
Hardware	Level	Fault-Tolerance	
Techniques	

EECE	513:	Design	of	Error	Resilient	
Computer	Systems	



Learning	ObjecHves	
•  List	the	techniques	for	improving	the	reliability	of	
commodity	&	high	end	processors	

•  Design	coding	techniques	for	memory	soJ	errors	
and	evaluate	their	trade-offs	

•  Understand	the	benefits	of	chipkill	ECC,	sparing	
and	scrubbing		

•  List	the	techniques	used	in	the	I/O	sub-system	



High-Availability	Systems	
•  IBM	G5	Mainframes	

–  Duplicated	execuHon	units	
on	each	core	

–  Redundant	CPU	logic	
–  Inline	checking	in	I/O	sub-
system	

–  ECC	in	memory	and	
registers	

•  Error	Recovery	is	
accomplished	using	
instrucHon	retry	
–  Transparent	to	the	S/W	

•  Tandem	Non-Stop	
–  Duplicated	processors	
running	in	lock-step	

–  Process	pairs	for	checking	
–  End-to-end	disk	
checksums,	CRC	

–  ECC	in	memory	only	

•  Error	recovery	is	achieved	
by	swapping	in	backup	
processes	
–  S/W	needs	to	be	involved	
in	the	failover	



Commodity	Micro-processors	
	Source:	Recent	Advances	and	New	Avenues	in	Hardware-Level	Reliability	Support,	

by	Iyer,	Nakka,	Kalbarczyk	and	Mitra,	IEEE	Micro	2005.	



Learning	ObjecHves	
•  List	the	techniques	for	improving	the	reliability	of	

commodity	&	high	end	processors	

•  Design	coding	techniques	for	memory	soJ	errors	and	
evaluate	their	trade-offs	

•  Understand	the	benefits	of	chipkill	ECC,	sparing	and	
scrubbing		

•  List	the	techniques	used	in	the	I/O	sub-system	

•  Pu]ng	it	together:	Stratus	Case	Study	



Memory	Errors:	History	

•  Memory	elements	have	long	been	the	target	
of	soJ-errors	since	the	late	70’s	
–  In	1978	May	and	Woods	reported	"A	New	Physical	
Mechanism	for	SoJ	Errors	in	Dynamic	Memories”		

–  In	1979,	"Alpha-ParHcle-Induced	SoJ	Errors	in	
Dynamic	Memories.”	

– SRAMs	saw	problems	approximately	2	years	later	



SoJ	Errors	Today	

DRAMs	 SRAMs	

Baumann,	R.;	,	"The	impact	of	technology	scaling	on	soJ	error	rate	performance	
and	limits	to	the	efficacy	of	error	correcHon,"	Electron	Devices	Mee/ng,	2002.		



Error	Trends	in	today’s	memories	
•  DRAM	reliability	has	remained	relaHvely	constant	
over	many	years	
–  Thanks	to	improvement	in	fabricaHon	
– May	be	different	in	eDRAMs	and	mobile	DRAM	

•  SRAM	reliability	becoming	an	increasing	concern	
with	shrinking	cell	sizes	and	voltage	

•  DRAM	hard	errors	are	emerging	as	a	problem	
[Schroeder’09][Dell’08]		



Parity	ProtecHon	-	1	

•  Single	bit	added	to	each	memory	byte/word	
to	detect	a	single	error	
– Cannot	detect	mulHple	errors	
– Cannot	correct	the	error		
– Affordable	alternaHve	to	ECC	memory	

0						1						0						1						0								0							1									1							0	

Parity	bit	–	even	parity	
xp	=	x0	^	x1	^	x2	^	x3^	x4	^	x5	^	x6	^	x7	



Parity	ProtecHon	-	2	
•  Requires	an	addiHonal	operaHon	on	reads/writes	to	
memory	à	extra	access	latency	

•  Circuitry	to	compute	parity	bit	is	simple,	but	requires	
addiHonal	area	and	power	

•  Used	mainly	in	SRAM	structures	where	error	rates	
were	low	and	access	Hmes	are	important	

•  For	DRAMs,	no	added	benefit	of	using	parity	over	ECC	
when	the	memory	data	width	is	greater	than	8	bytes		



ECC	Memory	-	1	
•  For	every	memory	word	of	size	‘n’	bits,	we	need	
at	least	log2	(n	)	bits	of	ECC	memory	
–  For	64	bit	memory,	we	need	at	least	6	bits	of	ECC	
–  The	check	bits	are	distributed	throughout	word	
–  Each	bit	is	protected	by	mulHple	checkbits	given	by	
the	index	(the	sum	of	the	checkbits	matches	index)	

0						1						0						1						0								0							1									1	

R8	R1	 R2	 0	 R4	 1	 0	 1	 0	 0	 1	 1	

R1	=	R3^R5^R7^R9^R11	
						=			0	^	1	^	1	^	0	^	1	
						=		1	

R4	=	R5^R6^R7^R12	
						=			1^	0	^	1	^	1	
						=		1	



ECC	Memory	-	2	

•  Let’s	say	you	had	a	single	bit	error	in	R5	(1à0)	

R8	R1	 R2	 0	 R4	 0	 0	 1	 0	 0	 1	 1	

Check	Bits	are	recomputed	and	compared.	
	
R1	=	R3	^	R5	^	R7	^	R9	^	R11	=	0	^	0	^	1	^	0	^	1	=	0	
	
R4	=	R5	^	R6	^	R7	^	R12	=	0	^	0	^	1	^	1	=	0	
	
Both	check-bits	R1	and	R4	differ	from	their	computed	
values.	These	are	called	the	syndromes.	So	we	can	infer	
that	the	bit	R5	had	an	error	in	it,		and	can	correct	the	error.	
	
	
	



ECC	Memory	-	3	
•  Let’s	say	you	have	errors	in	bits	R5	and	R7	(double-bit	
error)	

R8	R1	 R2	 0	 R4	 0	 0	 0	 0	 0	 1	 1	

Let’s	compute	check-bits	R1,	R2	and	R4	
	
R1	=	R3	^	R5	^	R7	^	R9	^	R11	=	0	^	0	^	0	^	0	^	1	=	1				(Same	as	prior	value)	
	
R2	=	R3	^	R6	^	R7	^	R10	^	R11	=	0	^	0	^	0	^	0	^	1	=	1		(Differs	from	prior	value)	
	
R4	=	R5	^	R6	^	R7	^	R12	=	0	^	0	^	0	^	1	=	1			(Same	as	prior	value)	
	
How	do	we	disRnguish	this	case	from	the	one	where	bit	R2	is	corrupted	?		
	



ECC	Memory	-	4	
•  Add	an	extra	parity	bit	R0	for	the	enHre	word	

•  In	the	case	of	a	single	bit	error,	both	syndrome		
bit(s)	and	R0	bit	will	differ	à	can	be	corrected	

•  In	case	of	a	double	error,	only	syndrome	bit(s)	
differs	à	can	be	detected	but	not	corrected	

R8	R1	 R2	 0	 R4	 0	 0	 0	 0	 0	 1	 1	R0	

Extra	parity	bit	for	the	word	is	added	



ECC:	ImplementaHon	Trade-offs	

•  ECC	memory	is	not	free	!	
– Performance	overheads	for	read/write	operaHons	

•  3	to	4	%	more	for		
•  Up	to	33	%	for	high-speed	SRAMs		

– Area	overhead	for	error-detecHon/correcHon	ckts	
•  20	%	die	overheads	

– AddiHonal	costs	as	chipset	support	is	needed	
•  10	to	25	%	more	for	enHre	chip	

– EffecHveness:	Corrects	more	than	90%	of	errors	

Above	nos.	are	from	the	Terazzon	white	paper.		



Learning	ObjecHves	
•  List	the	techniques	for	improving	the	reliability	of	
commodity	&	high	end	processors	

•  Design	coding	techniques	for	memory	soJ	errors	
and	evaluate	their	trade-offs	

•  Understand	the	benefits	of	chipkill	ECC,	sparing	
and	scrubbing		

•  List	the	techniques	used	in	the	I/O	sub-system	



ChipKill	ECC	-	1	

•  ECC	can	detect	2	bit	and	correct	1	bit	errors	
– Provided	the	enHre	memory	chip	does	not	fail	
– Chip	failure	can	lead	to	data	loss	even	with	ECC	

TradiHonal	SEC/DED	ECC	
for	a	64-bit	word	with	
eight	check-bits	of	ECC	



ChipKill	ECC	-	2	

•  SoluHon:	Use	Chip-kill	ECC	™	(IBM	S/390)	
– Spread	the	ECC	check	bits	over	mulHple	chips	
– Bit-steering	à	Steer	the	checkbits	of	adjacent	bits	
in	a	memory	word	to	different	words	in	the	ECC	

Chip-kill	ECC	
Note	how	the	bits	are	
scatered	across	
different	modules	



ChipKill	ECC:	ImplementaHon	
Tradeoffs	

•  Incurs	four	Hmes	the	overhead	of	tradiHonal	ECC	
–  Can	be	opHmized	using	very	wide	ECC	words	
–  Provide	detecHon	of	chip	failures	but	not	correcHon	
	

•  Compaq	proposed	a	clever	interleaving	soluHon	
to	combine	two	ECC	words	into	one	module	
–  Provides	the	benefits	of	Chipkill	ECC	with	only	as	
much	cost	as	parity	protecHon		

– AJer	a	chip	has	failed,	the	Compaq	ECC	is	unable	to	
provide	protecHon	from	single/double	bit	errors	



Parity,	ECC	and	ChipKill-	Comparison	

•  SimulaHon	data	
gathered	by	IBM	
over	36	months	
comparing:	
– 32	MB	Parity	
protected	
memory		

– 1	GB	SEC	ECC	
– 1	GB	Chipkill	ECC	



Other	variaHons	of	ECC	

•  Scrubbing	
–  ECC	memory	only	checks	
the	bits	during	reads/
writes	

–  However,	infrequent	
accesses	may	lead	to	bit	
errors	accumalaHng	

–  SoluHon:	Scrub	memory	
periodically	by	
performing	reads/writes	
to	unaccessed	memory	

•  Sparing	
–  Correlated	or	large	area	
defects	cannot	be	
combated	with	ECC	
alone	

–  Use	spare	rows/columns	
in	conjuncHon	with	ECC	

–  Leads	to	an	order	of	
magnitude	reliability	
improvement	over	ECC	
alone	for	hard	faults	



Learning	ObjecHves	
•  List	the	techniques	for	improving	the	reliability	of	
commodity	&	high	end	processors	

•  Design	coding	techniques	for	memory	soJ	errors	
and	evaluate	their	trade-offs	

•  Understand	the	benefits	of	chipkill	ECC,	sparing	
and	scrubbing		

•  List	the	techniques	used	in	the	I/O	sub-system	

	



I/O	Sub-system	-	1	

•  Disk	and	other	storage	media	protected	using	
RAID	technologies	
– Fairly	mature,	industry	standard	
– However,	data	is	suscepHble	when	it	is	buffered	
– Firmware	controllers	and	I/O	processor	errors	

•  Need	to	ensure	end-to-end	consistency	of	
data	from	I/O	iniHaHon	to	disk	read/write	



I/O	Sub-system	-	2	

•  Techniques	for	end-to-end	I/O	checking	
– Checksums	on	data	before	and	aJer	reads	
– Checking	of	header	fields	for	consistency	
– Watchdog	Hmer	for	ensuring	no	deadlocks	or	
livelocks	of	I/O	devices	

– System-level	consistency	checks.	e.g.,	read	back	
data	writen	to	disk	in	chunks	and	check	them	

– Use	mulHple	file	organizaHons	to	store	data	



Learning	ObjecHves	
•  List	the	techniques	for	improving	the	reliability	of	
commodity	&	high	end	processors	

•  Design	coding	techniques	for	memory	soJ	errors	
and	evaluate	their	trade-offs	

•  Understand	the	benefits	of	chipkill	ECC,	sparing	
and	scrubbing		

•  List	the	techniques	used	in	the	I/O	sub-system	


