## **Dominators, Loop Detection, and SSA**

#### Reminders

- Assignment 1 resubmit due on D2L by Thursday 11:59pm (tomorrow)
- Office hours today 3:30-4:30
- Reading assignment for next week has been posted, quiz questions will follow on piazza.

#### Last time

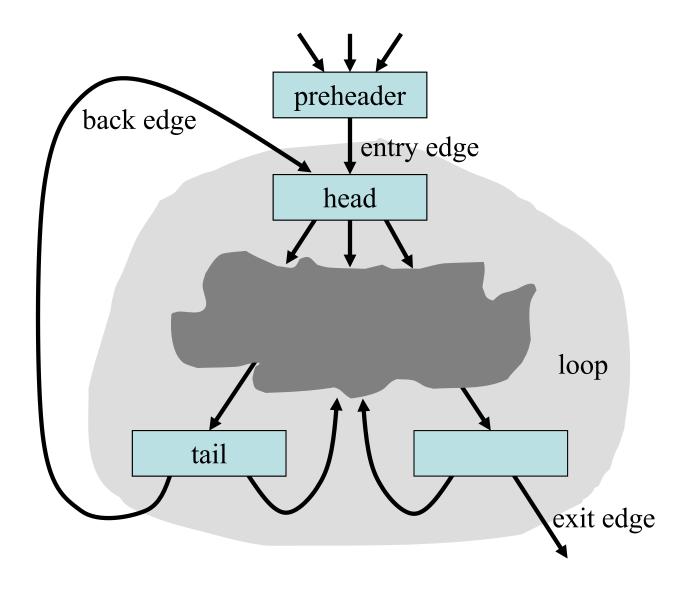
- Finishing up lattice-theoretic framework for data-flow analysis
- Control-flow analysis

## Today

- Loops
- Identifying loops using dominators

Strongly connected subgraph of CFG with a single entry point (header) Loop: Loop entry edge: Source not in loop & target in loop Source in loop & target not in loop Loop exit edge: Loop header node: Target of loop entry edge. Dominates all nodes in loop. Target is loop header & source is in the loop Back edge: **Natural loop:** Associated with each back edge. Nodes dominated by header and with path to back edge without going through header Loop tail node: Source of back edge Single node that's source of the loop entry edge Loop preheader node: Loop whose header is inside another loop **Nested loop**:

**Picturing Loop Terminology** 



## **The Value of Preheader Nodes**

#### Not all loops have preheaders

– Sometimes it is useful to create them

#### Without preheader node

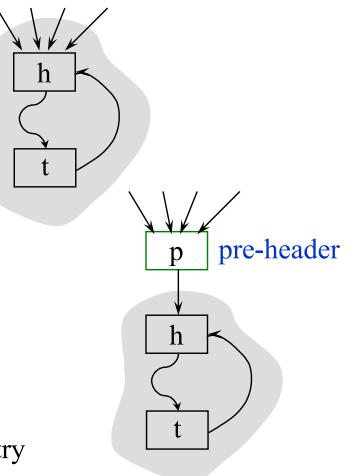
– There can be multiple entry edges

#### With single preheader node

- There is only one entry edge

#### Useful when moving code outside the loop

Don't have to replicate code for multiple entry edges



#### Why?

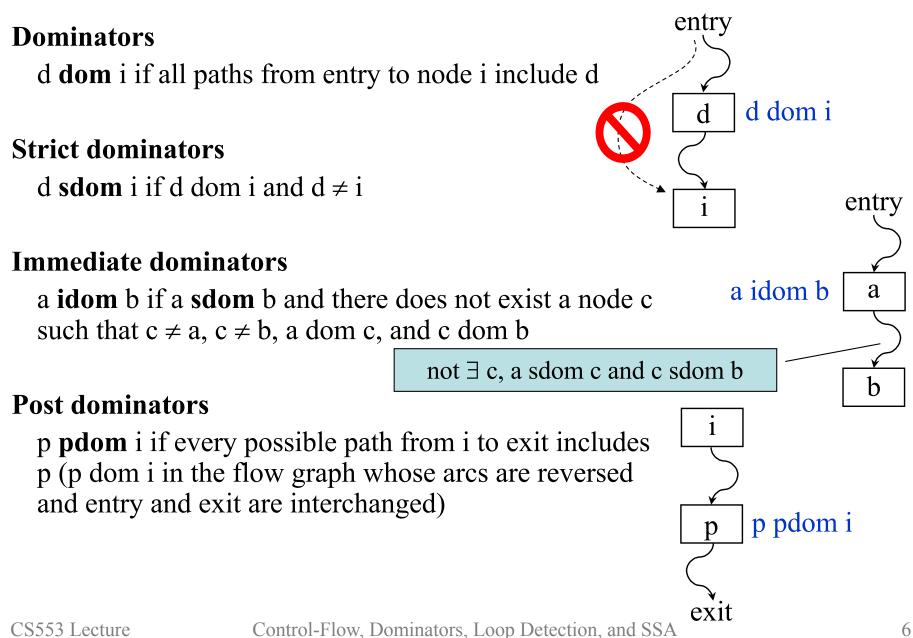
 Most execution time spent in loops, so optimizing loops will often give most benefit

#### Many approaches

- Interval analysis
  - Exploit the natural hierarchical structure of programs
  - Decompose the program into nested regions called intervals
- Structural analysis: a generalization of interval analysis
- Identify **dominators** to discover loops

#### We'll focus on the dominator-based approach

## **Dominator Terminology**



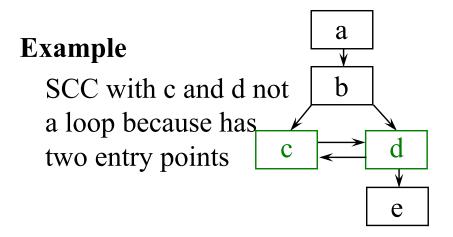
## **Identifying Natural Loops with Dominators**

#### **Back edges**

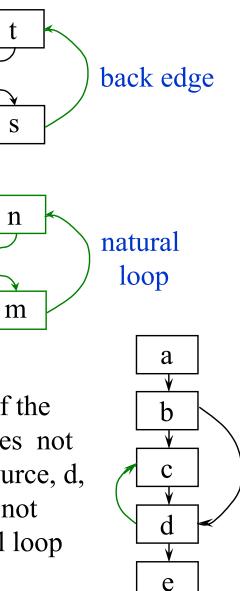
A **back edge** of a natural loop is one whose target dominates its source

## Natural loop

The **natural loop** of a back edge  $(m \rightarrow n)$ , where n dominates m, is the set of nodes x such that n dominates x and there is a path from x to m not containing n



The target, c, of the edge  $(d\rightarrow c)$  does not dominate its source, d, so  $(d\rightarrow c)$  does not define a natural loop



## **Computing Dominators**

**Input**: Set of nodes N (in CFG), CFG, and an entry node s **Output**: Dom[i] = set of all nodes that dominate node i

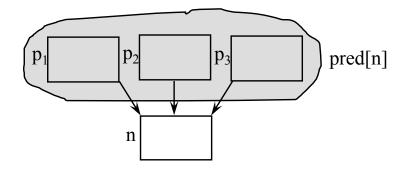
```
Dom[s] = \{s\}
for each n \in N - \{s\}
Dom[n] = N
```

#### repeat

change = false  
for each 
$$n \in N - \{s\}$$
  
 $D = \{n\} \cup (\bigcap_{p \in pred(n)} Dom[p])$   
if  $D \neq Dom[n]$   
change = true  
 $Dom[n] = D$ 

#### Key Idea

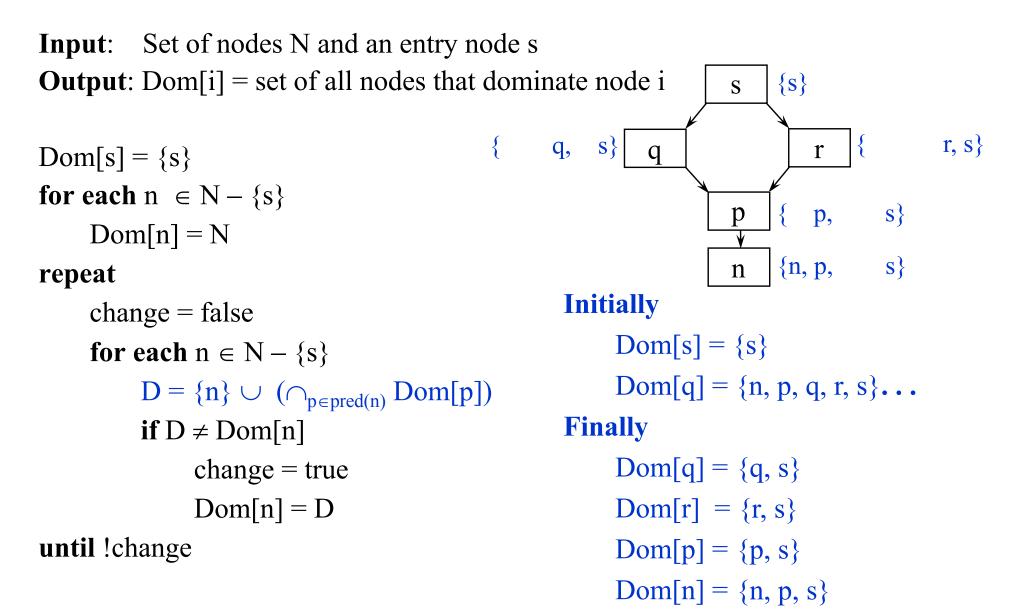
If a node dominates all predecessors of node n, then it also dominates node n



until !change

 $x \in Dom(p_1) \land x \in Dom(p_2) \land x \in Dom(p_3) \Rightarrow x \in Dom(n)$ 

## **Computing Dominators (example)**



CS553 Lecture

## **Recall SSA, Another use of dominator information**

#### Advantage

- Allow analyses and transformations to be simpler & more efficient/effective

#### Disadvantage

- May not be "executable" (requires extra translations to and from)
- May be expensive (in terms of time or space)

#### Process



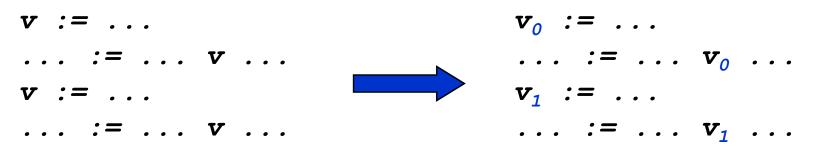
#### Idea

- Each variable has only one static definition
- Makes it easier to reason about values instead of variables
- Similar to the notion of functional programming

### **Transformation to SSA**

- Rename each definition
- Rename all uses reached by that assignment

## Example

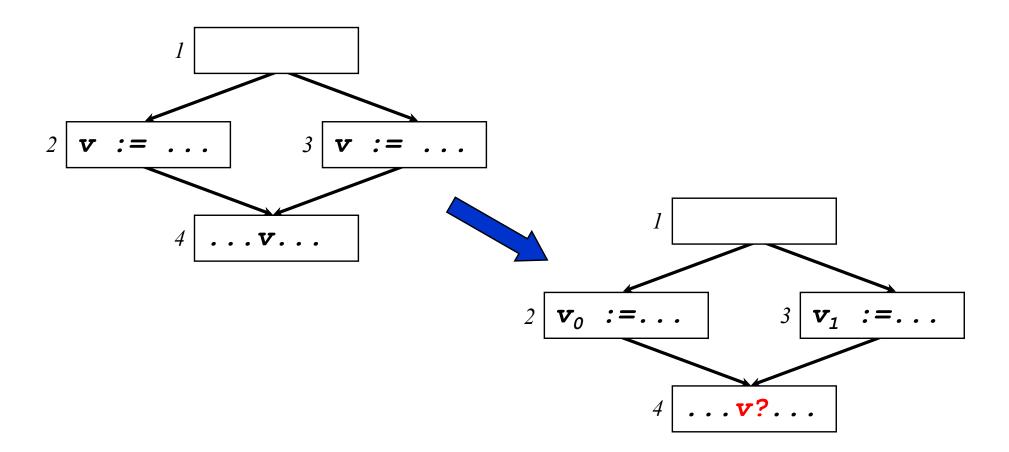


#### What do we do when there's control flow?

CS553 Lecture

#### Problem

– A use may be reached by several definitions

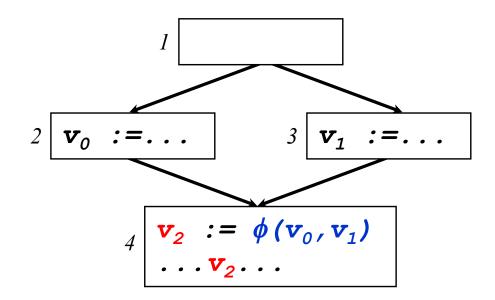


## SSA and Control Flow (cont)

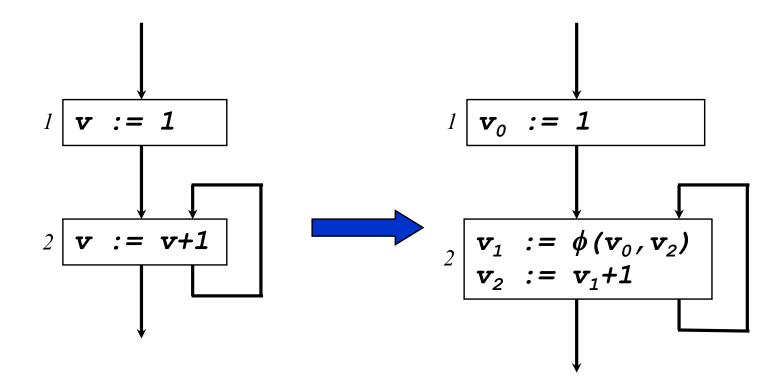
#### **Merging Definitions**

 $-\phi$ -functions merge multiple reaching definitions

#### Example



## **Another Example**



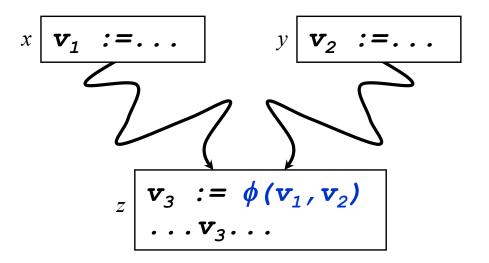
**Transformation to SSA Form** 

#### **Two steps**

- Insert  $\phi$ -functions
- Rename variables

#### **Basic Rule**

 If two distinct (non-null) paths x→z and y→z converge at node z, and nodes x and y contain definitions of variable v, then a φ-function for v is inserted at z



#### **Recall Dominators**

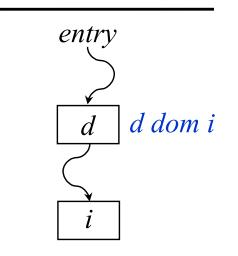
- d dom i if all paths from entry to node i include d
- d **sdom** i if d dom i and  $d\neq i$

#### **Dominance Frontiers**

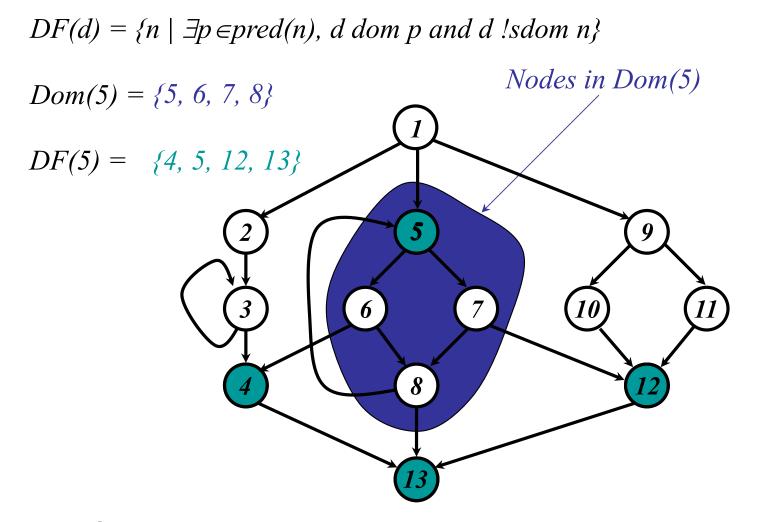
- The dominance frontier of a node d is the set of nodes that are "just barely" not dominated by d; i.e., the set of nodes n, such that
  - d dominates a predecessor p of n, and
  - d does **not** strictly dominate n
- $DF(d) = \{n \mid \exists p \in pred(n), d \text{ dom } p \text{ and } d !sdom n\}$

#### **Notational Convenience**

- DF(S)  $= \bigcup_{n \in S}$  DF(n)

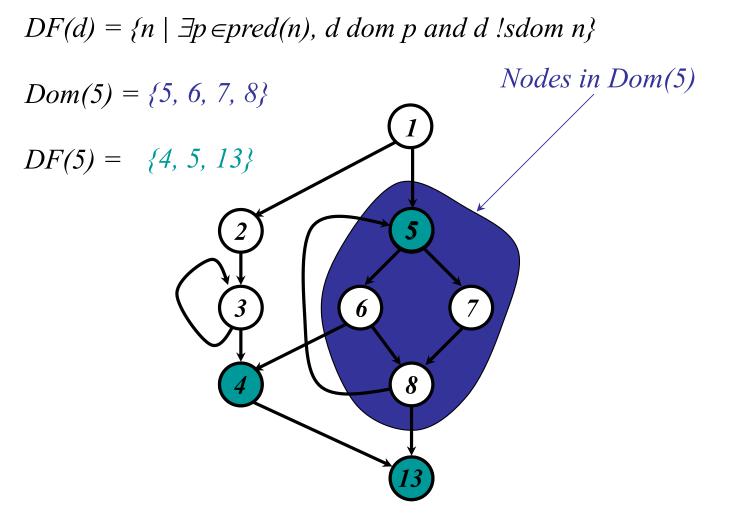


## **Dominance Frontier Example**



What's significant about the Dominance Frontier?In SSA form, definitions must dominate usesCS553 LectureControl-Flow, Dominators, Loop Detection, and SSA

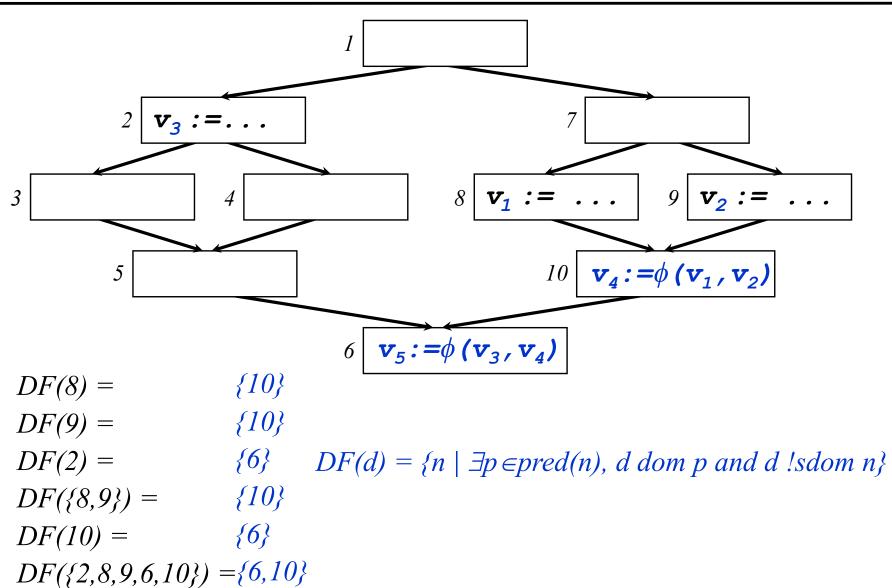
## **Dominance Frontier Example II**



In this graph, node 4 is the first point of convergence between the entry and node 5, so do we need a  $\phi$ -function at node 13?

CS553 Lecture

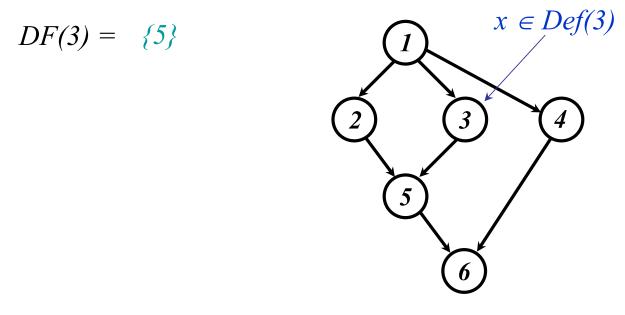
## **SSA Exercise**



See <a href="http://www.hipersoft.rice.edu/grads/publications/dom14.pdf">http://www.hipersoft.rice.edu/grads/publications/dom14.pdf</a> for a more thorough description of DF.CS553 LectureControl-Flow, Dominators, Loop Detection, and SSA20

## **Dominance Frontiers Revisited**

Suppose that node 3 defines variable x



Do we need to insert a  $\phi$ -function for x anywhere else?

Yes. At node 6. Why?

## **Dominance Frontiers and SSA**

#### Let

- $DF_1(S) = DF(S)$
- $DF_{i+1}(S) = DF(S \cup DF_i(S))$

#### **Iterated Dominance Frontier**

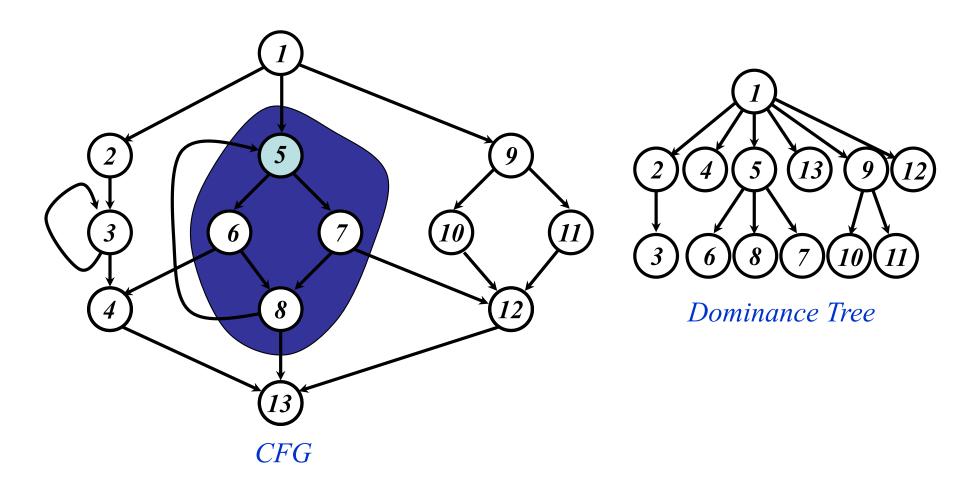
 $- DF_{\infty}(S)$ 

#### Theorem

– If S is the set of CFG nodes that define variable v, then  $DF_{\infty}(S)$  is the set of nodes that require  $\phi$ -functions for v

## **Dominance Tree Example**

*The dominance tree shows the dominance relation* 



## **Inserting Phi Nodes**

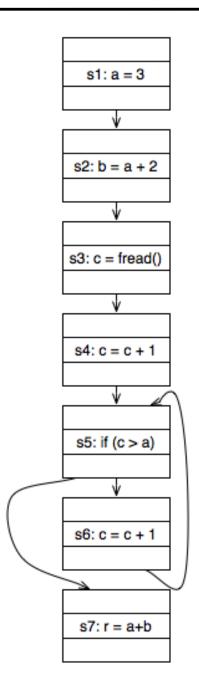
#### **Calculate the dominator tree**

a lot of research has gone into calculating this quickly

#### **Computing dominance frontier from dominator tree**

- DF<sub>local</sub>[n]= successors of n (in CFG) that are not strictly dominated by n
- DF<sub>up</sub>[n]= nodes in the dominance frontier of n that are not strictly dominated by n's immediate dominator

$$- DF[n] = DF_{local}[n] \cup \bigcup_{c \in children[n]} DF_{up}[c]$$



CS553 Lecture

## Algorithm for Inserting $\phi$ -Functions

| for each variable v                                                                                                         |                                             |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| WorkList $\leftarrow \emptyset$                                                                                             |                                             |
| $EverOnWorkList \leftarrow \emptyset$                                                                                       |                                             |
| AlreadyHasPhiFunc $\leftarrow \emptyset$                                                                                    |                                             |
| for each node n containing an assignment to v                                                                               | Put all defs of v on the worklist           |
| WorkList $\leftarrow$ WorkList $\cup \{n\}$                                                                                 |                                             |
| $EverOnWorkList \leftarrow WorkList$                                                                                        |                                             |
| while WorkList $\neq \emptyset$                                                                                             |                                             |
| Remove some node n for WorkList                                                                                             |                                             |
| for each $d \in DF(n)$                                                                                                      |                                             |
| if d ∉ AlreadyHasPhiFunc                                                                                                    | Insert at most one $\phi$ function per node |
| Insert a $\phi$ -function for v at d                                                                                        |                                             |
| AlreadyHasPhiFunc $\leftarrow$ AlreadyHasPhiFunc $\cup$ {d}                                                                 |                                             |
| <b>if</b> d ∉ EverOnWorkList                                                                                                | Process each node at most once              |
| WorkList $\leftarrow$ WorkList $\cup \{d\}$                                                                                 |                                             |
| EverOnWorkList $\leftarrow$ EverOnWorkList $\cup \{d\}$<br>CS553 LectureControl-Flow, Dominators, Loop Detection, and SSA25 |                                             |

**Transformation to SSA Form** 

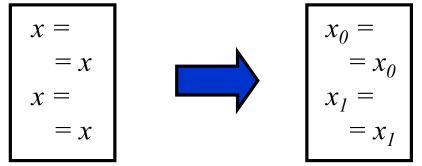
#### **Two steps**

- Insert  $\phi$ -functions
- Rename variables

#### **Basic idea**

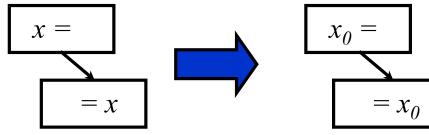
- When we see a variable on the LHS, create a new name for it
- When we see a variable on the RHS, use appropriate subscript

Easy for straightline code



## Use a stack when there's control flow

- For each use of *x*, find the definition of *x* that dominates it



*Traverse the dominance tree* 

CS553 Lecture

#### **Data Structures**

- Stacks[v]  $\forall v$ 

Holds the subscript of most recent definition of variable v, initially empty

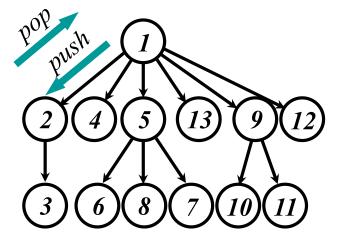
- Counters[v]  $\forall v$ 

Holds the current number of assignments to variable v; initially 0

#### **Auxiliary Routine**

procedure GenName(variable v)

```
i := Counters[v]
push i onto Stacks[v]
Counters[v] := i + 1
```



Use the Dominance Tree to remember the most recent definition of each variable

## Variable Renaming Algorithm

```
procedure Rename(block b)
   if b previously visited return
                                                   Call Rename(entry-node)
   for each statement s in b (in order)
      for each variable v \in RHS(s) (except for \phi-functions)
         replace v by v_i, where i = Top(Stacks[v])
      for each variable v \in LHS(s)
         GenName(v) and replace v with v_i, where i=Top(Stack[v])
   for each s \in succ(b) (in CFG)
      i \leftarrow position in s' s \phi-function corresponding to block b
      for each \phi-function p in s
         replace the j<sup>th</sup> operand of RHS(p) by v_i, where i = Top(Stack[v])
                                                                                    \Phi(,,)
                                             Recurse using Depth First Search
   for each s \in child(b) (in DT)
      Rename(s)
                                             Unwind stack when done with this node
   for each \phi-function or statement t in b
      for each v_i \in LHS(t)
         Pop(Stack[v])
```

## **Transformation from SSA Form**

#### Proposal

- Restore original variable names (*i.e.*, drop subscripts)
- Delete all  $\phi$ -functions

## Complications (the proposal doesn't work!)

- What if versions get out of order? (simultaneously live ranges)

# $\begin{array}{rcl} \mathbf{x}_0 &= & \\ \mathbf{x}_1 &= & \\ &= & \mathbf{x}_0 \\ &= & \mathbf{x}_1 \end{array}$

#### Alternative

- *–Perform dead code elimination (to prune \phi-functions)*
- -Replace  $\phi$ -functions with copies in predecessors
- -*Rely on register allocation coalescing to remove unnecessary copies*

#### Reading

 Advanced Compiler Optimizations for Supercomputers by Padua and Wolfe

#### Lecture

- Dependencies in loops
- Parallelization and Performance Optimization of Applications