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Agenda
● Brief review from last class
● Fault injection
● Introduction to LLFI + Demo
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Review from last class
Dependable systems design

● Hardware dependability
● Duplication and TMR
● Software approaches
● Parallel systems
● Distributed systems
● Case studies of real world systems

Dependability evaluation techniques

● Combinatorial methods
● Fault-injection
● State-based methods
● Statistical methods
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Evaluating Dependability
● We need methods to evaluate the dependability of a system.
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What is Fault Injection?
● Inject faults into a program and observe the program’s behaviour under the 

fault
● Evaluates the error resilience of a program
● Guide design decisions around system robustness
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Fault Injection Experiment
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Similarities to mutation 
testing?



Fault Model
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Fault Error Failure



LLFI
● Software-Implemented Fault Injection (SWiFI) tool
● Implemented using the LLVM compiler
● Randomly injects faults into programs and enables us to study their effects
● Developed at the UBC Dependable Systems Lab
● Available on Github: 

○ https://github.com/DependableSystemsLab/LLFI
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LLFI Workflow

Compilation
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Fault Types

● Hardware Faults
○ Bit flip
○ Stuck at 0/1

● Software Faults
○ File I/O Buffer Overflow
○ Buffer Overflow Malloc
○ Function Call Corruption
○ Invalid Pointer
○ Race Condition
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Challenge: Creating faults representative of real world scenarios



Failure Modes
● Benign

○ Program executes and returns the correct outputs

● Crash
○ Program prematurely terminates

● Hang
○ Program never terminates (within a timeout period)

● Silent Data Corruption (SDC):
○ Program executes but returns erroneous outputs
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Example Scenario: Bit flip
Objective: Evaluate the resilience of controller firmware on an airplane to bit flips

● A bit flip is a common type of soft error in hardware: 0 → 1, 1 → 0
● Soft errors arise randomly and naturally from alpha particles / cosmic 

radiation
● Cosmic radiation is more prominent at higher altitudes
● Upon encountering a bit flip, will the controller firmware crash, return 

corrupted output(s), or return the correct output(s)?
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Getting Started with LLFI
1. Install LLFI with all its dependencies
2. Execute the command line version of LLFI by navigating to its folder
3. Run the factorial example
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More info on LLFI
● Check out the README and Wiki pages on the LLFI GitHub page
● Post additional questions on Piazza

15


