MATH 105 211 INTEGRAL CALCULUS HW4

Due date: February 10th. Hand in Q2, Q10, and any two from Q4-Q9.

Riemann Sum Recall that if f is an integrable function on [a, b], one can approximate the integral $\int_a^b f(x) dx$ by a (limit of) Riemann sum:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \left(f(x_1^*)\Delta x + f(x_2^*)\Delta x + \dots + f(x_n^*)\Delta x \right),$$

where $\Delta x = \frac{b-a}{n}$ and each x_i^* is a point in $[a + (i-1)\Delta x, a + i\Delta x]$. The above can be useful when evaluating some limit of infinite sums.

Example 0.1. Evaluate the following limit:

$$\lim_{n \to \infty} \left(\frac{1}{1 + \frac{3}{n}} \cdot \frac{3}{n} + \frac{1}{1 + \frac{6}{n}} \cdot \frac{3}{n} + \dots + \frac{1}{1 + \frac{3n}{n}} \cdot \frac{3}{n} \right)$$

Since all the term involves $\frac{3}{n}$, it is natural to guess $\Delta x = \frac{3}{n} = \frac{b-a}{n}$ (we do not know what are a, b: Just guessing for the moment). Since the term (besides $\frac{3}{n}$) in the limit looks like

$$\frac{1}{1+\Delta x}, \frac{1}{1+2\Delta x}, \dots, \frac{1}{1+n\Delta x} = \frac{1}{1+3}$$

we observe that a = 1, b = 4 and $f(x) = \frac{1}{x}$. Indeed

$$\lim_{n \to \infty} \left(\frac{1}{1 + \frac{3}{n}} \cdot \frac{3}{n} + \frac{1}{1 + \frac{6}{n}} \cdot \frac{3}{n} + \dots + \frac{1}{1 + \frac{3n}{n}} \cdot \frac{3}{n} \right) = \int_{1}^{4} \frac{1}{x} dx = \ln|x| \Big|_{1}^{4} = \ln 4,$$

where we use of course the Fundamental Theorem of Calculus in the last step. Note that the limit is the limit of right hand Riemann sum of the function $\frac{1}{x}$ on [1, 4].

Example 0.2. Note that the choice of a, b and Δx can be quite arbitrary. Indeed, one can always set a = 0, b = 1 and $\Delta x = \frac{1}{n}$ (but then the integrand f would be different). Take again the limit in example 1. The point is to (i) isolate the term $\frac{1}{n}$ and (ii) look up the term $\frac{i}{n}$ and change that into x. Now the general term is like

$$\frac{1}{1+\frac{3i}{n}}\cdot\frac{3}{n} = \frac{3}{1+3\frac{i}{n}}\cdot\frac{1}{n}$$

so we set $f(x) = \frac{3}{1+3x}$ and the limit is equal to

$$\int_0^1 \frac{3}{1+3x} dx$$

Q1: Evaluate $\int_0^1 \frac{3}{1+3x} dx$.

Q2: Evaluate

$$\lim_{n \to \infty} \left(\frac{(2+4/n)^2}{5n} + \frac{(2+8/n)^2}{5n} + \dots + \frac{(2+4n/n)^2}{5n} \right)$$

Q3: Evaluate

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n k \left(\frac{k^2}{n^2} + 1 \right)^{10}.$$

Substitution: Evaluate the following integrals

Q4:
$$\int (x+3)(x-1)^5 dx.$$

Q5:
$$\int \frac{3}{x \ln x} dx.$$

Q6:
$$\int \sqrt{4 - \sqrt{x}} dx.$$

Q7
$$\int x^3 \sqrt{1 - x^2} dx.$$

Q8
$$\int e^{x+e^x} dx.$$

Q9
$$\int \frac{x}{1-x^2+\sqrt{1-x^2}} dx.$$

Q10 Show that for any integrable function f,

$$\int_0^1 f(\sqrt{x})dx = \int_0^1 x f(x)dx.$$

Q11 If f'(1) = 2 and f'(2) = 4, find $\int_1^2 f'(x) f''(x) dx$.