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Polygon Triangulation:

Summarizing

Running time of polygon triangulation:
e O(n?) by substracting ears
e O(n?) by inserting diagonals
e O(nlogn) by:

1. Decomposing the polygon into monotone subpolygons in O(nlogn) time

2. Triangulating each monotone subpolygon in O(n) time

s it possible to triangulate a polygon in o(nlogn) time?

Yes.

There exists an algorithm to triangulate an n-gon in O(n) time, but it is too complicated
and, in practice, it is not used.



Convex Partitioning of a Polygon:

* A partition into triangles can be viewed as a
special case of partition into convex polygons

* Two goals of partition (conflicting):
* Into as few convex pieces as possible
* Do as quickly as possible

* Two types of partition:

* By diagonals (endpoints must be vertices)
* By segments (endpoints are any point in the boundary)
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Convex Partitioning of a Polygon:

Fig. 1.26. Of a polygon’s n vertices, as many as » — 3 may be reflex.

LEMMA 1.5 [Chazelle 1980]. Any polygon can be partitioned into at most
r + 1 convex pieces.
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Convex Partitioning of a Polygon:

l;
o

O

Fig. 1.27. *“Shutter” shapes show that r guards can be necessary.

THEOREM 1.5 [O’'Rourke 1982). r guards are occasionally necessary and

always sufficient to see the interior of a simple n-gon of r = 1 reflex vertices.
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Convex Partitioning (O’Rourke):

e Competing Goals:
* minimize number of convex pieces
* minimize partitioning time

e Add (Steiner) points or just use diagonals and not add points?

S

FIGURE 2.10 r + 1 convex pieces: r = 4; 5 pieces.

Adding segments with Steiner points. Adding only diagonals.
r = number of reflex vertices
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Bounds on Convex Partitions:

Theorem (Chazelle): Let ® bethefewest number of convex pieces
into which a polygon may be partitioned. For a polygon of r
reflex vertices.

r
— |+1<Dd<r+1
2
FIGURE 2.11 [r/2] 4+ 1 convex pieces: r = 7; 5 pieces. FIGURE 2.10 r + 1 convex pieces: r = 4; 5 pieces.
Lower bound: Upper bound:
Must eliminate all reflex vertices. Bisect each reflex angle.

Single segment resolves at most 2

reflex angles.
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Convex Partitioning: Hertel and Mehlhorn Algorithm

» A very clean algorithm that partitions
with diagonals quickly

* has bounded “badness” in terms of
the number of convex pieces

» A diagonal d is essential for vertex v if
removal of d makes v non-convex

»he algorithm
« start with a triangulafion of P
* remove an inessential diagonal
* repeat
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Convex Partitioning: Hertel and Mehlhorn Algorithm (i ©

Claim:

There can be at most two diagonals essential
for each reflex vertex.

Corollary:

The algorithm is not worse than 4x optimal in
the number of convex pieces.
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Convex Partitioning: Hertel and Mehlhorn
Algorithm

- Essential diagonal d for vertex v if removing d creates
nonconvex piece at V.

. Start with any triangulation.
. Iteratively remove inessential diagonals.
- Can bedonein O(n) time!

Lemma 1: There can be at
most 2 diagonals essential
for any reflex vertex.

FIGURE2.12 Essential diagonals. Diagonal a is not essential because bis alsoin A, Similarly
¢ is not essential,

By Lemma 1, number of essential diagonals < 2r
Number of convex pieces. <2r+1<2r+4<40
- Recall:

“—W+1sq>:> 4U;—W+1Js4q>:> 4(;—W+4s4¢:> 2r + 4 < 4D
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Algorithms for Optimal Convex Partitioning of o
a Polygon (O’Rourke):

« Optimal convex partition using diagonals
e Greene (1983): O(n%) time with dynamic programming
e Keil (1985): O(n3logn) time with dynamic programming
« Optimal convex partition using arbitrary segments
e Chazelle (1980) : O(n3) time
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CGAL Convex Polygon Partitioning:

Y-Monotone partition:
de Berg et al.: O(nlgn) time (see earlier slides)
Optimal convex partition using diagonals
Greene (1983): O(n%) time with dynamic programming
Approximate convex partition removing inessential diagonals
Starts with triangulation:
2D constrained triangulation

Run time depends on number of triangulation edges
Intersected by each polygon edge

Hertel/ Melhorn: O(n) time after triangulation (see earlier slide) | < 40
Approximate convex partition using sweep-line |<4®

Greene (1983): O(nign)

Starts with y-monotone partition (de Berg et al.)
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Georgy Voronoy: (1868-1908)

 Georgy Feodosevich Voronoy was a
Russian and Ukrainian mathematician.
Among other things, he defined the
Voronoi diagram.
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Boris Delaunay: (1890-1980)

* Boris Nikolaevich Delaunay or
Delone was one of the first Russian
mountain climbers and a
Soviet/Russian mathematician.

« The triangulation is named
after Boris Delaunay for his work on
this topic from 1934.
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Voronoi Diagram:

Example (What does it look like?)

Each cell is a set of points whose nearest site is the same
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Voronoi Diagrams of 2D point set: L, and
L, distance norm

 Euclidean Manhattan
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Voronoi Diagram: History

« The partitioning of a plane with points into convex
polygons such that each polygon contains exactly
one generating point and every point in a given polygon is
closer to its generating point than to any other. A Voronoi
diagram is sometimes also known as a Dirichlet tessellation.
The cells are called Dirichlet regions or Voronoi polygons.
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Voronoi Diagram: History

« Voronoi diagrams were considered as early at 1644 by René
Descartes and were used by Dirichlet (1850) in the
Investigation of positive quadratic forms. They were also
studied by Voronoi (1907), who extended the investigation of
Voronol diagrams to higher dimensions. They find
widespread applications in areas such as computer graphics,
epidemiology, geophysics, and meteorology. A particularly
notable use of a Voronoi diagram was the analysis of the
1854 cholera epidemic in London, in which physician John
Snow determined a strong correlation of deaths with
proximity to a particular (and infected) water pump on Broad
Street.
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Voronoi Diagram: Applications

H
H
H
Given ambulance posts in a country, H
in case of an emergency somewhere, H
where should the ambulance come
from?
H
H
H
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Voronoi Diagram:

Given ambulance posts in a country,
in case of an emergency somewhere,
where should the ambulance come

from?

Voronoi diagram induced by a set of points (called sites):
Subdivision of the plane where the faces correspond to the

regions where one site is closest
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Voronoi Diagram:
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Voronoi Diagram: Spatial Interpolation

sand
sand °
L
clay
fﬂay *
Suppose we tested the soil at a e clay
number of sample points and
classified the results
chalk chalk
L L

® |[imestone
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Voronoi Diagram: Spatial Interpolation

Suppose we tested the soil at a
number of sample points and
classified the results
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limestone
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Suppose we tested the soil at a
number of sample points and
classified the results

chalk chalk
® L

b [ ]
limestone
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Voronoi Diagram:

Suppose we measured the lead
concentration at a number of
sample points
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Voronoi Diagram: Spatial Interpolation

Suppose we measured the lead
concentration at a number of
sample points
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Suppose we measured the lead
concentration at a number of
sample points
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Let A7 =A;1 +Az+4---+As

The interpolated value is

A A A
sy B R R S

220
AT AT AT

11 TROORKEE HE N

31



