
3/3/16 CMPS 6640/4040 Computational Geometry 1

CMPS 6640/4040 Computational Geometry
Spring 2016

Plane Sweep Algorithms
Carola Wenk

3/3/16 CMPS 6640/4040 Computational Geometry 2

Line Segment Intersection

• Input: A set S={s1, …, sn} of (closed) line
segments in R2

• Output: All intersection points between segments
in S

3/3/16 CMPS 6640/4040 Computational Geometry 3

General position

Assume that “nasty” special cases don’t happen:
– No line segment is vertical
– Two segments intersect in at most one point
– No three segments intersect in a common point

3/3/16 CMPS 6640/4040 Computational Geometry 4

Line Segment Intersection

• n line segments can intersect as few as 0 and as many as
=O(n2) times

• Simple algorithm: Try out all pairs of line segments
→ Takes O(n2) time
→ Is optimal in worst case

• Challenge: Develop an output-sensitive algorithm
– Runtime depends on size k of the output
– Here: 0  k  (n2+n)/2
– Our algorithm will have runtime: O((n+k) log n)
– Best possible runtime: O(n log n + k)
→ O(n2) in worst case, but better in general

n
2

3/3/16 CMPS 6640/4040 Computational Geometry 5

Plane Sweep: An Algorithm
Design Technique

• Simulate sweeping a vertical line from left to right across the plane.
• Maintain cleanliness property: At any point in time, to the left of sweep

line everything is clean, i.e., properly processed.
• Sweep line status: Store information along sweep line
• Events: Discrete points in time when sweep line status needs to be

updated

Algorithm Generic_Plane_Sweep:

Initialize sweep line status S at time x=-
Store initial events in event queue Q, a priority queue ordered by x-coordinate
while Q ≠ 

// extract next event e:
e = Q.extractMin();
// handle event:
Update sweep line status
Discover new upcoming events and insert them into Q

3/3/16 CMPS 6640/4040 Computational Geometry 6

Plane sweep
algorithm

• Cleanliness property:
– All intersections to the left of sweep line l have been

reported
• Sweep line status:

– Store segments that intersect the sweep line l, ordered along
the intersection with l .

• Events:
– Points in time when sweep line status changes

combinatorially (i.e., the order of segments intersecting l
changes)

→ Endpoints of segments (insert in beginning)
→ Intersection points (compute on the fly during plane sweep)

3/3/16 CMPS 6640/4040 Computational Geometry 7

Event Handling
1. Left segment endpoint

– Add segment to sweep line status
– Test adjacent segments on sweep line l for intersection with new

segment (see Lemma)
– Add new intersection points to event queue

a

b
c

de

c
b
d

c
b
e
d

3/3/16 CMPS 6640/4040 Computational Geometry 8

Event Handling
2. Intersection point

– Report new intersection point
– Two segments change order along l

→ Test new adjacent segments for new intersection points (to
insert into event queue)

a

b
c

de

c
e
b
d

c
b
e
d

Note: “new” intersection
might have been already
detected earlier.

3/3/16 CMPS 6640/4040 Computational Geometry 9

Event Handling
3. Right segment endpoint

– Delete segment from sweep line status
– Two segments become adjacent. Check for intersection points (to

insert in event queue)

a

b
c

de

e
c
b
d

e
c
d

3/3/16 CMPS 6640/4040 Computational Geometry 10

Sweep Line Status
• Store segments that intersect the sweep line l, ordered along the

intersection with l .
• Need to insert, delete, and find adjacent neighbor in O(log n) time
• Use balanced binary search tree, storing the order in which

segments intersect l in leaves

b
c

de

c
b
e
d

3/3/16 CMPS 6640/4040 Computational Geometry 11

Balanced Binary Search Tree
-- a bit different

1

6 8 12 14

17

26 35 41 42

43

59 61

key[x] is the maximum key of any leaf in the left subtree of x.

3/3/16 CMPS 6640/4040 Computational Geometry 12

121

6 8 12 14

17

26 35 41 42

43

59 61

6 26 41 59

1 14 35 43

428

17
x

 x > x

Balanced Binary Search Tree
-- a bit different

key[x] is the maximum key of any leaf in the left subtree of x.

3/3/16 CMPS 6640/4040 Computational Geometry 13

Event Queue

• Need to keep events sorted:
– Lexicographic order (first by x-coordinate, and if two events

have same x-coordinate then by y-coordinate)
• Need to be able to remove next point, and insert new

points in O(log n) time
• Need to make sure not to process same event twice
 Use a priority queue (heap), and possibly extract

multiples
 Or, use balanced binary search tree

3/3/16 CMPS 6640/4040 Computational Geometry 14

Runtime

• Sweep line status updates: O(log n)
• Event queue operations: O(log n), as the total

number of stored events is  2n + k, and each
operation takes time
O(log(2n+k)) = O(log n2) = O(log n)

• There are O(n+k) events. Hence the total runtime
is O((n+k) log n)

k = O(n2)

3/3/16 CMPS 6640/4040 Computational Geometry 15

Plane Sweep: An Algorithm
Design Technique

• Plane sweep algorithms (also called sweep
line algorithms) are a special kind of
incremental algorithms

• Their correctness follows inductively by
maintaining the cleanliness property

• Common runtimes in the plane are O(n log n):
– n events are processed
– Update of sweep line status takes O(log n)
– Update of event queue: O(log n) per event

