
Published in Cryptologia, XXVI (4), 2002.

Mini Advanced Encryption Standard
(Mini-AES):

A Testbed for Cryptanalysis Students

Raphael Chung-Wei Phan

ADDRESS: Swinburne Sarawak Institute of Technology, 1st Floor, State Complex, 93576 Kuching,

Sarawak, Malaysia. rphan@swinburne.edu.my

ABSTRACT: In this paper, we present a mini version of Rijndael, the symmetric-key block cipher

selected as the Advanced Encryption Standard (AES) recently. Mini-AES has all the
parameters significantly reduced while at the same time preserving its original structure. It is
meant to be a purely educational cipher and is not considered secure for actual applications.
The purpose is such that once undergraduate students and amateur cryptanalysts have grasped
the basic principles behind how Mini-AES works, it will be easy for them to move on to the
real AES. At the same time, an illustration of how the Square attack can be applied to Mini-
AES is presented in the hope that Mini-AES would also serve as a testbed for students to
begin their cryptanalysis efforts.

KEYWORDS: Advanced Encryption Standard, Rijndael, Block cipher, Cryptanalysis, Square attack

1 Introduction

The National Institute of Standards and Technology (NIST) issued in 1997 a call for
proposals for the Advanced Encryption Standard (AES) [7]. Twenty one proposals were
submitted, out of which 15 were accepted. Two years later, after undergoing public review
and analysis, the list was narrowed down to 5 finalists, and more extensive analysis ensued.
In October 2000, Rijndael emerged as the winner and was selected as the Advanced
Encryption Standard [8]. The specifications of the AES are now available as a Federal
Information Processing Standard (FIPS) [9].
 The AES has a block size of 128 bits, and supports key sizes of 128, 192 and 256 bits.
The number of rounds is 10, 12 or 14 for the three different key sizes respectively. Just like
the DES, the AES is expected to draw much attention from cryptographers and cryptanalysts
alike within the space of time from now until the next few decades. In order to aid
undergraduate cryptography students and aspiring cryptanalysts in better understanding the
internal workings of the AES, we present a mini version of the AES, with all the parameters
significantly reduced while preserving its original structure. This mini version is purely
educational and hence it is hoped to aid students in grasping the underlying concepts in the
design of Rijndael-like ciphers and also to serve as a testbed for aspiring cryptanalysts to try
out various cryptanalytic attacks.
 In section 2, we present the mathematical background to help the student in
understanding the components of Mini-AES. We then proceed to describe Mini-AES in
Section 3. In Section 4, we relate Mini-AES to the real AES. The Square attack, a fairly new
cryptanalytic attack popularised by Rijndael is presented in detail in Section 5. We conclude
in Section 6.

2 Mathematical Background

Mini-AES has a component, NibbleSub, which operates on a nibble (4 bits) at a time. In
addition, another component, MixColumn operates on words of 4 nibbles. In this section, we

Published in Cryptologia, XXVI (4), 2002.

present the mathematical background needed for the reader to have a clearer understanding of
the components of Mini-AES.

2.1 The Finite Field GF(24)

The nibbles of Mini-AES can be thought of as elements in the finite field GF(24). Finite
fields have the special property that operations (+,−, × and ÷) on the field elements always
cause the result to be also in the field. Consider a nibble n = (n3, n2, n1, n0) where ni ∈ {0,1}.
Then, this nibble can be represented as a polynomial with binary coefficients i.e having
values in the set {0,1}:

n = n3 x3 + n2 x2 + n1 x + n0

Example 1
Given a nibble, n = 1011, then this can be represented as

n = 1 x3 + 0 x2 + 1 x + 1 = x3 + x + 1
�

Note that when an element of GF(24) is represented in polynomial form, the resulting
polynomial would have a degree of at most 3.

2.2 Addition in GF(24)

When we represent elements of GF(24) as polynomials with coefficients in {0,1}, then
addition of two such elements is simply addition of the coefficients of the two polynomials.
Since the coefficients have values in {0,1}, then the addition of the coefficients is just modulo
2 addition or exclusive-OR denoted by the symbol ⊕ . Hence, for the rest of this paper, the
symbols + and ⊕ are used interchangeably to denote addition of two elements in GF(24).

Example 2
Given two nibbles, n = 1011 and m = 0111, then the sum, n + m = 1011 + 0111 = 1100 or in
polynomial notation:

n + m = (x3 + x + 1) + (x2 + x + 1) = x3 + x2
�

2.3 Multiplication in GF(24)

Multiplication of two elements of GF(24) can be done by simply multiplying the two
polynomials. However, the product would be a polynomial with a degree possibly higher
than 3.

Example 3
Given two nibbles, n = 1011 and m = 0111, then the product is:

(x3 + x + 1) (x2 + x + 1) = x5 + x4 + x3 + x3 + x2 + x + x2 + x + 1
 = x5 + x4 + 1

�

In order to ensure that the result of the multiplication is still within the field GF(24), it must be
reduced by division with an irreducible polynomial of degree 4, the remainder of which will
be taken as the final result. An irreducible polynomial is analogous to a prime number in
arithmetic, and as such a polynomial is irreducible if it has no divisors other than 1 and itself.
There are many such irreducible polynomials, but for Mini-AES, it is chosen to be:

m(x) = x4 + x + 1

Published in Cryptologia, XXVI (4), 2002.

Example 4
Given two nibbles, n = 1011 and m = 0111, then the final result after multiplication in GF(24),
called the ‘product of n × m modulo m(x)’ and denoted as ⊗ , is:

(x3 + x + 1) ⊗ (x2 + x + 1) = x5 + x4 + 1 modulo x4 + x + 1
= x2

This is because:

 x + 1 (quotient)
 x4 + x + 1  x5 + x4 + 1

 + x5 + x2 + x
 x4 + x2 + x + 1

 + x4 + x + 1
 x2 (remainder)

Note that since the coefficients of the polynomials are in {0,1}, then addition is simply
exclusive-OR and hence subtraction is also exclusive-OR since exclusive-OR is its own
inverse.

�

Refer to the Appendix for the table describing the multiplication of two elements in GF(24)
modulo x4 + x + 1.

3 Mini-AES

In order to encrypt messages with Mini-AES, the original input message, called the plaintext
is broken up into blocks of 16 bits each. At any one time, only one plaintext block is
encrypted with Mini-AES into ciphertext, after which the next plaintext block is encrypted
and the process repeats until all of the plaintext blocks have been encrypted. Mini-AES
encryption is done with a secret key of 16 bits. Figure 1 illustrates the process of encrypting
the plaintext message with Mini-AES.

Figure 1:

…

M
e

s s

s

This is an
Encrypting A

ini-AES
ncryption

s

example of
…

Mini-AES
encryption

…
áÃŽ¶ÿæÌ
16 bit
*Þé¿±æå~
•
 •
P

16 bit
s
16 bit
 16 bit
Password
16 bit
t
Ciphertex

l

Plaintext
Secret key
aintext Message with Mini-AES

Published in Cryptologia, XXVI (4), 2002.

3.1 Mini-AES Components

To make it easier to describe the internal process of the Mini-AES encryption, the input
plaintext block of 16 bits, P = (p0, p1, p2, p3) is represented as a matrix of 2 rows and 2
columns of 4 bits (a nibble), as given in Figure 2.

 p0 p1 p2 p3

Bit

0

Bit

1

Bit

2

Bit

3

Bit

4

Bit

5

Bit

6

Bit

7

Bit

8

Bit

9

Bit

10

Bit

11

Bit

12

Bit

13

Bit

14

Bit

15

P =

Figure 2: 2 × 2 Matrix Representation of the 16-bit Block

 Within the Mini-AES encryption process, there are 4 main components, namely
NibbleSub, ShiftRow, MixColumn and KeyAddition. The application of these 4 components in
sequence constitutes a round of Mini-AES.

3.2 NibbleSub, γγγγ

NibbleSub is a simple operation that substitutes each input nibble with an output nibble
according to a 4 × 4 substitution table (S-box), as given in Table 1. The values in Table 1 are
in fact taken from the 1st row of the first S-box in DES.

Input Output Input Output
0000 1110 1000 0011
0001 0100 1001 1010
0010 1101 1010 0110
0011 0001 1011 1100
0100 0010 1100 0101
0101 1111 1101 1001
0110 1011 1110 0000
0111 1000

1111 0111

Table 1: S-box of Mini-AES

The NibbleSub operation is illustrated in Figure 3, where A = (a0, a1, a2, a3) is the input
block and B = (b0, b1, b2, b3) is the output.

Figure 3: The NibbleSub Operation

p0 p2

p1 p3

NibbleSub
a0 a2

a1 a3

b0 b2

b1 b3

Published in Cryptologia, XXVI (4), 2002.

Example 5
For an input nibble, a0 = 1111, then based on Table 1, the output nibble is b0 = 0111.

�

3.3 ShiftRow, ππππ

ShiftRow rotates each row of the input block to the left by different nibble amounts. The first
row is unchanged while the second row is rotated left by one nibble. This is illustrated in
Figure 4, where B = (b0, b1, b2, b3) and C = (c0, c1, c2, c3) are the input and output
respectively.

Exam
With
c1 , c2

3.4

MixC
obtai
denot

Exam
Let a
(d0 ,
takin
outpu

Henc

ShiftRow =

b0 b2

b1 b3
Figure 4: The ShiftRo

ple 6
 an input block B = (b0 , b1 , b2 , b3), the output bl
 , c3) = (b0 , b3 , b2 , b1).

MixColumn, θθθθ

olumn takes each column of the input block and
n a new output column, as given in Figure 5. C
e the input and output respectively.

Figure 5: The MixColu

ple 7
n input block be C = (c0 , c1 , c2 , c3), and the blo
d1 , d2 , d3). We rearrange the input block as a 2
g the first column and multiplying it with the co
t column:

e, d0 = (0011⊗ c0) + (0010⊗ c1) and d1 = (0010

MixColum

d0
d1

0011 0010
0010 0011=

d0
d1

c0
c1

3 2
2 3 = andwhere
b0 b2

b3 b1
w Operation

ock obtained

 multiplies it
= (c0, c1, c2, c

mn Operation

ck at the outp
× 2 matrix as
nstant matrix

⊗ c0) + (0011

n

c0
c1

d2
d3

3
2 =
after S

with a
3) and

ut of M
shown
in Fig

⊗ c1)

 2
 3
c0 c2

c1 c3
hiftRow is C = (c0 ,

�

 constant matrix to
 D = (d0, d1, d2, d3)
c0 c2

c1 c3
d0 d2

d1 d3
ixColumn be D =
 in Figure 5. Then,
ure 5, we have the

c2
c3

Published in Cryptologia, XXVI (4), 2002.

Similarly, taking the second column and multiplying it with the constant matrix, we obtain:

Hence, d2 = (0011⊗ c2) + (0010⊗ c3) and d3 = (0010⊗ c2) + (0011⊗ c3). We see that each
output nibble is a function of the two input nibbles in that same column.

�

3.5 KeyAddition, σσσσKi

KeyAddition causes each bit of the input block, D = (d0, d1, d2, d3) to be exclusived-ORed
with the corresponding bit of the ith round key, Ki = (k0, k1, k2, k3) to obtain the 16-bit output
block E = (e0, e1, e2, e3) as shown in Figure 6. The round key is derived from the secret key,
K by using the key schedule, which will be described in Section 3.6. For each bit, the
exclusive-OR operation causes the output bit to be ‘1’ if the corresponding bits of the input
block and round key are different. Otherwise, the output bit is ‘0’.

Example 8
Given an input blo
(k0 , k1 , k2 , k3) =

E

3.6 The Min

In Mini-AES, the
round key, K0 to
round of Mini-AE
keys, K0, K1 and K

R

⊕ =

d2
d3

0011 0010
0010 0011=

c2
c3
d0 d2

d1 d3
Figure 6:

ck be D = (d0 , d1 ,
 0101 0011 1111 00
 = D ⊕ Ki = 111

= 101

i-AES Key-schedu

 16-bit secret key is
be used prior to the
S. Mini-AES encr
2 are generated.

ound
0

1

2

Table 2: Generati
k0 k2

k1 k3
The KeyAdditio

d2 , d3) = 1111 000
00, then the outpu
1 0000 1010 1100
0 0011 0101 1100

le

 passed through a
first round, and a
yption is defined

Round
 w0 = k0
 w1 = k1
 w2 = k2
 w3 = k3
 w4 = w0 ⊕ NibbleS
 w5 = w1 ⊕ w4
 w6 = w2 ⊕ w5
 w7 = w3 ⊕ w6
 w8 = w4 ⊕ NibbleS
 w9 = w5 ⊕ w8
 w10 = w6 ⊕ w9
 w11 = w7 ⊕ w10

on of the Round K
e0 e2

e1 e3
n Operation

0 1010 1100, and the round key Ki =
t block, E = (e0 , e1 , e2 , e3) is:
 ⊕ 0101 0011 1111 0000

�

 key-schedule to produce one 16-bit
 16-bit round key, Ki for use in each
to have 2 rounds, hence three round

 Key Values

ub(w3) ⊕ rcon(1)

ub(w7) ⊕ rcon(2)

eys of Mini-AES

Published in Cryptologia, XXVI (4), 2002.

Denote the 16-bit secret key, K as 4 nibbles, K = (k0, k1, k2, k3), and likewise, K0 =
(w0, w1, w2, w3), K1 = (w4, w5, w6, w7) and K2 = (w8, w9, w10, w11). Then, the round key
values are obtained from the secret key as in Table 2. Note that in each round, round
constants rcon(i) are used, where rcon(1) = 0001 and rcon(2) = 0010.

3.7 Example Mini-AES Encryption

The application of the four components NibbleSub, ShiftRow, MixColumn and KeyAddition in
sequence constitutes one round. The full Mini-AES encryption consists of two such rounds,
with the exclusion of MixColumn from the last round and the inclusion of an extra
KeyAddition prior to the first round. Hence, Mini-AES encryption can be denoted by:

Mini-AESEncrypt = σK2 ο π ο γ ο σK1 ο θ ο π ο γ ο σK0

Note that the symbol ο refers to the composition of functions and the order of execution is
from right to left, which means that σK0 is executed first. Figure 7 provides a pictorial view
of Mini-AES encryption.

Figure 7: The Mini-AES Encryption Process

Example 9
To provide an illustrative example for the student, suppose that the input 16-bit plaintext
block is P = 1001 1100 0110 0011. Expressed as a matrix of 2 × 2 of nibbles, it is then

P =

Suppose also that the secret key, K = 11
matrix.

K =

Firstly, the round keys are derived from t

Derivation of the Round Keys
K0 = (w0, w1, w2, w3) = (k0, k1, k2, k3) = K
K1 = (w4, w5, w6, w7) is calculated as foll

w4 = w0 ⊕ NibbleS
 = 1100 ⊕ Nibbl
 = 1100 ⊕ 1110 ⊕
 = 0011
w5 = w1 ⊕ w4

 S

 S

b w n
1001 0110

1100 0011
00 0011 1111 0000. This is also expressed as a 2 × 2
1100 1111

0011 0000

Plaintext
he secret key, K by way

 = 1100 0011 1111 0000
ows:
ub(w3) ⊕ 0001
eSub(0000) ⊕ 0001

 0001
Ciphertext
NibbleSu
 ShiftRo
 MixColumn
 KeyAdditio
of the key schedule.

Published in Cryptologia, XXVI (4), 2002.

 = 0011 ⊕ 0011
 = 0000
w6 = w2 ⊕ w5
 = 1111 ⊕ 0000
 = 1111
w7 = w3 ⊕ w6
 = 0000 ⊕ 1111
 = 1111

K2 = (w8, w9, w10, w11) is calculated as follows:
w8 = w4 ⊕ NibbleSub(w7) ⊕ 0010
 = 0011 ⊕ NibbleSub(1111) ⊕ 0010
 = 0011 ⊕ 0111 ⊕ 0010
 = 0110
w9 = w5 ⊕ w8
 = 0000 ⊕ 0110
 = 0110
w10 = w6 ⊕ w9
 = 1111 ⊕ 0110
 = 1001
w11 = w7 ⊕ w10
 = 1111 ⊕ 1001
 = 0110

Encryption of the Plaintext
Next, we proceed with encryption. Given plaintext, P = 1001 1100 0110 0011, then after the
first KeyAddition with the 0th round key, K0, the output is

A = P ⊕ K0 = 1001 1100 0110 0011 ⊕ 1100 0011 1111 0000
 = 0101 1111 1001 0011

Round 1
 After NibbleSub, the output is
 B = NibbleSub(0101), NibbleSub(1111), NibbleSub(1001), NibbleSub(0011)
 = 1111 0111 1010 0001

After ShiftRow, the output is
 C = ShiftRow (1111 0111 1010 0001)
 = 1111 0001 1010 0111

MixColumn is a bit more involved. The input block is rearranged as a 2 × 2 matrix,
hence:

C =

Taking the first column and multiplying it with the constant matrix, we get:

1111 1010

0001 0111

d0
d1

1111
0001

0011 0010
0010 0011=

(0011 ⊗ 1111) ⊕ (0010 ⊗ 0001)
(0010 ⊗ 1111) ⊕ (0011 ⊗ 0001)

=

0010 ⊕ 0010
1101 ⊕ 0011

=

Published in Cryptologia, XXVI (4), 2002.

Taking the second column and multiplying it with the constant matrix, we get:

Therefore, the output after MixColumn is

D =

or D = 0000

After KeyAddition with K1, the ou
E = D ⊕ K1 = 0000 1110 0011
 = 0011 1110 1100

Round 2
 After NibbleSub, the output is
 F = NibbleSub(0011), Nibbl
 = 0001 0000 0101 0100

After ShiftRow, the output is
 G = ShiftRow (0001 0000 01
 = 0001 0100 0101 0000

Note that in the last round, there is
H = G ⊕ K2 = 0001 0100 0101
 = 0111 0010 1100

Therefore, the final ciphertext is H = 0111

3.8 Mini-AES Decryption

In order to get back the original plaint
performed on the ciphertext. This is called
of encryption, then

Mini-AESDecrypt = (σK2 ο π

= 0000
1110

d2
d3

1010
0111

0011 0010
0010 0011=

= 0011
1110

(0011 ⊗ 1010) ⊕ (0010 ⊗ 0111)
(0010 ⊗ 1010) ⊕ (0011 ⊗ 0111)

=

1101 ⊕ 1110
0111 ⊕ 1001

=

0000 0011

1110 1110
1110 0011 1110

tput is
 1110 ⊕ 0011 0000 1111 1111
 0001

eSub(1110), NibbleSub(1100), NibbleSub(0001)

01 0100)

 no MixColumn. After KeyAddition, the output is
 0000 ⊕ 0110 0110 1001 0110
 0110

 0010 1100 0110
�

ext, the reverse process of encryption must be
 decryption. Noting that decryption is the inverse

ο γ ο σK1 ο θ ο π ο γ ο σK0) –1

Published in Cryptologia, XXVI (4), 2002.

= σK0
-1 ο γ -1 ο π -1 ο θ -1 ο σK1

 -1 ο γ -1 ο π -1 ο σK2
-1

= σK0 ο γ -1 ο π ο θ ο σK1 ο γ -1 ο π ο σK2

We arrive at this expression since σKi is an XOR operation, which is its own inverse. We
have also specially chosen the constant matrix in MixColumn, θ such that the inverse of
MixColumn, θ -1 is the same as MixColumn itself. Since ShiftRow simply causes the second
row to be rotated left by one nibble amount, then the inverse of ShiftRow, π -1 causes the
second row to be rotated right by one nibble. Rotating the nibble left or right are one and the
same operation because one row only has two nibbles, therefore inverse ShiftRow is the same
as ShiftRow. NibbleSub is a nibble substitution operation based on Table 1. The inverse of
Table 1 is easily computed by interchanging the input nibble with the output nibble, and then
resorting it based on the new input nibble, as given in Table 3 below.

Input Output Input Output
0000 1110 1000 0111
0001 0011 1001 1101
0010 0100 1010 1001
0011 1000 1011 0110
0100 0001 1100 1011
0101 1100 1101 0010
0110 1010 1110 0000
0111 1111

1111 0101

Table 3: Inverse S-box of Mini-AES

Example 10
For an input nibble, a0 = 1111, then based on Table 1, the output nibble is b0 = 0111. To get
back the original nibble a0 given the value of b0, we use the inverse of Table 1, which is Table
3. Referring to Table 3, then given the input b0 = 0111, the output is a0 = 1111.

�

Observe also that the order in which inverse NibbleSub, γ -1 and ShiftRow, π is
carried out is not important, since inverse NibbleSub operates on each individual nibble
whereas ShiftRow simply shifts the nibbles around. Hence, the final expression for Mini-
AES decryption is:

Mini-AESDecrypt = σK0 ο π ο γ -1 ο θ ο σK1 ο π ο γ -1 ο σK2

 Comparing the expression for decryption and encryption, we see that they are similar
in structure, except that the round keys and the round constants are applied in reverse order,
and the NibbleSub component is replaced by its inverse.

As an exercise, the student can try by pen and paper to decrypt the ciphertext, H
obtained in Example 9 to get back the original plaintext, P.

4 The Advanced Encryption Standard (AES)

In this section, we relate Mini-AES to the actual Advanced Encryption Standard (AES).
Instead of having a block of 16 bits, the AES is a 128-bit block cipher, and supports secret
key sizes of 128, 192 or 256 bits. We will describe the details of the AES with reference to a
128-bit key. The other variants are similar in nature.
 The 128-bit block of the AES is expressed as a matrix of 4 × 4 bytes, in contrast to
Mini-AES being expressed as a matrix of 2 × 2 nibbles.
 AES consists of 10 rounds, where each round is similar to the round of Mini-AES,
with the last round having no MixColumn. There is also a KeyAddition prior to the first

Published in Cryptologia, XXVI (4), 2002.

round. The purpose of the extra KeyAddition and the omission of MixColumn is so that
encryption and decryption of the AES would be similar in structure, and this simplifies
implementation. The same basic hardware can then be used for both encryption and
decryption.

The round components of the AES are ByteSub, ShiftRow, MixColumn and
KeyAddition. ByteSub is similar to NibbleSub, but operates on one byte instead of one
nibble. Likewise, ShiftRow rotates each row of the input block to the left by different byte
amounts. The first row is unchanged, the second rotated left by 1 byte, the third by 2 and the
fourth by 3. MixColumn takes each column of the input block and multiplies it with a
constant 4 × 4 matrix. KeyAddition is similar to that of Mini-AES.

The usage of the various round components of the AES follow the Wide Trail
Strategy [3], where every component has its own purpose. ByteSub provides the non-
linearity that is vital for the security of any block cipher. ShiftRow and MixColumn provide
the linear mixing component that ensures very high diffusion over multiple rounds.
KeyAddition allows the secret key bits to influence the encryption process.

The Mini-AES key schedule takes the 16-bit secret key and expresses it as a group of
four nibbles. Meanwhile, the AES key schedule takes the 128-bit secret key and expresses it
as a group of four 32-bit words. The 0th round key, K0 equals the secret key itself while each
subsequent round key is derived from the secret key in almost the same way as Mini-AES.
Further details of the AES can be found online at [9] and in a book [3].

5 The Square Attack

The structure of the AES is derived from its predecessor, the block cipher Square [2]. It is
susceptible to a dedicated attack that was first developed on Square, also called the Square
attack. In order to demonstrate to the student how the attack works on the AES, we will apply
it on Mini-AES.

First, we extend the number of rounds of Mini-AES to 4 so that it is not too trivial to
apply the Square attack on it. Let’s suppose we have a set of 16 plaintexts, Pi (i = 0 to 15)
such that they are equal in all nibbles except in one nibble where they have all the 16 possible
different values. We will call this a delta set. The nibbles that have the same values for all 16
plaintexts in the set are called the passive nibbles whereas the nibble with all 16 possible
values is called the active nibble.

Example 11
Let P0 = 0000 0101 1010 1111

P1 = 0001 0101 1010 1111
P2 = 0010 0101 1010 1111
P3 = 0011 0101 1010 1111
P4 = 0100 0101 1010 1111
P5 = 0101 0101 1010 1111
P6 = 0110 0101 1010 1111
P7 = 0111 0101 1010 1111
P8 = 1000 0101 1010 1111
P9 = 1001 0101 1010 1111
P10 = 1010 0101 1010 1111
P11 = 1011 0101 1010 1111
P12 = 1100 0101 1010 1111
P13 = 1101 0101 1010 1111
P14 = 1110 0101 1010 1111
P15 = 1111 0101 1010 1111

Hence, the left-most nibble is the active nibble while the remaining are passive nibbles.

Published in Cryptologia, XXVI (4), 2002.

If we confine ourselves within the limits of a nibble, and for each nibble position, compute
the XOR of all the 16 plaintexts, we will find that the XOR of the active nibbles of the 16
plaintexts is 0000. This is because

XORactive = 0000 ⊕ 0001⊕ 0010 ⊕ 0011 ⊕ 0100 ⊕ 0101 ⊕ 0110 ⊕ 0111 ⊕
 1000 ⊕ 1001⊕ 1010 ⊕ 1011 ⊕ 1100 ⊕ 1101 ⊕ 1110 ⊕ 1111

 = 0000

Also, the XORs of the passive nibbles are also 0000. As an example, taking one of the
passive nibbles,

XORpassive = 1111⊕ 1111⊕ 1111⊕ 1111⊕ 1111⊕ 1111⊕ 1111⊕ 1111⊕
 1111⊕ 1111⊕ 1111⊕ 1111⊕ 1111⊕ 1111⊕ 1111⊕ 1111⊕

 = 0000

We say that the set of 16 plaintexts is balanced. Now, let’s see what happens as these
plaintexts are encrypted through one round of Mini-AES.

NibbleSub:

After NibbleSub, the outputs are
B0 = NibbleSub(0000), NibbleSub(0101), NibbleSub(1010), NibbleSub(1111)
 = 1110 1111 0110 0111

B1 = NibbleSub(0001), NibbleSub(0101), NibbleSub(1010), NibbleSub(1111)
 = 0100 1111 0110 0111

B2 = NibbleSub(0010), NibbleSub(0101), NibbleSub(1010), NibbleSub(1111)
 = 1101 1111 0110 0111

B3 = NibbleSub(0011), NibbleSub(0101), NibbleSub(1010), NibbleSub(1111)
 = 0001 1111 0110 0111

B4 = NibbleSub(0100), 1111 0110 0111
 = 0010 1111 0110 0111

B5 = NibbleSub(0101), 1111 0110 0111
 = 1111 1111 0110 0111

B6 = NibbleSub(0110), 1111 0110 0111
 = 1011 1111 0110 0111

B7 = NibbleSub(0111), 1111 0110 0111
 = 1000 1111 0110 0111

B8 = NibbleSub(1000), 1111 0110 0111
 = 0011 1111 0110 0111

B9 = NibbleSub(1001), 1111 0110 0111
 = 1010 1111 0110 0111

B10 = NibbleSub(1010), 1111 0110 0111
 = 0110 1111 0110 0111

B11 = NibbleSub(1011), 1111 0110 0111
 = 1100 1111 0110 0111

Published in Cryptologia, XXVI (4), 2002.

B12 = NibbleSub(1100), 1111 0110 0111
 = 0101 1111 0110 0111

B13 = NibbleSub(1101), 1111 0110 0111
 = 1001 1111 0110 0111

B14 = NibbleSub(1110), 1111 0110 0111
 = 0000 1111 0110 0111

B15 = NibbleSub(1111), 1111 0110 0111
 = 0111 1111 0110 0111

Notice that there is still only one active nibble and

XORactive = 0000
XORpassive = 0000

Hence, the set is still balanced. We see that NibbleSub does not affect the balancedness of the
delta set, nor does it spread an active nibble over to other passive nibbles.

ShiftRow:

After ShiftRow, the outputs are
C0 = 1110 0111 0110 1111
C1 = 0100 0111 0110 1111
C2 = 1101 0111 0110 1111
C3 = 0001 0111 0110 1111
C4 = 0010 0111 0110 1111
C5 = 1111 0111 0110 1111
C6 = 1011 0111 0110 1111
C7 = 1000 0111 0110 1111
C8 = 0011 0111 0110 1111
C9 = 1010 0111 0110 1111
C10 = 0110 0111 0110 1111
C11 = 1100 0111 0110 1111
C12 = 0101 0111 0110 1111
C13 = 1001 0111 0110 1111
C14 = 0000 0111 0110 1111
C15 = 0111 0111 0110 1111

XORactive = 0000
XORpassive = 0000

Hence, the set remains balanced. ShiftRow does not affect the balancedness either. There is
still only one active nibble, but notice that two nibbles have been interchanged.

MixColumn:

After MixColumn, the outputs are
D0 = 1111 0110 0111 1110
D1 = 0010 0001 0111 1110
D2 = 1010 0000 0111 1110
D3 = 1101 1011 0111 1110
D4 = 1000 1101 0111 1110
D5 = 1100 0100 0111 1110
D6 = 0000 1100 0111 1110

Published in Cryptologia, XXVI (4), 2002.

D7 = 0101 1010 0111 1110
D8 = 1011 1111 0111 1110
D9 = 0011 1110 0111 1110
D10 = 0100 0101 0111 1110
D11 = 1001 0010 0111 1110
D12 = 0001 0011 0111 1110
D13 = 0110 1000 0111 1110
D14 = 1110 1001 0111 1110
D15 = 0111 0111 0111 1110

Notice that after MixColumn, we have two active nibbles in the same column instead of just
one. Therefore, MixColumn spreads one active nibble to two active nibbles in the same
column.

Computing the XOR of the active and passive nibbles, we get

XORactive = 0000
XORpassive = 0000

Hence, the set still remains balanced.

KeyAddition:

Let’s suppose the round key, Ki is 1010 0011 1111 0100.
Then after KeyAddition, the output is
E0 = 0101 0101 1000 1010
E1 = 1000 0010 1000 1010
E2 = 0000 0011 1000 1010
E3 = 0111 1000 1000 1010
E4 = 0010 1110 1000 1010
E5 = 0110 0111 1000 1010
E6 = 1010 1111 1000 1010
E7 = 1111 1001 1000 1010
E8 = 0001 1100 1000 1010
E9 = 1001 1101 1000 1010
E10 = 1110 0110 1000 1010
E11 = 0011 0001 1000 1010
E12 = 1011 0000 1000 1010
E13 = 1100 1011 1000 1010
E14 = 0100 1010 1000 1010
E15 = 1101 0100 1000 1010

The number of active nibbles remain at 2, and computing the XORs, we see that

XORactive = 0000
XORpassive = 0000

So the delta set is still balanced. This result is the same regardless of the value of the round
key.

�

We have just seen through an illustrative example that NibbleSub does not spread the active
nibbles, nor does it affect the balancedness of a delta set. ShiftRow does not affect the
balancedness either, but just interchanges the position of two nibbles. MixColumn spreads
one active nibble to two active nibbles in the same column. KeyAddition does not affect the
balancedness nor spreads the active nibbles. Here we see that the balancedness and number
of active nibbles in a delta set are influenced by only the MixColumn and ShiftRow.

Published in Cryptologia, XXVI (4), 2002.

Consider a 4-round Mini-AES. If we have a set of 16 plaintexts such that they are
equal in all nibbles except in the first nibble where they have all the 16 possible different
values, then after the first round, we will have a delta set that is still balanced and where there
are two active nibbles in the first column.

After NibbleSub of the second round, the set is still balanced and the number of
active nibbles is two. This remains the same after ShiftRow, but one of the active nibbles has
been interchanged with a passive nibble in column 2. Due to this, then passing through
MixColumn causes a still balanced delta set, but all nibbles are now active.
 At the input of Round 3, we have a balanced delta set with all active nibbles. Passing
through NibbleSub causes the same situation to exist. Likewise, ShiftRow does not change
the situation either, so at the input of MixColumn, a balanced delta set exists that contains all
active nibbles.

Recall again that a balanced delta set means that the XOR of each nibble position,
either active or passive is zero. Now, at the input of MixColumn, the delta set is balanced and
it contains all active nibbles. This means that each nibble contains all 16 possible values. We
see how MixColumn influences this delta set by using an example.

Example 12
Let the delta set at the input to MixColumn be

C0 = 0101 0101 0000 1010
C1 = 1000 0010 0001 0101
C2 = 0000 0011 0010 1111
C3 = 0111 1000 0011 1110
C4 = 0010 1110 0100 0000
C5 = 0110 0111 0101 1000
C6 = 1010 1111 0110 0111
C7 = 1111 1001 0111 1011
C8 = 0001 1100 1000 1101
C9 = 1001 1101 1001 0010
C10 = 1110 0110 1010 0100
C11 = 0011 0001 1011 1100
C12 = 1011 0000 1100 0110
C13 = 1100 1011 1101 1001
C14 = 0100 1010 1110 0001
C15 = 1101 0100 1111 0011

We see that all nibbles are active and the delta set is balanced at the input to MixColumn. At
the output of MixColumn, we have the outputs

D0 = 0101 0101 0111 1101
D1 = 1111 0101 1001 1101
D2 = 0110 0101 1011 0110
D3 = 1010 0101 1010 0111
D4 = 1001 0101 1100 1000
D5 = 0100 0101 1100 0001
D6 = 0000 0101 0100 0101
D7 = 0011 0101 1100 0000
D8 = 1000 0101 0010 0111
D9 = 0001 0101 1100 0111
D10 = 1101 0101 0101 1011
D11 = 0111 0101 0101 0010
D12 = 1110 0101 1011 0001
D13 = 0010 0101 0101 0001
D14 = 1011 0101 0011 1100
D15 = 1100 0101 0100 1000

Published in Cryptologia, XXVI (4), 2002.

Notice that the nibbles do not necessarily contain all 16 possible values any more.
Coincidentally, the leftmost nibble still contains all 16 possible values, whereas the second
has become a passive nibble while the remaining two are neither active nor passive but are a
mixed combination of values. Nevertheless, computing the XOR of each nibble, we find that
the XORs are all zero. This means that the set is still balanced even though the individual
nibbles are not necessarily active or passive.

�

 The balanced delta set proceeds through KeyAddition and since KeyAddition does
not affect its balancedness, it remains that at the output of Round 3, we have a balanced delta
set. This balancedness would be destroyed by the next NibbleSub in round 4, hence this is as
far as we can go. The propagation of a delta set through the first 3 rounds of Mini-AES is
given in Figure 8. Active nibbles are shaded in grey, while the passive nibbles are in white.
Diagonally striped boxes denote nibbles that are not necessarily active nor passive, but which
are still balanced. The checked boxes in Round 4 denote that the nibbles are no longer
balanced.

Figure 8: Propagation of the Delta-set through 4-round Mini-AES

The Square attack on 4-round Mini-AES proceeds as follows:

1. Consider a set of 16 plaintexts, Pi (i = 0 to 15) that differ in only one nibble in all 16
possible values, while the remaining nibbles contain constant values. This is similar
to Example 11.

2. Obtain the ciphertexts, Ti corresponding to these plaintexts.
3. For each nibble position (nibbles 1 to 4), do

i. For all possible values (0000 to 1111) of that nibble of the last round key, K4, do
a. Calculate the value R3 = γ-1 ο π-1 ο σK4 (Ti) for all 16 Ti’s. This corresponds

to the 16 outputs of Round 3.
b. Compute the XOR of all 16 values of R3.
c. If XOR = 0, then the guessed nibble of K4 is correct. Else, it is incorrect, so

cancel it out of the list of possible values for that nibble of K4.

ShiftRow MixColumn

 NibbleSub

ShiftRow MixColumn
Round 2:

NibbleSub

ShiftRow MixColumn

Round 3:

NibbleSub

Round 1:

Λ-set

ShiftRow

Round 4:

NibbleSub

KeyAddition

KeyAddition

KeyAddition

KeyAddition

R3

Published in Cryptologia, XXVI (4), 2002.

ii. After going through all possible values of the nibble, one or more nibbles will
remain, with one being the correct nibble.

iii. Repeat steps 1, 2 and 3 with a different set of plaintexts to confirm the correct
key nibble.

We have just demonstrated how the Square attack can be applied on Mini-AES. To get a feel
of the attack, the interested cryptanalysis student is encouraged to try out the attack by hand,
with pen and paper.
 After becoming familiar with how the Square attack works on Mini-AES, the novice
cryptanalyst could refer to [1, 4, 5, 6] for further details on applying the Square attack to the
actual AES.

6 Conclusion

We have presented a mini version of the Advanced Encryption Standard (AES) that is well-
suited for undergraduate cryptography and cryptanalysis courses. Once the student feels
comfortable with Mini-AES, then he will have no problem in understanding the inner
workings of the real Advanced Encryption Standard. Mini-AES is also intended to be a
testbed for students and aspiring cryptanalysts to experiment with the various cryptanalysis
methods that are currently available in academic literature. As an example, we demonstrated
in detail how the Square attack can be used on Mini-AES. With this, we hope to have
provided the vital stepping stone for the student to advance into the fascinating world of
cryptanalysis research.

Acknowledgements

We wish to thank the anonymous referees for their comments which have greatly enhanced
this paper.

References

1. Biham, Eli, and Keller, Nathan. 2000. Cryptanalysis of Reduced Variants of Rijndael.
Available at http://csrc.nist.gov/encryption/aes/round2/conf3/papers/35-ebiham.pdf.

2. Daemen, Joan, and Knudsen, Lars Ramkilde and Rijmen, Vincent. 1997. The Block
Cipher Square. Proceedings of Fast Software Encryption 1997 (Lecture Notes in Computer
Science no. 1267). Springer-Verlag. 149-165.

3. Daemen, Joan, and Rijmen, Vincent. 2002. The Design of Rijndael: AES – The
Advanced Encryption Standard. Information Security and Cryptography series. Springer-
Verlag.

4. Ferguson, Niels, and Kelsey, John, and Lucks, Stefan, and Schneier, Bruce, and Stay,
Mike, and Wagner, David, and Whiting, Doug. 2000. Improved Cryptanalysis of Rijndael.
Proceedings of Fast Software Encryption 2000. Available at
http://www.counterpane.com/rijndael.html.

5. Gilbert, Henri, and Minier, Marine. 2000. A Collision Attack on 7 Rounds of Rijndael.
Proceedings of 3rd AES Conference. Available at
http://csrc.nist.gov/encryption/aes/round2/conf3/papers/11-hgilbert.pdf.

Published in Cryptologia, XXVI (4), 2002.

6. Lucks, Stefan. 2000. Attacking Seven Rounds of Rijndael under 192-bit and 256-bit
Keys. Proceedings of 3rd AES Conference. Available at
http://csrc.nist.gov/encryption/aes/round2/conf3/papers/04-slucks.pdf.

7. NIST. 2000. AES Development Effort. Available at
http://csrc.nist.gov/encryption/aes/index2.html.

8. NIST. 2000. Commerce Department Announces Winner of Global Information
Security Competition. October. Available at http://www.nist.gov/public_affairs/releases/g00-
176.htm.

9. NIST. 2002. AES Homepage. Available at http://www.nist.gov/aes.

Biographical Sketch

Raphael Phan Chung Wei received his B.Eng (Hons) degree in Computer Engineering from
the Multimedia University (MMU), Cyberjaya, Malaysia in 1999. He was a tutor with the
Faculty of Engineering, MMU and researcher at the Center for Smart Systems and
Innovation, MMU from June 1999 to June 2001 where he also pursued his M.EngSc. degree
by research in the ‘Cryptanalysis of the Advanced Encryption Standard & Skipjack’. He is
currently an Engineering lecturer and researcher with the Swinburne Sarawak Institute of
Technology, Kuching, Malaysia. His research interests include cryptanalysis, block ciphers,
and antivirus techniques.

Published in Cryptologia, XXVI (4), 2002.

APPENDIX

Here we provide the table of multiplication of two elements in GF(24) modulo x4 + x + 1.
The entries in the table are represented in hexadecimal notation for compactness. The row
and column indices represent the two elements to be multiplied modulo x4 + x + 1, and the
product is the corresponding entry in the intersection of that row and column.

Example 13
To find the product of 1011 (B in hexadecimal) and 0111 (7 in hexadecimal), refer to the row
index B and column index 7. The intersection contains the entry 4 in hexadecimal. Hence,
1011 ⊗ 0111 = 0100.

�

⊗ 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 A B C D E F
2 0 2 4 6 8 A C E 3 1 7 5 B 9 F D
3 0 3 6 5 C F A 9 B 8 D E 7 4 1 2
4 0 4 8 C 3 7 B F 6 2 E A 5 1 D 9
5 0 5 A F 7 2 D 8 E B 4 1 9 C 3 6
6 0 6 C A B D 7 1 5 3 9 F E 8 2 4
7 0 7 E 9 F 8 1 6 D A 3 4 2 5 C B
8 0 8 3 B 6 E 5 D C 4 F 7 A 2 9 1
9 0 9 1 8 2 B 3 A 4 D 5 C 6 F 7 E
A 0 A 7 D E 4 9 3 F 5 8 2 1 B 6 C
B 0 B 5 E A 1 F 4 7 C 2 9 D 6 8 3
C 0 C B 7 5 9 E 2 A 6 1 D F 3 4 8
D 0 D 9 4 1 C 8 5 2 F B 6 3 E A 7
E 0 E F 1 D 3 2 C 9 7 6 8 4 A B 5
F 0 F D 2 9 6 4 8 1 E C 3 8 7 5 A

	Mini Advanced Encryption Standard
	(Mini-AES):
	A Testbed for Cryptanalysis Students
	
	1	Introduction
	2	Mathematical Background
	
	
	Example 1
	Example 2
	Example 3
	Example 4

	Example 5
	Example 6
	Example 7
	Example 8

	Example 9
	
	
	Round 1
	C =

	Example 10

	4	The Advanced Encryption Standard (AES)
	5	The Square Attack
	
	
	Example 11
	Example 12

	6	Conclusion
	APPENDIX
	
	
	Example 13

