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ABSTRACT:  In this paper, we present a mini version of Rijndael, the symmetric-key block cipher 

selected as the Advanced Encryption Standard (AES) recently.  Mini-AES has all the 
parameters significantly reduced while at the same time preserving its original structure.  It is 
meant to be a purely educational cipher and is not considered secure for actual applications.  
The purpose is such that once undergraduate students and amateur cryptanalysts have grasped 
the basic principles behind how Mini-AES works, it will be easy for them to move on to the 
real AES.  At the same time, an illustration of how the Square attack can be applied to Mini-
AES is presented in the hope that Mini-AES would also serve as a testbed for students to 
begin their cryptanalysis efforts. 
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1 Introduction 
 
The National Institute of Standards and Technology (NIST) issued in 1997 a call for 
proposals for the Advanced Encryption Standard (AES) [7].  Twenty one proposals were 
submitted, out of which 15 were accepted.  Two years later, after undergoing public review 
and analysis, the list was narrowed down to 5 finalists, and more extensive analysis ensued.  
In October 2000, Rijndael emerged as the winner and was selected as the Advanced 
Encryption Standard [8].  The specifications of the AES are now available as a Federal 
Information Processing Standard (FIPS) [9]. 
 The AES has a block size of 128 bits, and supports key sizes of 128, 192 and 256 bits.  
The number of rounds is 10, 12 or 14 for the three different key sizes respectively.  Just like 
the DES, the AES is expected to draw much attention from cryptographers and cryptanalysts 
alike within the space of time from now until the next few decades.  In order to aid 
undergraduate cryptography students and aspiring cryptanalysts in better understanding the 
internal workings of the AES, we present a mini version of the AES, with all the parameters 
significantly reduced while preserving its original structure.  This mini version is purely 
educational and hence it is hoped to aid students in grasping the underlying concepts in the 
design of Rijndael-like ciphers and also to serve as a testbed for aspiring cryptanalysts to try 
out various cryptanalytic attacks. 
 In section 2, we present the mathematical background to help the student in 
understanding the components of Mini-AES.  We then proceed to describe Mini-AES in 
Section 3.  In Section 4, we relate Mini-AES to the real AES.  The Square attack, a fairly new 
cryptanalytic attack popularised by Rijndael is presented in detail in Section 5.  We conclude 
in Section 6. 
   

2 Mathematical Background 
 
Mini-AES has a component, NibbleSub, which operates on a nibble (4 bits) at a time.  In 
addition, another component, MixColumn operates on words of 4 nibbles.  In this section, we 
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present the mathematical background needed for the reader to have a clearer understanding of 
the components of Mini-AES. 
 
2.1 The Finite Field GF(24) 
 
The nibbles of Mini-AES can be thought of as elements in the finite field GF(24).  Finite 
fields have the special property that operations (+,−, × and ÷) on the field elements always 
cause the result to be also in the field.  Consider a nibble n = (n3, n2, n1, n0) where ni ∈  {0,1}.  
Then, this nibble can be represented as a polynomial with binary coefficients i.e having 
values in the set {0,1}: 
 

n = n3 x3 + n2 x2 + n1 x + n0 
 
Example 1 
Given a nibble, n = 1011, then this can be represented as 

n = 1 x3 + 0 x2 + 1 x + 1 = x3 + x + 1 
�  

 
Note that when an element of GF(24) is represented in polynomial form, the resulting 
polynomial would have a degree of at most 3. 
 
2.2 Addition in GF(24) 
 
When we represent elements of GF(24) as polynomials with coefficients in {0,1}, then 
addition of two such elements is simply addition of the coefficients of the two polynomials.  
Since the coefficients have values in {0,1}, then the addition of the coefficients is just modulo 
2 addition or exclusive-OR denoted by the symbol ⊕ .  Hence, for the rest of this paper, the 
symbols + and ⊕  are used interchangeably to denote addition of two elements in GF(24). 
 
Example 2 
Given two nibbles, n = 1011 and m = 0111, then the sum, n + m = 1011 + 0111 = 1100  or in 
polynomial notation: 

n + m = (x3 + x + 1) + (x2 + x + 1) = x3 + x2 
�  

 
2.3 Multiplication in GF(24) 
 
Multiplication of two elements of GF(24) can be done by simply multiplying the two 
polynomials.  However, the product would be a polynomial with a degree possibly higher 
than 3. 
 
Example 3 
Given two nibbles, n = 1011 and m = 0111, then the product is: 

(x3 + x + 1) (x2 + x + 1) = x5 + x4 + x3 + x3 + x2 + x + x2 + x + 1 
 = x5 + x4 + 1 

�  
 

In order to ensure that the result of the multiplication is still within the field GF(24), it must be 
reduced by division with an irreducible polynomial of degree 4, the remainder of which will 
be taken as the final result.  An irreducible polynomial is analogous to a prime number in 
arithmetic, and as such a polynomial is irreducible if it has no divisors other than 1 and itself.  
There are many such irreducible polynomials, but for Mini-AES, it is chosen to be: 

m(x) = x4 + x + 1 
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Example 4 
Given two nibbles, n = 1011 and m = 0111, then the final result after multiplication in GF(24), 
called the ‘product of n × m modulo m(x)’ and denoted as ⊗ , is: 

(x3 + x + 1) ⊗  (x2 + x + 1)  = x5 + x4 + 1 modulo x4 + x + 1 
= x2  

This is because: 
      

   x + 1   (quotient) 
       x4 + x + 1  x5 + x4 + 1 

              + x5 + x2 + x 
              x4 + x2 + x + 1 

         +          x4 +         x + 1  
      x2    (remainder) 

 
Note that since the coefficients of the polynomials are in {0,1}, then addition is simply 
exclusive-OR and hence subtraction is also exclusive-OR since exclusive-OR is its own 
inverse. 

�  
 

Refer to the Appendix for the table describing the multiplication of two elements in GF(24) 
modulo x4 + x + 1. 
 

3 Mini-AES 
 
In order to encrypt messages with Mini-AES, the original input message, called the plaintext 
is broken up into blocks of 16 bits each.  At any one time, only one plaintext block is 
encrypted with Mini-AES into ciphertext, after which the next plaintext block is encrypted 
and the process repeats until all of the plaintext blocks have been encrypted.  Mini-AES 
encryption is done with a secret key of 16 bits.  Figure 1 illustrates the process of encrypting 
the plaintext message with Mini-AES. 
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3.1 Mini-AES Components 
 
To make it easier to describe the internal process of the Mini-AES encryption, the input 
plaintext block of 16 bits,  P = (p0, p1, p2, p3) is represented as a matrix of 2 rows and 2 
columns of 4 bits (a nibble), as given in Figure 2.   
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Figure 2: 2 × 2 Matrix Representation of the 16-bit Block 

 
 Within the Mini-AES encryption process, there are 4 main components, namely 
NibbleSub, ShiftRow, MixColumn and KeyAddition.  The application of these 4 components in 
sequence constitutes a round of Mini-AES. 
 
3.2 NibbleSub, γγγγ 
 
NibbleSub is a simple operation that substitutes each input nibble with an output nibble 
according to a 4 × 4 substitution table (S-box), as given in Table 1.  The values in Table 1 are 
in fact taken from the 1st row of the first S-box in DES. 
 

Input Output Input Output
0000 1110 1000 0011 
0001 0100 1001 1010 
0010 1101 1010 0110 
0011 0001 1011 1100 
0100 0010 1100 0101 
0101 1111 1101 1001 
0110 1011 1110 0000 
0111 1000 

 

1111 0111 
 

Table 1:  S-box of Mini-AES 
 
The NibbleSub operation is illustrated in Figure 3, where A = (a0, a1, a2, a3) is the input 
block and B = (b0, b1, b2, b3) is the output. 
 

 

 

 

Figure 3: The NibbleSub Operation 
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Example 5 
For an input nibble, a0 = 1111, then based on Table 1, the output nibble is b0 = 0111. 

�  
 
3.3 ShiftRow, ππππ 

ShiftRow rotates each row of the input block to the left by different nibble amounts.  The first 
row is unchanged while the second row is rotated left by one nibble.  This is illustrated in 
Figure 4, where B = (b0, b1, b2, b3) and C = (c0, c1, c2, c3) are the input and output 
respectively. 
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Similarly, taking the second column and multiplying it with the constant matrix, we obtain: 
 

 

Hence, d2 = (0011⊗  c2 ) + (0010⊗  c3 )  and  d3 = (0010⊗  c2 ) + (0011⊗  c3 ).  We see that each 
output nibble is a function of the two input nibbles in that same column.  

�  

 
3.5 KeyAddition, σσσσKi 

KeyAddition causes each bit of the input block, D = (d0, d1, d2, d3) to be exclusived-ORed 
with the corresponding bit of the ith round key, Ki = (k0, k1, k2, k3) to obtain the 16-bit output 
block E = (e0, e1, e2, e3) as shown in Figure 6.  The round key is derived from the secret key, 
K by using the key schedule, which will be described in Section 3.6.  For each bit, the 
exclusive-OR operation causes the output bit to be ‘1’ if the corresponding bits of the input 
block and round key are different.  Otherwise, the output bit is ‘0’. 
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Denote the 16-bit secret key, K as 4 nibbles, K = (k0, k1, k2, k3), and likewise, K0 = 
(w0, w1, w2, w3), K1 = (w4, w5, w6, w7) and K2 = (w8, w9, w10, w11).  Then, the round key 
values are obtained from the secret key as in Table 2.  Note that in each round, round 
constants rcon(i) are used, where  rcon(1) = 0001 and rcon(2) = 0010. 
 
3.7 Example Mini-AES Encryption 
 
The application of the four components NibbleSub, ShiftRow, MixColumn and KeyAddition in 
sequence constitutes one round.  The full Mini-AES encryption consists of two such rounds, 
with the exclusion of MixColumn from the last round and the inclusion of an extra 
KeyAddition prior to the first round.  Hence, Mini-AES encryption can be denoted by: 

Mini-AESEncrypt = σK2 ο π ο γ ο σK1 ο θ ο π ο γ ο σK0 

Note that the symbol ο refers to the composition of functions and the order of execution is 
from right to left, which means that σK0 is executed first.  Figure 7 provides a pictorial view 
of Mini-AES encryption.  

 

 
 
 
 
 
 
 

Figure 7: The Mini-AES Encryption Process 

 
Example 9 
To provide an illustrative example for the student, suppose that the input 16-bit plaintext 
block is P = 1001 1100 0110 0011.  Expressed as a matrix of 2 × 2 of nibbles, it is then 
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 = 0011 ⊕  0011 
 = 0000 
w6  = w2 ⊕  w5 
 = 1111 ⊕  0000 
 = 1111 
w7  = w3 ⊕  w6 
 = 0000 ⊕  1111 
 = 1111 

K2 = (w8, w9, w10, w11) is calculated as follows: 
w8  = w4 ⊕  NibbleSub( w7 ) ⊕  0010 
 = 0011 ⊕  NibbleSub(1111) ⊕  0010 
 = 0011 ⊕  0111 ⊕  0010 
 = 0110 
w9  = w5 ⊕  w8 
 = 0000 ⊕  0110 
 = 0110 
w10  = w6 ⊕  w9 
 = 1111 ⊕  0110 
 = 1001 
w11 = w7 ⊕  w10 
 = 1111 ⊕  1001 
 = 0110 

 
Encryption of the Plaintext 
Next, we proceed with encryption.  Given plaintext, P = 1001 1100 0110 0011, then after the 
first KeyAddition with the 0th round key, K0, the output is 

A = P ⊕  K0  = 1001 1100 0110 0011 ⊕   1100 0011 1111 0000 
  = 0101 1111 1001 0011 

Round 1 
 After NibbleSub, the output is  
 B  = NibbleSub(0101), NibbleSub(1111), NibbleSub(1001), NibbleSub(0011) 
  = 1111 0111 1010 0001 
 

After ShiftRow, the output is  
 C = ShiftRow (1111 0111 1010 0001) 
  = 1111 0001 1010 0111 
 

MixColumn is a bit more involved.  The input block is rearranged as a 2 × 2 matrix, 
hence: 
 
 

C = 
 
 
Taking the first column and multiplying it with the constant matrix, we get: 
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(0010 ⊗  1111) ⊕  (0011 ⊗  0001)
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0010 ⊕  0010 
1101 ⊕  0011 
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Taking the second column and multiplying it with the constant matrix, we get: 

 

 

 

 

 

 

 
 
 
 
Therefore, the output after MixColumn is 
 
 

D = 
 
 
 

or              D  = 0000 
 
After KeyAddition with K1, the ou
E = D ⊕  K1  = 0000 1110 0011
  = 0011 1110 1100

 
Round 2 
 After NibbleSub, the output is  
 F  = NibbleSub(0011), Nibbl
  = 0001 0000 0101 0100 
 

After ShiftRow, the output is 
 G = ShiftRow (0001 0000 01
  = 0001 0100 0101 0000 

  
Note that in the last round, there is
H = G ⊕  K2  = 0001 0100 0101
  = 0111 0010 1100

 
Therefore, the final ciphertext is H  = 0111

 
3.8 Mini-AES Decryption 
 
In order to get back the original plaint
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of encryption, then 

Mini-AESDecrypt  = (σK2 ο π 
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 0001 
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01 0100) 

 no MixColumn.  After KeyAddition, the output is 
 0000 ⊕  0110 0110 1001 0110 
 0110 

 0010 1100 0110 
�  

ext, the reverse process of encryption must be 
 decryption.  Noting that decryption is the inverse 

ο γ ο σK1 ο θ ο π ο γ ο σK0) –1 
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= σK0 
-1 ο γ -1 ο π -1 ο θ -1 ο σK1

 -1 ο γ -1 ο π -1 ο σK2 
-1 

= σK0 ο γ -1 ο π ο θ ο σK1 ο γ -1 ο π ο σK2 

We arrive at this expression since σKi is an XOR operation, which is its own inverse.  We 
have also specially chosen the constant matrix in MixColumn, θ such that the inverse of 
MixColumn, θ -1 is the same as MixColumn itself.  Since ShiftRow simply causes the second 
row to be rotated left by one nibble amount, then the inverse of ShiftRow, π -1 causes the 
second row to be rotated right by one nibble.  Rotating the nibble left or right are one and the 
same operation because one row only has two nibbles, therefore inverse ShiftRow is the same 
as ShiftRow.  NibbleSub is a nibble substitution operation based on Table 1.  The inverse of 
Table 1 is easily computed by interchanging the input nibble with the output nibble, and then 
resorting it based on the new input nibble, as given in Table 3 below. 
 

Input Output Input Output
0000 1110 1000 0111 
0001 0011 1001 1101 
0010 0100 1010 1001 
0011 1000 1011 0110 
0100 0001 1100 1011 
0101 1100 1101 0010 
0110 1010 1110 0000 
0111 1111 

 

1111 0101 
 

Table 3:  Inverse S-box of Mini-AES 
 
Example 10 
For an input nibble, a0 = 1111, then based on Table 1, the output nibble is b0 = 0111.  To get 
back the original nibble a0 given the value of b0, we use the inverse of Table 1, which is Table 
3. Referring to Table 3, then given the input b0 = 0111, the output is a0 = 1111. 

�  
 

Observe also that the order in which inverse NibbleSub, γ -1 and ShiftRow, π is 
carried out is not important, since inverse NibbleSub operates on each individual nibble 
whereas ShiftRow simply shifts the nibbles around.  Hence, the final expression for Mini-
AES decryption is: 

Mini-AESDecrypt  = σK0 ο π ο γ -1 ο θ ο σK1 ο  π ο γ -1 ο σK2 

 Comparing the expression for decryption and encryption, we see that they are similar 
in structure, except that the round keys and the round constants are applied in reverse order, 
and the NibbleSub component is replaced by its inverse.   

As an exercise, the student can try by pen and paper to decrypt the ciphertext, H 
obtained in Example 9 to get back the original plaintext, P. 

 
4 The Advanced Encryption Standard (AES) 

 
In this section, we relate Mini-AES to the actual Advanced Encryption Standard (AES).  
Instead of having a block of 16 bits, the AES is a 128-bit block cipher, and supports secret 
key sizes of 128, 192 or 256 bits.  We will describe the details of the AES with reference to a 
128-bit key.  The other variants are similar in nature. 
 The 128-bit block of the AES is expressed as a matrix of 4 × 4 bytes, in contrast to 
Mini-AES being expressed as a matrix of 2 × 2 nibbles. 
 AES consists of 10 rounds, where each round is similar to the round of Mini-AES, 
with the last round having no MixColumn.  There is also a KeyAddition prior to the first 
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round.  The purpose of the extra KeyAddition and the omission of MixColumn is so that 
encryption and decryption of the AES would be similar in structure, and this simplifies 
implementation.  The same basic hardware can then be used for both encryption and 
decryption. 

The round components of the AES are ByteSub, ShiftRow, MixColumn and 
KeyAddition.  ByteSub is similar to NibbleSub, but operates on one byte instead of one 
nibble.  Likewise, ShiftRow rotates each row of the input block to the left by different byte 
amounts.  The first row is unchanged, the second rotated left by 1 byte, the third by 2 and the 
fourth by 3.  MixColumn takes each column of the input block and multiplies it with a 
constant 4 × 4 matrix.  KeyAddition is similar to that of Mini-AES. 

The usage of the various round components of the AES follow the Wide Trail 
Strategy [3], where every component has its own purpose.  ByteSub provides the non-
linearity that is vital for the security of any block cipher.  ShiftRow and MixColumn provide 
the linear mixing component that ensures very high diffusion over multiple rounds.  
KeyAddition allows the secret key bits to influence the encryption process. 

The Mini-AES key schedule takes the 16-bit secret key and expresses it as a group of 
four nibbles.  Meanwhile, the AES key schedule takes the 128-bit secret key and expresses it 
as a group of four 32-bit words.  The 0th round key, K0 equals the secret key itself while each 
subsequent round key is derived from the secret key in almost the same way as Mini-AES.  
Further details of the AES can be found online at [9] and in a book [3]. 
  

5 The Square Attack 
 
The structure of the AES is derived from its predecessor, the block cipher Square [2].  It is 
susceptible to a dedicated attack that was first developed on Square, also called the Square 
attack.  In order to demonstrate to the student how the attack works on the AES, we will apply 
it on Mini-AES. 

First, we extend the number of rounds of Mini-AES to 4 so that it is not too trivial to 
apply the Square attack on it.  Let’s suppose we have a set of 16 plaintexts, Pi (i = 0 to 15) 
such that they are equal in all nibbles except in one nibble where they have all the 16 possible 
different values.  We will call this a delta set.  The nibbles that have the same values for all 16 
plaintexts in the set are called the passive nibbles whereas the nibble with all 16 possible 
values is called the active nibble. 
 
Example 11 
Let  P0 = 0000 0101 1010 1111 

P1 = 0001 0101 1010 1111 
P2 = 0010 0101 1010 1111 
P3 = 0011 0101 1010 1111 
P4 = 0100 0101 1010 1111 
P5 = 0101 0101 1010 1111 
P6 = 0110 0101 1010 1111 
P7 = 0111 0101 1010 1111 
P8 = 1000 0101 1010 1111 
P9 = 1001 0101 1010 1111 
P10 = 1010 0101 1010 1111 
P11 = 1011 0101 1010 1111 
P12 = 1100 0101 1010 1111 
P13 = 1101 0101 1010 1111 
P14 = 1110 0101 1010 1111 
P15 = 1111 0101 1010 1111 

 
Hence, the left-most nibble is the active nibble while the remaining are passive nibbles. 
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If we confine ourselves within the limits of a nibble, and for each nibble position, compute 
the XOR of all the 16 plaintexts, we will find that the XOR of the active nibbles of the 16 
plaintexts is 0000.  This is because 

XORactive  = 0000 ⊕  0001⊕  0010 ⊕  0011 ⊕  0100 ⊕  0101 ⊕  0110 ⊕  0111 ⊕  
    1000 ⊕  1001⊕  1010 ⊕  1011 ⊕  1100 ⊕  1101 ⊕  1110 ⊕  1111 

  = 0000 
 
Also, the XORs of the passive nibbles are also 0000.  As an example, taking one of the 
passive nibbles, 

XORpassive = 1111⊕  1111⊕  1111⊕  1111⊕  1111⊕  1111⊕  1111⊕  1111⊕  
    1111⊕  1111⊕  1111⊕  1111⊕  1111⊕  1111⊕  1111⊕  1111⊕  

  = 0000 
 
We say that the set of 16 plaintexts is balanced.  Now, let’s see what happens as these 
plaintexts are encrypted through one round of Mini-AES. 
 
NibbleSub: 
 

After NibbleSub, the outputs are  
B0  = NibbleSub(0000),  NibbleSub(0101), NibbleSub(1010), NibbleSub(1111) 
 = 1110 1111 0110 0111 
 
B1  = NibbleSub(0001),  NibbleSub(0101), NibbleSub(1010), NibbleSub(1111) 
 = 0100 1111 0110 0111 
 
B2  = NibbleSub(0010),  NibbleSub(0101), NibbleSub(1010), NibbleSub(1111) 
 = 1101 1111 0110 0111 
 
B3  = NibbleSub(0011),  NibbleSub(0101), NibbleSub(1010), NibbleSub(1111) 
 = 0001 1111 0110 0111 
 
B4 = NibbleSub(0100), 1111 0110 0111 
 = 0010 1111 0110 0111 
 
B5 = NibbleSub(0101), 1111 0110 0111 
 = 1111 1111 0110 0111 
 
B6 = NibbleSub(0110), 1111 0110 0111 
 = 1011 1111 0110 0111 
 
B7 = NibbleSub(0111), 1111 0110 0111 
 = 1000 1111 0110 0111 
 
B8 = NibbleSub(1000), 1111 0110 0111 
 = 0011 1111 0110 0111 
 
B9 = NibbleSub(1001), 1111 0110 0111 
 = 1010 1111 0110 0111 
 
B10 = NibbleSub(1010), 1111 0110 0111 
 = 0110 1111 0110 0111 
 
B11 = NibbleSub(1011), 1111 0110 0111 
 = 1100 1111 0110 0111 
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B12 = NibbleSub(1100), 1111 0110 0111 
 = 0101 1111 0110 0111 
 
B13 = NibbleSub(1101), 1111 0110 0111 
 = 1001 1111 0110 0111 
 
B14 = NibbleSub(1110), 1111 0110 0111 
 = 0000 1111 0110 0111 
 
B15 = NibbleSub(1111), 1111 0110 0111 
 = 0111 1111 0110 0111 

 
Notice that there is still only one active nibble and  

XORactive  = 0000 
XORpassive = 0000 

 
Hence, the set is still balanced.  We see that NibbleSub does not affect the balancedness of the 
delta set, nor does it spread an active nibble over to other passive nibbles. 
 
ShiftRow: 

After ShiftRow, the outputs are  
C0  = 1110 0111 0110 1111  
C1  = 0100 0111 0110 1111 
C2  = 1101 0111 0110 1111  
C3  = 0001 0111 0110 1111  
C4 = 0010 0111 0110 1111  
C5 = 1111 0111 0110 1111 
C6 = 1011 0111 0110 1111  
C7 = 1000 0111 0110 1111  
C8 = 0011 0111 0110 1111 
C9 = 1010 0111 0110 1111  
C10 = 0110 0111 0110 1111  
C11 = 1100 0111 0110 1111  
C12 = 0101 0111 0110 1111 
C13 = 1001 0111 0110 1111  
C14 = 0000 0111 0110 1111 
C15 = 0111 0111 0110 1111  
 
XORactive  = 0000 
XORpassive = 0000 

 
Hence, the set remains balanced.  ShiftRow does not affect the balancedness either.  There is 
still only one active nibble, but notice that two nibbles have been interchanged. 
 
MixColumn: 

After MixColumn, the outputs are  
D0  = 1111 0110 0111 1110 
D1  = 0010 0001 0111 1110 
D2  = 1010 0000 0111 1110  
D3  = 1101 1011 0111 1110  
D4 = 1000 1101 0111 1110  
D5 = 1100 0100 0111 1110 
D6 = 0000 1100 0111 1110  
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D7 = 0101 1010 0111 1110  
D8 = 1011 1111 0111 1110 
D9 = 0011 1110 0111 1110  
D10 = 0100 0101 0111 1110  
D11 = 1001 0010 0111 1110  
D12 = 0001 0011 0111 1110 
D13 = 0110 1000 0111 1110  
D14 = 1110 1001 0111 1110 
D15 = 0111 0111 0111 1110  

 
Notice that after MixColumn, we have two active nibbles in the same column instead of just 
one.  Therefore, MixColumn spreads one active nibble to two active nibbles in the same 
column. 
 
Computing the XOR of the active and passive nibbles, we get 

XORactive  = 0000 
XORpassive = 0000 

 
Hence, the set still remains balanced.  
  
KeyAddition: 

Let’s suppose the round key, Ki is 1010 0011 1111 0100. 
Then after KeyAddition, the output is  
E0  = 0101 0101 1000 1010 
E1  = 1000 0010 1000 1010 
E2  = 0000 0011 1000 1010 
E3  = 0111 1000 1000 1010 
E4 = 0010 1110 1000 1010 
E5 = 0110 0111 1000 1010 
E6 = 1010 1111 1000 1010 
E7 = 1111 1001 1000 1010 
E8 = 0001 1100 1000 1010 
E9 = 1001 1101 1000 1010 
E10 = 1110 0110 1000 1010 
E11 = 0011 0001 1000 1010 
E12 = 1011 0000 1000 1010 
E13 = 1100 1011 1000 1010 
E14 = 0100 1010 1000 1010 
E15 = 1101 0100 1000 1010 

 
The number of active nibbles remain at 2, and computing the XORs, we see that 

XORactive  = 0000 
XORpassive = 0000 

 
So the delta set is still balanced.  This result is the same regardless of the value of the round 
key. 

�  
 
We have just seen through an illustrative example that NibbleSub does not spread the active 
nibbles, nor does it affect the balancedness of a delta set.  ShiftRow does not affect the 
balancedness either, but just interchanges the position of two nibbles.  MixColumn spreads 
one active nibble to two active nibbles in the same column.  KeyAddition does not affect the 
balancedness nor spreads the active nibbles.  Here we see that the balancedness and number 
of active nibbles in a delta set are influenced by only the MixColumn and ShiftRow. 
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Consider a 4-round Mini-AES.  If we have a set of 16 plaintexts such that they are 
equal in all nibbles except in the first nibble where they have all the 16 possible different 
values, then after the first round, we will have a delta set that is still balanced and where there 
are two active nibbles in the first column. 

After NibbleSub of the second round, the set is still balanced and the number of 
active nibbles is two.  This remains the same after ShiftRow, but one of the active nibbles has 
been interchanged with a passive nibble in column 2.  Due to this, then passing through 
MixColumn causes a still balanced delta set, but all nibbles are now active. 
 At the input of Round 3, we have a balanced delta set with all active nibbles.  Passing 
through NibbleSub causes the same situation to exist.  Likewise, ShiftRow does not change 
the situation either, so at the input of MixColumn, a balanced delta set exists that contains all 
active nibbles.   

Recall again that a balanced delta set means that the XOR of each nibble position, 
either active or passive is zero.  Now, at the input of MixColumn, the delta set is balanced and 
it contains all active nibbles.  This means that each nibble contains all 16 possible values.  We 
see how MixColumn influences this delta set by using an example. 

 
Example 12 
Let the delta set at the input to MixColumn be  

C0  = 0101 0101 0000 1010 
C1  = 1000 0010 0001 0101 
C2  = 0000 0011 0010 1111 
C3  = 0111 1000 0011 1110 
C4 = 0010 1110 0100 0000 
C5 = 0110 0111 0101 1000 
C6 = 1010 1111 0110 0111 
C7 = 1111 1001 0111 1011 
C8 = 0001 1100 1000 1101 
C9 = 1001 1101 1001 0010 
C10 = 1110 0110 1010 0100 
C11 = 0011 0001 1011 1100 
C12 = 1011 0000 1100 0110 
C13 = 1100 1011 1101 1001 
C14 = 0100 1010 1110 0001 
C15 = 1101 0100 1111 0011 

 
We see that all nibbles are active and the delta set is balanced at the input to MixColumn.  At 
the output of MixColumn, we have the outputs 
 

D0  = 0101 0101 0111 1101 
D1  = 1111 0101 1001 1101 
D2  = 0110 0101 1011 0110 
D3  = 1010 0101 1010 0111 
D4 = 1001 0101 1100 1000 
D5 = 0100 0101 1100 0001 
D6 = 0000 0101 0100 0101 
D7 = 0011 0101 1100 0000 
D8 = 1000 0101 0010 0111 
D9 = 0001 0101 1100 0111 
D10 = 1101 0101 0101 1011 
D11 = 0111 0101 0101 0010 
D12 = 1110 0101 1011 0001 
D13 = 0010 0101 0101 0001 
D14 = 1011 0101 0011 1100 
D15 = 1100 0101 0100 1000 
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Notice that the nibbles do not necessarily contain all 16 possible values any more.  
Coincidentally, the leftmost nibble still contains all 16 possible values, whereas the second 
has become a passive nibble while the remaining two are neither active nor passive but are a 
mixed combination of values. Nevertheless, computing the XOR of each nibble, we find that 
the XORs are all zero.  This means that the set is still balanced even though the individual 
nibbles are not necessarily active or passive. 

�  
 

 The balanced delta set proceeds through KeyAddition and since KeyAddition does 
not affect its balancedness, it remains that at the output of Round 3, we have a balanced delta 
set.  This balancedness would be destroyed by the next NibbleSub in round 4, hence this is as 
far as we can go.  The propagation of a delta set through the first 3 rounds of Mini-AES is 
given in Figure 8.  Active nibbles are shaded in grey, while the passive nibbles are in white.  
Diagonally striped boxes denote nibbles that are not necessarily active nor passive, but which 
are still balanced.  The checked boxes in Round 4 denote that the nibbles are no longer 
balanced.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Propagation of the Delta-set through 4-round Mini-AES 

 
The Square attack on 4-round Mini-AES proceeds as follows: 
 

1. Consider a set of 16 plaintexts, Pi ( i = 0 to 15) that differ in only one nibble in all 16 
possible values, while the remaining nibbles contain constant values.  This is similar 
to Example 11. 

2. Obtain the ciphertexts, Ti corresponding to these plaintexts. 
3. For each nibble position (nibbles 1 to 4), do 

i. For all possible values (0000 to 1111) of that nibble of the last round key, K4, do 
a. Calculate the value R3 = γ-1 ο π-1 ο σK4 (Ti) for all 16 Ti’s.  This corresponds 

to the 16 outputs of Round 3. 
b. Compute the XOR of all 16 values of R3. 
c. If XOR = 0, then the guessed nibble of K4 is correct.  Else, it is incorrect, so 

cancel it out of the list of possible values for that nibble of K4. 
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ii. After going through all possible values of the nibble, one or more nibbles will 
remain, with one being the correct nibble. 

iii. Repeat steps 1, 2 and 3 with a different set of plaintexts to confirm the correct 
key nibble. 

 

We have just demonstrated how the Square attack can be applied on Mini-AES.  To get a feel 
of the attack, the interested cryptanalysis student is encouraged to try out the attack by hand, 
with pen and paper.   
 After becoming familiar with how the Square attack works on Mini-AES, the novice 
cryptanalyst could refer to [1, 4, 5, 6] for further details on applying the Square attack to the 
actual AES.   
 

6 Conclusion 
 
We have presented a mini version of the Advanced Encryption Standard (AES) that is well-
suited for undergraduate cryptography and cryptanalysis courses.  Once the student feels 
comfortable with Mini-AES, then he will have no problem in understanding the inner 
workings of the real Advanced Encryption Standard.  Mini-AES is also intended to be a 
testbed for students and aspiring cryptanalysts to experiment with the various cryptanalysis 
methods that are currently available in academic literature.  As an example, we demonstrated 
in detail how the Square attack can be used on Mini-AES.  With this, we hope to have 
provided the vital stepping stone for the student to advance into the fascinating world of 
cryptanalysis research. 
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APPENDIX 
 
Here we provide the table of multiplication of two elements in GF(24) modulo x4 + x + 1.  
The entries in the table are represented in hexadecimal notation for compactness.  The row 
and column indices represent the two elements to be multiplied modulo x4 + x + 1, and the 
product is the corresponding entry in the intersection of that row and column.   
 
Example 13 
To find the product of 1011 (B in hexadecimal) and 0111 (7 in hexadecimal), refer to the row 
index B and column index 7.  The intersection contains the entry 4 in hexadecimal.  Hence, 
1011 ⊗  0111 = 0100. 

 
�  

 
 
⊗  0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 8 9 A B C D E F 
2 0 2 4 6 8 A C E 3 1 7 5 B 9 F D 
3 0 3 6 5 C F A 9 B 8 D E 7 4 1 2 
4 0 4 8 C 3 7 B F 6 2 E A 5 1 D 9 
5 0 5 A F 7 2 D 8 E B 4 1 9 C 3 6 
6 0 6 C A B D 7 1 5 3 9 F E 8 2 4 
7 0 7 E 9 F 8 1 6 D A 3 4 2 5 C B 
8 0 8 3 B 6 E 5 D C 4 F 7 A 2 9 1 
9 0 9 1 8 2 B 3 A 4 D 5 C 6 F 7 E 
A 0 A 7 D E 4 9 3 F 5 8 2 1 B 6 C 
B 0 B 5 E A 1 F 4 7 C 2 9 D 6 8 3 
C 0 C B 7 5 9 E 2 A 6 1 D F 3 4 8 
D 0 D 9 4 1 C 8 5 2 F B 6 3 E A 7 
E 0 E F 1 D 3 2 C 9 7 6 8 4 A B 5 
F 0 F D 2 9 6 4 8 1 E C 3 8 7 5 A 
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