x := 5d

n f(x)

Does this def of x reach n?
can we replace n with f(5)?

Ï def[v]

CS553 Lecture Lattice Theoretic Framework for DFA 6

Reaching Constants (aka Constant Propagation)

Goal
– Compute value of each variable at each program point (if possible)

Flow values
– Set of (variable,constant) pairs

Merge function
– Intersection

Data-flow equations
– Effect of node n x = c

– kill[n] = {(x,k)| "k}
– gen[n] = {(x,c)}

– Effect of node n x = y + z
– kill[n] = {(x,k)| "k}
– gen[n] = {(x,c) | c=valy+valz, (y, valy) Î in[n], (z, valz) Î in[n]}

CS553 Lecture Lattice Theoretic Framework for DFA 7

Reality Check!

Some definitions and uses are ambiguous
– We can’t tell whether or what variable is involved
e.g., *p = x; /* what variable are we assigning?! */

– Unambiguous assignments are called strong updates
– Ambiguous assignments are called weak updates

Solutions
– Be conservative

– Sometimes we assume that it could be everything
e.g., Defining *p (generating reaching definitions)

– Sometimes we assume that it is nothing
e.g., Defining *p (killing reaching definitions)

– Try to figure it out: alias/pointer analysis (more later)

CS553 Lecture Lattice Theoretic Framework for DFA 8

Side Effects

What happens at function calls?
– For example, the call foo(&x) might use or define

– any local or heap variable x that has been passed by address/reference
– any global variable

Solution
– How do we handle this for liveness used for register allocation?
– In general

– Be conservative: assume all globals and all vars passed by
address/reference may be used and/or modified

– Or Figure it out: calculate side effects (example of an interprocedural
analysis)

CS553 Lecture Lattice Theoretic Framework for DFA 9

Concepts

Data-flow analyses are distinguished by
– Flow values (initial guess, type)
– May/must
– Direction
– Gen
– Kill
– Merge

Complication
– Ambiguous references (strong/weak updates)
– Side effects

CS553 Lecture Lattice Theoretic Framework for DFA 10

Context for Lattice-Theoretic Framework

Goals
– Provide a single formal model that describes all data-flow analyses
– Formalize the notions of “correct,” “conservative,” and “optimistic”
– Correctness proof for IDFA (iterative data-flow analysis)
– Place bounds on time complexity of data-flow analysis

Approach
– Define domain of program properties (flow values) computed by data-

flow analysis, and organize the domain of elements as a lattice
– Define flow functions and a merge function over this domain using lattice

operations
– Exploit lattice theory in achieving goals

CS553 Lecture Lattice Theoretic Framework for DFA 11

Lattices

Define lattice L = (V, ⊓)
– V is a set of elements of the lattice
– ⊓ is a binary relation over the elements

of V (meet or greatest lower bound)

Properties of ⊓
– x,y Î V Þ x ⊓ y Î V (closure)
– x Î V Þ x ⊓ x = x (idempotence)
– x,y Î V Þ x ⊓ y = y ⊓ x (commutativity)
– x,y,z Î V Þ (x ⊓ y) ⊓ z = x ⊓ (y ⊓ z) (associativity)

{}

{k}{j}{i}

{j,k}{i,k}{i,j}

{i,j,k}

CS553 Lecture Lattice Theoretic Framework for DFA 12

Lattices (cont)

Under (⊑)
– Imposes a partial order on V
– x ⊑ y Û x ⊓ y = x

Top (⊤)
– A unique “greatest” element of V (if it exists)
– "x Î V – {⊤}, x ⊑ ⊤

Bottom (^)
– A unique “least” element of V (if it exists)
– "x Î V – {^}, ^ ⊑ x

Height of lattice L
– The longest path through the partial order from greatest to least element

(top to bottom)

⊤ =

^ =

{}

{k}{j}{i}

{j,k}{i,k}{i,j}

{i,j,k}

CS553 Lecture Lattice Theoretic Framework for DFA 13

Data-Flow Analysis via Lattices

Relationship
– Elements of the lattice (V) represent flow values (in[] and out[] sets)

– e.g., Sets of live variables for liveness
– ⊤ represents “best-case” information (initial flow value)

– e.g., Empty set
– ^ represents “worst-case” information

– e.g., Universal set
– ⊓ (meet) merges flow values

– e.g., Set union
– If x ⊑ y, then x is a conservative approximation of y

– e.g., Superset

{}

{k}{j}{i}

{j,k}{i,k}{i,j}

{i,j,k}

CS553 Lecture Lattice Theoretic Framework for DFA 14

Data-Flow Analysis via Lattices (cont)

Remember what these flow values represent
– At each program point a lattice element represents

an in[] set or an out[] set

{ }
{ }

{ }
{ }

{ }
{ }

x = y

print(y)print(x)

Initially

{ y }
{ x,y }

{ y }
{ }

{ x }
{ }

x = y

print(y)print(x)

Finally

{}

{y}{x}

{x,y}

Typical Lattices in Dataflow Analysis

Powerset lattice: set of all subsets of a set U
– meet operator (⊓) is union (È) or intersection (Ç)
– Partial ordering (⊑) is ⊇ or ⊆
– Bottom (^) and Top (T) are U and Æ, or vice versa
– Height = | U | (infinite if U is infinite)

Set of unordered values plus top and bottom
– Example: Reaching constants domain for a particular variable
– Height = 2 (width may be infinite)

Two-point lattice: top and bottom
– Represents a boolean property

CS553 Lecture Lattice Theoretic Framework for DFA 15

⊤

0

^

1 2 ...-1-2...

CS553 Lecture Lattice Theoretic Framework for DFA 16

Data-Flow Analysis Frameworks

Data-flow analysis framework
– A set of flow values (V)
– A binary meet operator (⊓)
– A set of flow functions (F) (also known as transfer functions)

Flow Functions
– F = {f: V®V}

f describes how each node in CFG affects the flow values
– Flow functions map program behavior onto lattices

CS553 Lecture Lattice Theoretic Framework for DFA 17

2U = {{v1,v2,v3},
{v1,v2},{v1,v3},{v2,v3},
{v1},{v2},{v3}, Æ}

È
⊇

Æ
U

{fn(X) = Genn È (X – Killn), "n}

Example: Liveness analysis with 3 variables
U = {v1, v2, v3}

Æ = ⊤

{ v1 } { v2 } { v3 }

{ v1,v2 } { v1,v3 } { v2,v3 }

{ v1,v2,v3 } = ^

– V:

– Meet (⊓):
– ⊑:
– Top(T):
– Bottom (^):
– F:

Inferior solutions are lower on the lattice
More conservative solutions are lower on the lattice

Visualizing DFA Frameworks as Lattices

CS553 Lecture Lattice Theoretic Framework for DFA 18

Lattice Example

What are the data-flow sets for liveness?

What is the meet operation for liveness?

What partial order does the meet operation induce?

What is the liveness lattice for this example?

CS553 Lecture Lattice Theoretic Framework for DFA 19

Defining Gen and Kill for various statement types
statement Gen[s] Kill[s]
s: t = b op c {s} def[t] – {s}
s: t = M[b] {s} def[t] – {s}
s: M[a] = b {} {}
s: if a op b goto L {} {}

statement Gen[s] Kill[s]
s: goto L {} {}
s: L: {} {}
s: f(a,…) {} {}
s: t=f(a, …) {s} def[t] – {s}

Computing Reaching Definitions

Assumption
– At most one definition per node
– We can refer to definitions by their node “number”

Gen[n]: Definitions that are generated by node n (at most one)
Kill[n]: Definitions that are killed by node n

CS553 Lecture Lattice Theoretic Framework for DFA 20

Reaching Defs Example

What is the lattice?

What is the initial guess?

What is the meet operation?

Reaching definitions
– V:
– ⊓:

– ⊑:
– Top(⊤):
– Bottom (^):
– F:

CS553 Lecture Lattice Theoretic Framework for DFA 21

2S (S = set of all defs)
È

⊇

Æ
U

. . .

Another Example

CS553 Lecture Lattice Theoretic Framework for DFA 22

Reaching Constants (aka Constant Propagation)

Goal
– Compute value of each variable at each program point (if possible)

Flow values
– Set of (variable, constant) pairs

Merge function
– Intersection

Data-flow equations
– Effect of node n x = c

– kill[n] = {(x,d)| "d}
– gen[n] = {(x,c)}

– Effect of node n x = y + z
– kill[n] = {(x,c)| "c}
– gen[n] = {(x,c) | c=val(y)+valz, (y, valy) Î in[n], (z, valz) Î in[n]}

CS553 Lecture Lattice Theoretic Framework for DFA 23

Tuples of Lattices
Problem

– Simple analyses may require complex lattices
(e.g., Reaching constants)

Possible Solutions for reaching constants
– Tuple of lattices, (variable, constant) tuples
– Tuple of lattices, one entry in tuple per variable
L = (V, ⊓) º (Li = (Vi, ⊓i))N

– V = V1× V2 ×… × VN
– Meet (⊓): point-wise application of ⊓T
– (…, vi, …) ⊑ (…, ui, …) º vi ⊑ ui, " i
– Top (⊤): tuple of tops (⊤i) N

– Bottom (^): tuple of bottoms (^i) N

– Height (L) = height(L1) * height(L2) * … * height(LN)

Equivalence of Power Set Lattices and Tuple of two-point lattices
(bitvectors)

CS553 Lecture Lattice Theoretic Framework for DFA 24

Tuples of Lattices Example

Reaching constants (previously)
– P = v´c, for variables v & constants c

– V: 2P

Alternatively

– V = c È {⊤, ^}

The whole problem is a tuple of lattices, one for each variable

⊤

0

^

1 2 ...-1-2...

CS553 Lecture Lattice Theoretic Framework for DFA 25

Tuple of Lattices example

For reaching constants, how big is the tuple with
entry per variable for this example?

CS553 Lecture Lattice Theoretic Framework for DFA 26

2v´c, variables v and
constants c

Ç
Í
U
Æ

. . .

Reaching Constants, Various Ways to do Tuple of Lattices

Reaching Constants
– V:

– ⊓:

– ⊑:
– Top(⊤):
– Bottom (^):
– F:

Reaching Constants
– V:

– ⊓:

– ⊑:
– Top(⊤):
– Bottom (^):
– F:

2(C, C, …, C)

Ç
Í
U
Æ

. . .

CS553 Lecture Lattice Theoretic Framework for DFA 27

A Better Formulation of Reaching Definitions

Problem
– Reaching definitions gives you a set of definitions (nodes)
– Doesn’t tell you what variable is defined
– Expensive to find definitions of variable v

Solution
– Reformulate to include variable
e.g., Use a set of (var, def) pairs

x= a y= b

n in[n] = {(x,a),(y,b),...}

CS553 Lecture Lattice Theoretic Framework for DFA 28

Concepts
Lattices

– Conservative approximation
– Optimistic (initial guess)
– Data-flow analysis frameworks

– Initial in and/or out set
– Tuples of lattices

Next
– Iterative dataflow analysis, how do we know it works?

CS553 Lecture Lattice Theoretic Framework for DFA 29

Solving Data-Flow Analyses

Goal
– For a forward problem, consider all paths from the

entry to a given program point, compute the flow
values at the end of each path, and then meet these
values together

– Meet-over-all-paths (MOP) solution at each
program point

– ⊓all paths n1, n2, ..., ni (fni(...fn2(fn1(ventry))))

entry

ventry

CS553 Lecture Lattice Theoretic Framework for DFA 30

Solving Data-Flow Analyses (cont)

Problems
– Loops result in an infinite number of paths
– Statements following merge must be analyzed for all preceding paths

– Exponential blow-up

Solution
– Compute meets early (at merge points) rather than at the end
– Maximum fixed-point (MFP)

Questions
– Is this correct?
– Is this efficient?
– Is this accurate?

CS553 Lecture Lattice Theoretic Framework for DFA 31

Correctness

“Is vMFP correct?” º “Is vMFP ⊑ vMOP?”

Look at Merges

vMOP = Fr(vp1) ⊓ Fr(vp2)
vMFP = Fr(vp1 ⊓ vp2)
vMFP ⊑ vMOP º Fr(vp1 ⊓ vp2) ⊑ Fr(vp1) ⊓ Fr(vp2)

Observation
"x,yÎV

f(x ⊓ y) ⊑ f(x) ⊓ f(y) Û x ⊑ y Þ f(x) ⊑ f(y)

\ vMFP correct when Fr (really, the flow functions) are monotonic

p1 p2

vp2vp1

Fr

vMFP vMOP

CS553 Lecture Lattice Theoretic Framework for DFA 32

Monotonicity

Monotonicity: ("x,yÎV)[x ⊑ y Þ f(x) ⊑ f(y)]
– If the flow function f is applied to two members of V, the result of

applying f to the “lesser” of the two members will be under the result of
applying f to the “greater” of the two

– Giving a flow function more conservative inputs leads to more
conservative outputs (never more optimistic outputs)

Why else is monotonicity important?

For monotonic F over domain V

– The maximum number of times F can be applied to
self w/o reaching a fixed point is height(V) - 1

– IDFA is guaranteed to terminate if the flow
functions are monotonic and the lattice has finite
height

{}

{k}{j}{i}

{j,k}{i,k}{i,j}

{i,j,k}

CS553 Lecture Lattice Theoretic Framework for DFA 33

Efficiency

Parameters
– n: Number of nodes in the CFG
– k: Height of lattice
– t: Time to execute one flow function

Complexity
– O(nkt)

Example
– Reaching definitions?

CS553 Lecture Lattice Theoretic Framework for DFA 34

Reaching Defs Example

What is the height of the lattice?

How many passes over the nodes are necessary?

What if we visit the nodes in a non-optimal order?

CS553 Lecture Lattice Theoretic Framework for DFA 35

Accuracy

Distributivity
– f(u⊓v) = f(u) ⊓ f(v)
– vMFP ⊑ vMOP º Fr(vp1 ⊓ vp2) ⊑ Fr(vp1) ⊓ Fr(vp2)
– If the flow functions are distributive, MFP = MOP

Examples
– Reaching definitions?
– Reaching constants?

f(u ⊓ v) = f({x=2,y=3} ⊓ {x=3,y=2})
= f(Æ) = Æ

f(u) ⊓ f(v) = f({x=2,y=3}) ⊓ f({x=3,y=2})

= [{x=2,y=3,w=5} ⊓ {x=2,y=2,w=5}] = {w=5}
Þ MFP ¹ MOP

x = 2
y = 3

x = 3
y = 2

w=x+y

CS553 Lecture Lattice Theoretic Framework for DFA 36

Concepts
Lattices

– Conservative approximation
– Optimistic (initial guess)
– Data-flow analysis frameworks
– Tuples of lattices

Lattice Theoretic framework for common subexpression elimination

Data-flow analysis
– Fixed point
– Meet-over-all-paths (MOP)
– Maximum fixed point (MFP)
– Legal/safe/correct (monotonic)
– Efficient
– Accurate (distributive)

