
Name: _________________________________ Username: _____________________

 Lab 8
Elastic Load Balancing, Auto Scaling and CloudWatch

Submission

Five submission requirements (screenshots and data) are spread throughout this document.

Submit via private Piazza Post by 10:00 pm tonight (Tuesday February 7th). Late submissions

will not be accepted and a timestamp of 10:01 pm is a late submission.

Overview

This lab introduces the concept of Elastic Load Balancing. In this lab you will use Elastic Load

Balancing to load balance traffic across multiple Amazon Elastic Compute Cloud (EC2)

instances in a single Availability Zone. You will deploy a simple application on multiple

Amazon EC2 instances and observe load balancing by viewing the application in your browser.

First, you will launch a pair of instances, bootstrap them to install web servers and content, and

then access the instances independently using Amazon EC2 DNS records. Next, you will set up

Elastic Load Balancing, add your instances to the load balancer, and then access the DNS record

again to watch your requests load balance between servers. Finally, you will view Elastic Load

Balancing metrics in Amazon CloudWatch.

The following diagram provides a high-level overview of the architecture you will implement in

this exercise.

This lab also shows you how to set up Auto Scaling to automatically launch compute instances

of your choosing in response to conditions that you specify. In this lab, you will use Auto

Scaling via the AWS console to set up the basic infrastructure of a Launch Configuration and an

Auto Scaling group. You will test the configuration by terminating a running instance and

viewing the results as Auto Scaling starts another instance.

Topics covered

This lab will take you through:

Name: _________________________________ Username: _____________________

 Launching a multiple server web farm on Amazon EC2.

 Using bootstrapping techniques to configure Linux instances with Apache, PHP, and a simple

PHP application downloaded from Amazon Simple Storage Service (S3).

 Creating and configuring a load balancer that will sit in front of your Amazon EC2 web server

instances.

 Viewing Amazon CloudWatch metrics for the load balancer.

 Create an Auto Scaling Launch Configuration

 Create an Auto Scaling group

 Test the Auto Scaling Infrastructure

 View the results of the Auto Scaling launch

What is Elastic Load Balancing?

Elastic Load Balancing automatically distributes incoming application traffic across multiple

Amazon EC2 instances. It enables you to achieve greater levels of fault tolerance in your

applications, seamlessly providing the required amount of load balancing capacity needed to

distribute application traffic.

Achieve higher levels of fault tolerance for your applications by using Elastic Load Balancing to

automatically route traffic across multiple instances and multiple Availability Zones. Elastic

Load Balancing ensures that only healthy Amazon EC2 instances receive traffic by detecting

unhealthy instances and rerouting traffic across the remaining healthy instances. If all of your

Amazon EC2 instances in one Availability Zone are unhealthy, and you have set up Amazon

EC2 instances in multiple Availability Zones, Elastic Load Balancing will route traffic to your

healthy Amazon EC2 instances in those other zones.

Elastic Load Balancing automatically scales its request-handling capacity to meet the demands of

application traffic. Additionally, Elastic Load Balancing offers integration with Auto Scaling to

ensure that you have back-end capacity to meet varying levels of traffic levels without requiring

manual intervention.

Elastic Load Balancing works with Amazon Virtual Private Cloud (VPC) to provide robust

networking and security features. You can create an internal (non-Internet facing) load balancer

to route traffic using private IP addresses within your virtual network. You can implement a

multi-tiered architecture using internal and Internet-facing load balancers to route traffic between

application tiers. With this multi-tier architecture, your application infrastructure can use private

IP addresses and security groups, allowing you to expose only the Internet-facing tier with public

IP addresses.

Elastic Load Balancing provides integrated certificate management and SSL decryption,

allowing you to centrally manage the SSL settings of the load balancer and offload CPU-

intensive work from your instances.

This lab guide explains basic concepts of Elastic Load Balancing in a step-by-step fashion.

However, it can only give a brief overview of Elastic Load Balancing concepts. For further

information, see http://aws.amazon.com/elasticloadbalancing/.

http://aws.amazon.com/elasticloadbalancing/

Name: _________________________________ Username: _____________________

Launch Web Servers

In this section, you will launch two Amazon Linux EC2 instances, with an Apache PHP web

server and basic application installed on initialization. You will also demonstrate a simple

example of bootstrapping instances using the Amazon EC2 metadata service.

Amazon Machine Images (AMIs) and instances

Amazon EC2 provides templates known as Amazon Machine Images (AMIs) that contain a

software configuration (for example, an operating system, an application server, and

applications). You use these templates to launch an instance, which is a copy of the AMI running

as a virtual server in the cloud.

You can launch different types of instances from a single AMI. An instance type essentially

determines the hardware capabilities of the virtual host computer for your instance. Each

instance type offers different compute and memory capabilities. Select an instance type based on

the amount of memory and computing power that you need for the application or software that

you plan to run on the instance. You can launch multiple instances from an AMI.

Your instance keeps running until you stop or terminate it, or until it fails. If an instance fails,

you can launch a new one from the AMI.

When you create an instance, you will be asked to select an instance type. The instance type you

choose determines how much throughput and processing cycles are available to your instance.

 On the Services menu, click EC2.

 Click Launch Instance.

 In the row for the Amazon Linux AMI, which will normally be the first option on the

list, click Select.

 The t2.micro instance type, which is the lowest-cost option, should be automatically

selected. Click Next: Configure Instance Details.

 In the Number of instances box, type 2.

 Ensure Auto-assign Public IP is set to Enable.

 Expand the Advanced Details section.

In this section, you will use the User data field to bootstrap your instance, running a

custom script to install the software packages (Apache and PHP) and sample code (PHP

scripts) needed for this lab. User data provides a mechanism to pass data or a script to the

Amazon metadata service, which instances can access at launch time.

 Copy the following initialization script:

#!/bin/sh

curl -L https://us-west-2-aws-training.s3.amazonaws.com/awsu-spl/spl03-

working-elb/static/bootstrap-elb.sh | sh

 Copy the above script and paste it into the User data box with the As text option

selected. This will automatically install and start the Apache Web server and other

Name: _________________________________ Username: _____________________

components when the instance is created and launched.

Tip If you type this text instead of copying it, press SHIFT+ENTER to create new lines

in the text box.

 Click Next: Add Storage.

 Click Next: Tag Instance to accept the default storage device configuration.

 In the Value box, type a name for your instance <user-id>_lab8.

 Click Next: Configure Security Group.

Now you will create a new security group. A security group acts as a firewall that controls the

traffic allowed into a group of instances. When you launch an Amazon EC2 instance, you can

assign it to one or more security groups. For each security group, you add rules that govern the

allowed inbound traffic to instances in the group. All other inbound traffic is discarded. You can

modify rules for a security group at any time. The new rules are automatically enforced for all

existing and future instances in the group.

 Leave Create a new security group selected

 In the Security group name box, type the name <user-id>_lab8_SG.

 (Optional) Add a description for your security group.

Note By default, AWS creates a rule that allows Secure Shell (SSH) access from any IP

address. It is highly recommended that you restrict terminal access to the ranges of IP

addresses (e.g., IPs assigned to machines within your company) that have a legitimate

business need to administer your Amazon EC2 instance. Because the lab image you are

using will be recycled within two hours, you can bypass this step for the lab.

 Click Add Rule to open a new port.

 In the Type drop-down list, click HTTP.

This will add a default handler for HTTP that will allow requests from anywhere on the

Internet. Since you want this web server to be accessible to the general public, you can

leave this rule as is without any further configuration.

 Click Review and Launch.

 Review your choices, and then click Launch.

Note You may see a warning on this screen that “Your security group … is open to the

world.” This is a result of not restricting SSH access to your machine, as described

earlier. For the purposes of this lab only, you may ignore this warning.

 In the key pair dialog box, create a new key pair and name it <user-id>_lab8. Download

key pair and then click Launch Instances.

A status page notifies you that your instances are launching.

 Click View Instances.

 Before proceeding to the next step, check that the instances you started have finished

their creation cycle. When they have finished their creation cycle, you’ll notice that the

instances transition to a running state with 2/2 checks passed. This indicates that you

instance is now fully available for us.

Name: _________________________________ Username: _____________________

Independently Connect to Each Web Server

When the servers are up and running, you will retrieve the public DNS entry allocated to each

server in order to access them from your web browser.

All Amazon EC2 instances are assigned two IP addresses at launch: a private IP address (RFC

1918) and a public IP address that are directly mapped to each other through Network Address

Translation (NAT). Private IP addresses are only reachable from within the Amazon EC2

network. Public addresses are reachable from the Internet.

Amazon EC2 also provides an internal DNS name and a public DNS name that map to the

private and public IP addresses, respectively. The internal DNS name can only be resolved

within Amazon EC2. The public DNS name resolves to the public IP address outside the

Amazon EC2 network and to the private IP address within the Amazon EC2 network.

Retrieve your host’s public DNS address

 Select your first Amazon EC2 instance to display a list of details and a status update for

your instance in the bottom pane of the console.

 Copy the Public DNS value to your Clipboard. It will look something like ec2-54-84-

236-205.compute-1.amazonaws.com.

Open a new browser window, paste the Public DNS value into the address bar, and press

ENTER.

Your browser will display a screen like this:

This is the web page returned by the PHP script that was installed when the instance was started.

It is a simple script that interrogates the metadata service on each machine and returns the

instance ID and the name of the Availability Zone in which the instance is running.

 Repeat the previous two steps for your second instance.

Notice that each machine displays a different instance ID. This will help you identify which

instance is processing your request when you put a load balancer in front of them.

Name: _________________________________ Username: _____________________

Note: If you see an error instead of the instance ID and Availability Zone when you access the

instances from the browser, try again after a couple of minutes. It’s possible that the

bootstrapping script is still running and has not yet completed installing and starting the web

server and PHP application. If errors persist, verify that you entered the bootstrap script correctly

when you launched your instances and that the security group has port 80 open.

Create a Load Balancer

You now have two web servers. Now you need a load balancer in front of these servers to give

your users a single location for accessing both and to balance user requests across them. For this

lab, you will be creating a simple HTTP load balancer.

 Return to the AWS Management Console.

 In the Console’s left navigation pane, click Load Balancers.

You may need to scroll down to see the link.

 Click Create Load Balancer. The Create Load Balancer wizard opens.

 Click Classic Load Balancer, then click Continue.

 In the Load Balancer name box, type a new name like <user-id>-lab8-ELB.

 Leave all other default settings and click Next: Assign Security Groups.

 For Assign a security group, make sure that Select an existing security group is

selected.

 Select the security group you created when you created your web server instances (i.e.,

<user-id>_lab8_SG), and make sure that no other security groups are selected.

 Click Next: Configure Security Settings.

 Click Next: Configure Health Check.

 Change the Ping Path value to / (delete the text index.html).

 Change the Healthy Threshold value to 3.

The ELB will periodically test the ping path on each of your web service instances to determine

health: a 200 HTTP response code indicates a healthy status, and any other response code

indicates an unhealthy status. If an instance is unhealthy and continues in that state for a

successive number of checks (unhealthy threshold), the load balancer will remove it from service

until it recovers.

In this configuration, making the ping path just a slash (/) will return the default page—the PHP-

generated page seen earlier.

The healthy threshold is the number of successful checks the load balancer expects to see in a

row before bringing an instance into service behind the load balancer. The lower value will speed

things up for this exercise.

 Click Next: Add EC2 Instances.

 Select both of your web server instances to add them to your load balancer, and then click Next:

Add Tags.

 Here is where you could add tags and data to your tags. For this lab, tags are not necessary. Leave

these fields empty and click Review and Create.

Name: _________________________________ Username: _____________________

 Review your settings, and then click Create.

 AWS is now creating your load balancer. It will take a couple of minutes to start up the load

balancer, attach your web servers, and pass the health checks. Click on <user-id>-lab8-ELB to

monitor its progress.

 Select the load balancer that you just created, click the Instances tab, and wait for the status of

both Instances to change to InService. To refresh the status, click the circular arrow icon in the

upper-right.

Submission: When the status of both Instances is InService, take a screenshot of the dashboard,

with Instances tab selected and both InstanceID and AvailabilityZones visible underneath it. Make

sure the name of the Load Balancer is also visible.

My screenshot looks like this:

 When the status of both Instances is InService, click the Description tab.

 Copy the DNS Name value to your Clipboard. It will look something like <user-id>-lab8-ELB-

756456754.us-west-2.elb.amazonaws.com. Do not copy the “(A Record)” text.

Note Load balancers can span Availability Zones, and they also scale elastically as needed to

handle demand. Therefore, you should always access a load balancer by DNS hostname, and not

by IP address. A load balancer may have multiple IP addresses associated with its DNS

hostname.

 Open a new browser window, paste the DNS Name value into the address bar, and press ENTER.

 Refresh your browser a few times, and you should see the Amazon EC2 Instance IDs changing.

This means that the repeated responses are coming back through your two different web servers.

Name: _________________________________ Username: _____________________

Submission: What is the Public DNS Name of your load balancer? Your professor will be

testing the above step while marking.

View Elastic Load Balancing CloudWatch Metrics

Elastic Load Balancing automatically reports load balancer metrics to CloudWatch.

Amazon CloudWatch provides monitoring for AWS cloud resources and the applications

customers run on AWS. Developers and system administrators can use it to collect and track

metrics, gain insight, and react immediately to keep their applications and businesses running

smoothly. CloudWatch monitors AWS resources such as Amazon EC2 and Amazon Relational

Database Service (RDS) DB instances and can also monitor custom metrics generated by your

applications and services. With CloudWatch, you gain system-wide visibility into resource use,

application performance, and operational health.

Amazon CloudWatch provides a reliable, scalable, and flexible monitoring solution that you can

start using within minutes. You no longer need to set up, manage, or scale your own monitoring

systems and infrastructure. Using CloudWatch, you can easily monitor as much or as little metric

data as you need. CloudWatch lets you programmatically retrieve your monitoring data, view

graphs, and set alarms to help you troubleshoot, spot trends, and take automated action based on

the state of your cloud environment.

 Return to the AWS Management Console and, on the Services menu, click CloudWatch.

 In the navigation pane, click Metrics and in the All Metrics tab, click ELB.

Tip: You could also use the search field to search for any metric you would like

to view.

 Scroll up and down to select the metric or metrics you would like to view.

Load balancing metrics include latency, request count, and healthy and unhealthy host counts.

Metrics are reported as they are encountered and can take several minutes to show up in

CloudWatch.

Name: _________________________________ Username: _____________________

 Go to Metrics -> All Metrics -> (All -> ELB -> Per-LB Metrics)

 For your load balancer, select Latency, HealthyHostCount, and UnHealthyRequestCount.
 Open a new browser window, paste the DNS Name value into the address bar, and press ENTER.

 Refresh your browser a few times to get some numbers for Latency.

 Wait 5 minutes and refresh the graph. You should see 3 metrics in the graph

Keep these metrics running, we will come back to them at the end of the lab.

Amazon EC2 Auto Scaling Introduction

Auto Scaling helps you ensure that you have the correct number of EC2 instances available to

handle the load for your application. You create collections of EC2 instances, called Auto

Scaling groups.

 You can specify the minimum number of instances in each Auto Scaling group, and Auto Scaling

ensures that your group never goes below this size.

 You can specify the maximum number of instances in each Auto Scaling group, and Auto Scaling

ensures that your group never goes above this size.

If you specify the desired capacity, either when you create the group or at any time thereafter,

Auto Scaling ensures that your group has this many instances.

If you specify scaling policies, then Auto Scaling can launch or terminate instances as demand

on your application increases or decreases.

Amazon EC2 Auto Scaling Components and Terminology

The following table describes the key components of Auto Scaling.

Images contents

Groups

Your EC2 instances are organized into groups so that they can be treated as a

logical unit for the purposes of scaling and management.When you create a group,

you can specify its minimum, maximum, and, desired number of EC2 instances.

For more information, see Auto Scaling Groups.

Launch configurations

Your group uses a launch configuration as a template for its EC2 instances. When

you create a launch configuration, you can specify information such as the AMI ID,

https://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScalingGroup.html

Name: _________________________________ Username: _____________________

Images contents

instance type, key pair, security groups, and block device mapping for your

instances. For more information, see Launch Configurations.

Scaling plans

A scaling plan tells Auto Scaling when and how to scale. For example, you can

base a scaling plan on the occurrence of specified conditions (dynamic scaling) or

on a schedule. For more information, see Scaling Plans.

Pricing for Auto Scaling

There are no additional fees with Auto Scaling, so it's easy to try it out and see how it can benefit

your AWS architecture.

Specify the AMI and instance type to be created on your behalf

A launch configuration specifies the type of EC2 instance that Auto Scaling creates for you. You

create the launch configuration by including information such as the Amazon Machine Image

(AMI) ID to use for launching the EC2 instance, the instance type, key pairs, security groups,

and block device mappings, among other configuration settings.

 In the AWS Management Console, click EC2.

 In the left-hand navigation pane, under Auto Scaling, click Launch Configurations.

 Click Create a new launch configuration.

 The Choose AMI page displays a list of basic configurations, called Amazon Machine

Images (AMIs), that serve as templates for your instance. Select the 64-bit Amazon

Linux AMI (usually the first in the list).

 On the Choose Instance Type page, you will select a hardware configuration for your

instance. Leave the t2.micro instance type selected by default.

 Click Next: Configure details.

Specify additional details about your instance

 On the Configure Details page, do the following:

o In the Name field, enter a name of your launch configuration (for example,

<user-id>-lab8-config).

o Click to expand Advanced Details, select an IP address type to be assigned to the

instance. If you want to be able to connect to an instance in a VPC, you must

select an option that assigns a public IP address. If you want to connect to your

https://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/LaunchConfiguration.html
https://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/scaling_typesof.html

Name: _________________________________ Username: _____________________

instance but aren't sure whether you have a default VPC, select Assign a public IP

address to every instance. For now, leave the default selection.

o Under Advanced Details, under User data, copy the script that we used to launch

our EC2 instances earlier in the lab

o Click Next: Add Storage. Keep defaults.

o Click Next: Configure Security Group. Select an existing group <user-

id>_lab8_SG

 On the Review page, read the warning about security group settings, but ignore for the

purposes of this lab. Click Create launch configuration.

 In the Select an existing key pair or create a new key pair dialog box, select Choose an

existing key pair and select <user-id>_lab8. Click the acknowledgement check box and

click Create launch configuration.

Create An Auto Scaling Group

Specify the settings for when and how your instances are launched

An Auto Scaling group can help you make sure that your application always has the right amount

of capacity to handle the current traffic demands. You can also use Auto Scaling to make your

applications more highly available and fault tolerant.

 On the Configure Auto Scaling group details page, do the following:

 In Group name, enter a name for your Auto Scaling group (for example, “<user-

id>_lab8_ASG”).

b) Set Group size: Start with 2 instance for this lab.

c) Click in the Subnet field to reveal subnet selections, and choose any.

d) Click Next: Configure scaling policies.

 In the Configure scaling policies page, select Keep this group at its initial size

 Click Next: Configure Notifications. Keep defaults.

 Click Next: Configure Tags. Add tag Name: <user-id>_lab8_asg_instance and click

Review.

 On the Review page, click Create Auto Scaling group.

 Click Close.

Verify your Auto Scaling group

Now that you have created your Auto Scaling group, you are ready to verify that the group has

launched your EC2 instance.

 On the Auto Scaling Groups page, select the Auto Scaling group that you just created.

The Details tab provides information about the Auto Scaling group.

 Select the Activity History tab. The Status column contains the current status of your

instance. When your instance is launching, the status column shows In progress. The

status changes to Successful after the instance is launched. You can also click the refresh

button to see the current status of your instance.

Name: _________________________________ Username: _____________________

 Select the Instances tab. The Lifecycle column contains the state of your newly launched

instance. You can see that your Auto Scaling group has launched your EC2 instance, and

it is in the InService lifecycle state. The Health Status column shows the result of the

EC2 instance health check on your instance.

Add the Auto Scaling Group behind your Load Balancer

 On the navigation pane, under Auto Scaling, choose Auto Scaling Groups.

 Select your group.

 On the Details tab, choose Edit. Click next to the field "Load Balancers" and select your

load balancer created earlier in this lab, <user-id>-lab8-ELB.

 Click Save.

 Go back to Load Balancers Dashboard and select your Load Balancer.

Submission: When the status of all 4 Instances is InService, take a screenshot of the dashboard,

with Instances tab selected and both InstanceID and AvailabilityZones visible underneath it. Make

sure the name of the Load Balancer is also visible.

My screenshot looks like this:

Run a Test of Auto Scaling

Try the following experiment to learn more about Auto Scaling. The minimum size for your

Auto Scaling group is 1 instance. Therefore, if you terminate the running instance, Auto Scaling

must launch a new instance to replace it.

 On the Instances tab, click the ID of the instance. This takes you to the Instances page

and selects the instance.

 Click Actions, select Instance State, and then click Terminate. When prompted for

confirmation, click Yes, Terminate.

 In the left-hand navigation pane, select Auto Scaling Groups and then select the

Instances tab. You will see the initial instance status as Terminating. Soon thereafter you

Name: _________________________________ Username: _____________________

will see a new instance appear with a status of Pending or InService. The default

cooldown for the Auto Scaling group is 300 seconds (5 minutes), so it may take about 5

minutes until you see the scaling activity.

 Return to the Activity History tab. All scaling activities are logged here. After the

scaling activity starts, you'll see entries for the launch and termination of the first instance

and then an entry for the launch of the new instance.

Submission: Take snapshot of complete Activity History. Make sure the name of the Auto

Scaling Group visible in the screenshot.

My screenshot looks like this:

Gather CloudWatch Statistics

 Return to the AWS Management Console and, on the Services menu, click CloudWatch.

 Graph the three metrics as done before (Latency, HealthyHostCount,

UnHealthyHostCount)

 The HealthyHostCount graph should have started with 2 (initial configuration), jumped to

4 (when we added the hosts of the auto scaling group to the load balancer), decremented

to 3 (when we terminated one host in the ASG) and finally be reporting 4 instances (after

ASG automatically launched a new instance)

Tip: You may have to wait 5 minutes for the graph to update itself with latest statistics.

Submission: Take a screenshot of the Metrics Graph

