MATH 105211 INTEGRAL CALCULUS HW4

Due date: February 10th. Hand in Q2, Q10, and any two from Q4-Q9.
Riemann Sum Recall that if f is an integrable function on $[a, b]$, one can approximate the integral $\int_{a}^{b} f(x) d x$ by a (limit of) Riemann sum:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left(f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+\cdots+f\left(x_{n}^{*}\right) \Delta x\right)
$$

where $\Delta x=\frac{b-a}{n}$ and each x_{i}^{*} is a point in $[a+(i-1) \Delta x, a+i \Delta x]$. The above can be useful when evaluating some limit of infinite sums.

Example 0.1. Evaluate the following limit:

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{1+\frac{3}{n}} \cdot \frac{3}{n}+\frac{1}{1+\frac{6}{n}} \cdot \frac{3}{n}+\cdots+\frac{1}{1+\frac{3 n}{n}} \cdot \frac{3}{n}\right)
$$

Since all the term involves $\frac{3}{n}$, it is natural to guess $\Delta x=\frac{3}{n}=\frac{b-a}{n}$ (we do not know what are a, b : Just guessing for the moment). Since the term (besides $\frac{3}{n}$) in the limit looks like

$$
\frac{1}{1+\Delta x}, \frac{1}{1+2 \Delta x}, \cdots \frac{1}{1+n \Delta x}=\frac{1}{1+3},
$$

we observe that $a=1, b=4$ and $f(x)=\frac{1}{x}$. Indeed

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{1+\frac{3}{n}} \cdot \frac{3}{n}+\frac{1}{1+\frac{6}{n}} \cdot \frac{3}{n}+\cdots+\frac{1}{1+\frac{3 n}{n}} \cdot \frac{3}{n}\right)=\int_{1}^{4} \frac{1}{x} d x=\left.\ln |x|\right|_{1} ^{4}=\ln 4
$$

where we use of course the Fundamental Theorem of Calculus in the last step. Note that the limit is the limit of right hand Riemann sum of the function $\frac{1}{x}$ on $[1,4]$.
Example 0.2. Note that the choice of a, b and Δx can be quite arbitrary. Indeed, one can always set $a=0, b=1$ and $\Delta x=\frac{1}{n}$ (but then the integrand f would be different). Take again the limit in example 1. The point is to (i) isolate the term $\frac{1}{n}$ and (ii) look up the term $\frac{i}{n}$ and change that into x. Now the general term is like

$$
\frac{1}{1+\frac{3 i}{n}} \cdot \frac{3}{n}=\frac{3}{1+3 \frac{i}{n}} \cdot \frac{1}{n},
$$

so we set $f(x)=\frac{3}{1+3 x}$ and the limit is equal to

$$
\int_{0}^{1} \frac{3}{1+3 x} d x
$$

Q1: Evaluate $\int_{0}^{1} \frac{3}{1+3 x} d x$.
Q2: Evaluate

$$
\lim _{n \rightarrow \infty}\left(\frac{(2+4 / n)^{2}}{5 n}+\frac{(2+8 / n)^{2}}{5 n}+\cdots+\frac{(2+4 n / n)^{2}}{5 n}\right)
$$

Q3: Evaluate

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{k=1}^{n} k\left(\frac{k^{2}}{n^{2}}+1\right)^{10}
$$

Substitution: Evaluate the following integrals

Q4: $\int(x+3)(x-1)^{5} d x$.
Q5: $\int \frac{3}{x \ln x} d x$.
Q6: $\int \sqrt{4-\sqrt{x}} d x$.
Q7 $\int x^{3} \sqrt{1-x^{2}} d x$.
Q8 $\int e^{x+e^{x}} d x$.
Q9 $\int \frac{x}{1-x^{2}+\sqrt{1-x^{2}}} d x$.
Q10 Show that for any integrable function f,

$$
\int_{0}^{1} f(\sqrt{x}) d x=\int_{0}^{1} x f(x) d x .
$$

Q11 If $f^{\prime}(1)=2$ and $f^{\prime}(2)=4$, find $\int_{1}^{2} f^{\prime}(x) f^{\prime \prime}(x) d x$.

