
Quack: A Language for Beginning Compiler Writers
Reference Grammar

Version 0.2.2, January 24, 2017

Michal Young

1 Introduction
quack (noun)
1. charlatan
2. a pretender to medical skill
3. a cry made by a duck

– Merriam-Webster Dictionary

This manual describes the lexical and syntactic structure of a small language
defined specifically for use in a very short (10 week) compiler construction class.

2 A Quick Tour
The example program in Figure 1 illustrates some of themain features of Quack and
should help in understanding the piecemeal presentation that follows. This program
introduces three Quack classes (Pt, Rect, and Square) and uses the built-in classes
Int and String. The output should be

((5,5), (5,10), (10,10), (10,5))

Note that arguments to the constructor for class Pt are given in the class decla-
ration, and the statements immediately following the class signature are the body of
the constructor. As in Java, ’this’ is an identifier bound to the current object instance
(sometimes called the “receiver” object) in all methods, including the constructor.
Unlike Java, Quack does not permit omitting ’this’ in a reference to an instance vari-
able. (If ’this’ could be omitted, we would need another way to distinguish between
instance variables and local variables used only in the constructor.)

Methods STR and PRINT are defined in Obj, the root of the class hierarchy,
but may be overridden by other classes using the standard compatibility rules fa-
miliar from languages like Java. Thus if a method STR (which is roughly like Java’s
’to string’ method) is defined, it must take no arguments (except the implicit ’this’
passed in all method calls), and it must return a String or a subclass of String.
Method PRINT is seldom overridden, but o.PRINT() prints o.STR, so the behavior
of PRINT is affected by overriding STR.

Note there are no variable declarations in the sample program. Nonetheless,
Quack is a statically typed language like Java, not a dynamically typed language like

1

/**
* A simple sample Quack program
*/

class Pt(x: Int, y: Int) {
this.x = x;
this.y = y;

def STR() : String {
return "(" + this.x.STR() + ","

+ this.y.STR() + ")";
}

def PLUS(other: Pt) : Pt {
return Pt(this.x + other.x, this.y + other.y);

}

def _x() : Int { return this.x; }
def _y() : Int { return this.y; }

}

class Rect(ll: Pt, ur: Pt) extends Obj {
this.ll = ll;
this.ur = ur;

def translate(delta: Pt) : Pt { return Rect(ll+Pt, ur+Pt); }

def STR() {
lr = Pt(this.ur._y(), this.ll._x()); // lower right
ul = Pt(this.ll._x(), this.ur._y()); // upper left
return "(" + this.ll.STR() + ", "

+ ul.STR() + ","
+ this.ur.STR() + ","
+ lr.STR() + ")";

}
}

class Square(ll: Pt, side: Int) extends Rect {
this.ll = ll;
this.ur = Pt(this.ll._x() + side, this.ll._y() + side);

}

a_square = Square(Pt(3,3), 5);
a_square = a_square.translate(Pt(2,2));
a_square.PRINT();

Figure 1: A simple Quack program that prints ((5,5), (5,10), (10,10), (10,5))

2

Python. The static type of a variable is calculated (“inferred”) by the compiler by
considering all assignments to the variable. Thus the instance variables x and y of
Pt have type Int, because they are assigned an Int value.

While this sample program does not include type declarations for instance vari-
able or local variables, an assignment can optionally include a type declaration:

a_square: Rect = Square(Pt(3,3), 5);

If this leaves you wondering what happens when different types are assigned to
the same variable, good for you. The type inference rules will be described in more
detail later, but for now suffice it to say that the static type of a variable is the most
specific type that consistent with all assignments to that variable.

3 Quack Grammar

3.1 Notation

The grammar of Quack is described here informally in English and more formally
in an extended BNF1 notation.

foo denotes the literal string “foo”. We use this for keywords like class and
punctuation like : .

⟨Sym⟩ (capitalized, in angle brackets) indicatesSym is a non-terminal symbol. For
example, ⟨Class⟩ represents the grammatical symbol for a class in Quack, but
class denotes the keyword that introduces a class definition.

t (italic font, lower case) indicates t is a terminal symbol (other than a keyword
or punctuation). For example, ident is the terminal symbol for an identifier
in Quack. “foo” and “a long variable name” are two different identifiers in
Quack, both represented by ident in the grammar.

We use the following shorthands and conventions in our EBNF:

• We use λ to represent the empty string. This is just for clarity of expression.

• We use braces to denote zero or more repetions (exactly like Kleene star in a reg-
ular expression).

⟨S⟩ ::= α { X Y Z } β

indicates that XY Z may appear zero or more times between α and β.

• We use square braces like [X Y Z] to indicate an optional sequence of symbols,
i.e., zero or one occurrences.

• We use parentheses to group symbols.
1Backus Normal Form, or Backus-Naur Form, depending on whom you ask.

3

3.2 Structure of a Quack program

A program is a sequence of zero or more class definitions followed by zero or more
statements.
⟨Program⟩ ::= {⟨Class⟩} {⟨Statement⟩}

A class is a class signature followed by the body of the class. The class signature
gives the class name, arguments to its constructor method, and its superclass.
⟨Class⟩ ::= ⟨Class Signature⟩ ⟨Class Body⟩

⟨Class Signature⟩ ::= class ident (⟨Formal Args⟩) [extends ident]

⟨Formal Args⟩ ::= [ident : ident { , ident : ident }]

For example,

class Point(x: Int, y: Int) extends Obj

When the extends clause is omitted, it is taken as shorthand for extends Obj,
so the above example may be rewritten

class Point(x: Int, y: Int)

Classes in Quack form an inheritance hierarchy which is also a type hierarchy.
This is familiar from languages like Java: If class C is a subclass of class S, then
type C is also a subtype of type S and an object of type C may be used where an
object of type S is required. The usual rules of covariance for method arguments
and contravariance for results apply. Obj is the root of the class hierarchy.

Classes may not be redefined. Identifiers in Quack, including class names, are
case sensitive; MyClass is different from myclass which is different from myClass.
Although we conventionally use capitalized identifiers for class names in Quack, it
is not a rule of the language.

Class signatures have global scope. All methods are accessible through objects
of that class (i.e., like public methods in Java), but all instance variables are accessi-
ble only within a class (like private fields in Java). There is no identifier overloading
in Quack: Although two things with the same name may appear in distinct scopes,
a class cannot have the same name as a method or variable. The convention of cap-
italizing class names and using lowercase for variables and methods will prevent
clashes between them.

The body of a class begins with a sequence of zero or more statements that act
as the constructor of the class. All instance variables must be created in these state-
ments. Method declarations follow the statements.
⟨Class Body⟩ ::= { {⟨Statement⟩} {⟨Method⟩} }

Method declarations require explicit declarations of argument and result types.
This makes type checking or type inference simple and local.
⟨Method⟩ ::= def ident (⟨formal arguments⟩) [: ident]

⟨Statement Block⟩

A statement block is a sequence of zero of more statements, delimited by curly
braces.

4

⟨Statement Block⟩ ::= { {⟨Statement⟩} }

4 Statements

4.1 Control structures

Quack has two control structures, if conditionals and while loops. Conditionals
include optional elif and else parts. Note that we avoid the “dangling else problem”
by making each branch be a block, not a statement.
⟨Statement⟩ ::= if ⟨R Expr⟩ ⟨Statement Block⟩

{ elif ⟨R Expr⟩ ⟨Statement Block⟩}
[else ⟨Statement Block⟩]

The only loop construct in Quack is the basic while loop, without break or con-
tinue or any other fancy bits:
⟨Statement⟩ ::= while ⟨R Expr⟩ ⟨Statement Block⟩

4.2 Return

A method returns a value to its caller with a return statement. A return statement
may be followed by an expression indicating the value to be returned to the caller. If
no expression is given, we treat it as if it returned a default value of a special empty
type. The type of the expression given in the return statement must be compatible
with the return type declared in the method declaration, and the only value com-
patible with the default return type (given by omitting a declared return type in the
method) is the value returned by omitting an expression in the return’ statement.
⟨Statement⟩ ::= return [⟨R Expr⟩] ;

4.3 Assignments

An assignment statement has a left-hand side and a right hand side. The left hand
side evaluates to a location.2 The right hand side evaluates to a value. All values in
Quack are references to objects.
⟨Statement⟩ ::= ⟨L Expr⟩ [: ident] = ⟨R Exp⟩ ;

A left-hand expression (that is, designation of a location in which to store a
value) is often just an identifier, but sometimes it is the location of a field of an
object.
⟨L Expression⟩ ::= ident

⟨L Expression⟩ ::= ⟨R Exp⟩ . ident

2You may think of a location as a memory address, although it is also useful have a more abstract
notion of an environment as a map from names to locations and a store as a map from locations to
values.

5

It may appear surprising that a right-hand expression, evaluated for value, can
appear as part of a location in a left-hand expressiion, but consider:

foo.findmax(this.children).weight = 42;

Note that field access is left-associative: a.b.c is (a.b).c, not a.(b.c).

4.4 Bare Expressions

A right-hand expression by itself can serve as a statement. This may make sense if
evaluaton of a method has an effect as well as a value.
⟨Statement⟩ ::= ⟨R Exp⟩ ;

I think allowing all bare expressions as statements is probably a bad idea, but
the grammar is not the place to restrict which expressions can appear as statements.
Extending the type system so that each method either has an effect or a result but
never both, and then restricting bare expressions tomethod calls with effects, might
be a nice extension project.

5 Expressions
So far we have a lot ways to name and structure things, but we haven’t defined any
ways to perform actual computation. Time to fix that. In what follows I’ll use ‘ex-
pression’ as shorthand for ‘right-hand expression’ except when necessary to disam-
biguate.

The simplest expressions are literal constants. The literal constants in Quack are
quoted strings and integers, whose forms are described in the lexical structure and
are completely unsurprising.
⟨R Expr⟩ ::= string literal

⟨R Expr⟩ ::= integer literal

Also, anything that can be named in a left-hand expression can be evaluated in
a right-hand expression:
⟨R Expr⟩ ::= ⟨L Expr⟩

Quack has a handful of binary operators for addition, subtraction, etc.
⟨R Expr⟩ ::= ⟨R Expr⟩ + ⟨R Expr⟩

⟨R Expr⟩ ::= ⟨R Expr⟩ - ⟨R Expr⟩

⟨R Expr⟩ ::= ⟨R Expr⟩ * ⟨R Expr⟩

⟨R Expr⟩ ::= ⟨R Expr⟩ / ⟨R Expr⟩

This expression grammar is highly ambiguous: Howdowe knowwhether a−b+
c is a−(b+c) or (a−b)+c? It would be possible to expand the grammar to determine
both associativity and precedence, but we’ll keep it simple (and exploit features of
almost all parser generator tools) by simply declaring our intention: Multiplication

6

and division have higher precedence than addition and subtraction, and they are all
left-associative (i.e., a− b + c is (a− b) + c but a− b/c is a− (b/c)).

If we want to group in a different way, or just be very clear about the meaning
of an expression, we can use parentheses:
⟨R Expr⟩ ::= (⟨R Expr⟩)

The binary operators are actually syntactic sugar for method calls. For example,
a + b will be represented internally as a.PLUS(b). This is called “desugaring”.
Because we desugar, we get a simple kind of operator overloading for free. You can
define a class Point like this:

/*
* A point has an x component and a y component
*/
class Pt(x: Int, y: Int) {

this.x = x;
this.y = y;

/* Note type of this.x and this.y is
* fixed in the object --- methods cannot
* change it. Essentially, the flow relation is
* from every method to every other method.
*/

def _get_x(): Int {
return this.x;

}

def _get_y(): Int {
return this.y;

}

/* Mutator: Evaluate for effect */
def translate(dx: Int, dy: Int): Nothing {

this.x = this.x + dx;
this.y = this.y + dy;

}

/* More functional style: Evaluate for value */
def PLUS(other: Pt): Pt {

return Pt(this.x + other.x, this.y + other.y);
}

}

Now Point(3,2) + Point(4,4) will give a point with coordinates (7,6).
Comparisons and logical operations also expressions. Comparisons can be syn-

tactic sugar, but and, or, and not are not, because Quack (like most languages) uses

7

short-circuit evaluation.3

⟨R Expr⟩ ::= ⟨R Expr⟩ == ⟨R Expr⟩

⟨R Expr⟩ ::= ⟨R Expr⟩ <= ⟨R Expr⟩

⟨R Expr⟩ ::= ⟨R Expr⟩ < ⟨R Expr⟩

⟨R Expr⟩ ::= ⟨R Expr⟩ >= ⟨R Expr⟩

⟨R Expr⟩ ::= ⟨R Expr⟩ > ⟨R Expr⟩

⟨R Expr⟩ ::= ⟨R Expr⟩ and ⟨R Expr⟩

⟨R Expr⟩ ::= ⟨R Expr⟩ or ⟨R Expr⟩

⟨R Expr⟩ ::= not ⟨R Expr⟩

Comparisons bindmore loosely (that is, have lower precedence) than arithmetic
operators. Logical operations have lower precedence than comparisons.

5.1 Method Invocation

To call a method, we evaluate a right-hand expression to get an object. The method
is found in the class of the object. Zero or more actual arguments are passed in the
method call.
⟨R Expr⟩ ::= ⟨R Expr⟩ . ident (⟨Actual Args⟩)

⟨Actual Args⟩ ::= [⟨R Expr⟩ { , ⟨R Expr⟩}]

Constructors are the onlymethods that can be called without first dereferencing
an object value.
⟨R Expr⟩ ::= ident (⟨Actual Args⟩)

6 Lexical Structure

6.1 White Space

White space consists of any sequence of the ASCII characters: HT, NL, CR, and SP.
These characters are represented by the following C/C++ character literals respec-
tively: '\t', '\n', '\r', and ' '. White space is ignored in Quack, except in
quoted strings and to separate tokens.

6.2 Keywords

The keywords of Quack are
3Semantically, short-circuit evaluation requires lazy evaluation; we cannot decide whether to eval-

uate the right-hand operand of and until we know the result of evaluating the left-hand operand.
Method calls in Quack are call-by-value and are not lazy: All arguments are evaluated before their re-
sults are transmitted to the method. In principle this does not matter for not, since its single operand
must always be evaluated. In practice, though, we will translate not as well as and and or into control
flow, and often not will translate into zero operations.

8

class def extends
if elif else
while return

There are also a handful of predefined identifiers that name built-in classes and val-
ues. They are not keywords. The predefined identifiers in Quack are

String Integer Obj
Boolean true false
and or not
Nothing none

6.3 Punctuation

The following symbols are used like keywords in Quack:

+,−, ∗, / Arithmetic operators, syntactic sugar for PLUS, MINUS, TIMES, DI-
VIDE method calls.

==, <=, <,>=, > Comparisons, syntactic sugar for EQUALS, ATMOST, LESS,
ATLEAST, MORE.

and,or,not Logical operations with short-circuit semantics. These are not syntactic
sugar. They can be used only for boolean values, and they have short-circuit
semantics.

{ } Used to mark the beginning and end of a class or statement block.

= Used to indicate assignment. I pronounce this symbol “gets”.

() Used to group sub-expressions.

, Used to separate formal or actual arguments in an argument list.

; Used to mark the end of a statement.

. Used to reference a method or variable in an object.

: Used to associate a type with a variable in an assignment and to indicate the type
of value returned by a method.

6.4 Identifiers

Identifiers are strings (other than keywords) beginning with a letter or underscore
and consisting of letters, digits, and the underscore character. my_cool_fUNCtion
is a an identifier, as are l33tc0de, and ___just__dont. Note that PLUS, MINUS,
TIMES, and DIVIDE are valid identifiers and can appear as method names in any
class to give meaning to the binary operators +,−, ∗ and /. Likewise EQUALS,
ATMOST, ATLEAST, LESS, and MORE can be defined so that the comparisons ==
, <=, <,>=, >work for some class. Using those operators on values for which they
are not defined results in the same error messages as using any other method that
has not been defined. (Nothing prevents you from defining a comparison method
from returning a non-boolean value, but it’s a bad idea.)

9

Although it is conventional to begin class nameswith a capital letter and variable
andmethod names with lower case letters, it is not a rule of Quack. In lieu of adding
a properties facility to Quack, I have informally adopted the convention of starting
a ‘getter’ method name with a single underscore.

6.5 Integer Literals

Integer literals are non-empty strings of digits, optionally preceded by -. 0 is an
integer literal, as are 42, 99099, and 00088.

6.6 String Literals

There are two forms for string literals. The simple version of string literals are en-
closed in double quotes "…". Within a string literal, a sequence ‘\c’ is illegal unless
it is one of the following:

\0 NUL
\b backspace
\t tab
\n newline
\r return
\f form feed
\" double quote
\\ backslash

A newline character may not appear in the simple form of a string literal (even
if escaped):

"This is not\
OK"

Note the difference between the illegal example above, in which the newline
character itself is escaped, and the following, in which the newline character is de-
noted by an escape code:

"This is\n OK"

The other form of string literals starts with three double quotes and continues
until ended by three double quotes (again). Any characters, including backslashes
and newlines are legal. The only thing forbidden is three double quotes. Thus the
following represents a string literal:

"""This starts a string literal
that continues on for several lines
even though it includes "'s and \'s and newline characters
in a "wild" profu\sion\\ of normally i\\egal t"ings.\"""

The string contains literally everything inside of it.

10

6.7 Comments

There are two forms for comments in Quack. Any characters after two slashes //
and before the next newline (or EOF, if there is no next newline) are ignored. Also,
any characters excepting the sequence */ may be enclosed in C-style comments:
/*…*/.

7 Acknowledgments
Although Quack is a new language, portions of this manual are cribbed directly
from the documentation of Cool, the Classroom Object-Oriented Language, by
Alex Aiken.

Quack draws ideas from a variety of contemporary programming languages.
Defining asmuchof the expression grammar as possible as syntactic sugar onmethod
calls is inspired by Python, but also influenced by work on sugaring and desugaring
by Shriram Krishnamurthy. Use of very simple, local type inference rules (with ex-
plicit type declarations in method signatures) is inspired by a number of recent lan-
guages including C#, Swift, and Rust, and of course the basic idea of type inference
goes back much further, to Milner’s ML. Leaving out null pointers or uninitialized
variables is likewise taken from a variety of recent languages.

11

Mistakes
There are mistakes in this language definition, and in this manual. I don’t know
what they are, but I am certain they are there. Some of them may be trivial, but
it is quite likely that some deeper inconsistencies or Very Bad Ideas have crept in.
Please help me find and fix them. Send sightings of definite and possible bugs to
michal@cs.uoregon.edu with subject “Quack bugs.”

“I see you’re admiring my little box,” the Knight said in a friendly
tone. “It’s my own invention – to keep clothes and sandwiches in. You
see I carry it upside-down, so that the rain ca’n’t get in.”

“But the things can get out,” Alice gently remarked. “Do you know
the lid’s open?” “I didn’t know it,” the Knight said, a shade of vexation
passing over his face.

– Lewis Carroll, Through the Looking Glass
illustrated by John Tenniel

12

