
So#ware	Fault	Tolerance	

EECE	513:	Error	Resilient	Computer	Systems	
(Based	on	ECE695B	at	Purdue	Univ.	by	Prof.	
Saurabh	Bagchi	–	used	with	permission)	

	

Learning	ObjecNves	

•  Define	So#ware	Fault-tolerance	and	enumerate	
its	challenges	

	
•  Apply	Process	Pairs	for	So#ware	Fault	Tolerance	

•  List	three	diversity-based	techniques	and	
evaluate	their	respecNve	pros	and	cons	

•  Use	robust	data	structures	for	structural	integrity	
	

What	is	So#ware	Fault	Tolerance?	

•  Three	alternaNve	definiNons	
1. Management	of	faults	originaNng	from	

defects	in	design	or	implementaNon	of	
so#ware	components	

2. Management	of	hardware	failures	in	so#ware	
3. Management	of	network	failures	
We	will	follow	the	classical	definiNon	(1)	due	to	

Avizienis	in	1977	

MoNvaNon:	So#ware	Fault	Tolerance	
•  Usual	method	of	so#ware	reliability	is	fault	avoidance	using	good	so#ware	

engineering	methodologies	
•  Large	and	complex	systems	⇒	fault	avoidance	not	successful	

–  Rule	of	thumb	fault	density	in	so#ware	is	10-50	per	1,000	lines	of	code	for	good	
so#ware	and	1-5	a#er	intensive	tesNng	using	automated	tools	

•  Redundancy	in	so#ware	needed	to	detect,	isolate,	and	recover	from	so#ware	
failures	

•  Hardware	fault	tolerance	easier	to	assess	
•  So#ware	is	difficult	to	prove	correct	

 HARDWARE FAULTS SOFTWARE FAULTS

1. Faults time-dependent Faults time-invariant
2. Duplicate hardware detects Duplicate software not effective
3. Random failure is main cause Complexity is main cause

Consequences of Software Failure
•  General Accounting Office reports $4.2 million lost

annually due to software errors
•  Launch failure of Mariner I (1962)
•  Destruction of French satellite (1988)
•  Problems with Space Shuttle and Apollo missions
•  SS7 (signaling system) protocol implementation -

untested patch (mistyped character) (1997)
•  Therac 25 (overdose of medical radiation 1000’s of

rads in excess of prescribed dosage)
•  Toyota Prius recall (2004) due to bug in embedded

code

Difficulties
•  Improvements in software development methodologies

reduce the incidence of faults, yielding fault avoidance
•  Need for test and verification
•  Formal verification techniques, such as proof of correctness,

can be applied to rather small programs
•  Potential exists of faulty translation of user requirements
•  Conventional testing is hit-or-miss. “Program testing can

show the presence of bugs but never show their absence,” -
Dijkstra, 1972.

•  There is a lack of good fault models for software defects

Forms of Software Testing
•  Exhaustive testing of reasonable sized applications is impossible
•  Approach is to define equivalence classes of inputs so that only one

test case from each class suffices
•  Techniques proposed include

–  Path testing
–  Branch testing
–  Interface testing
–  Special values testing
–  Functional testing
–  Anomaly analysis

•  Studies have shown path testing and interface testing while difficult
to design afford good coverage for large number of applications

Software Fault Tolerance: Terms
•  ROBUSTNESS: The extent to which software continues to

operate despite introduction of invalid inputs.
 Example: 1. Check input data
 =>ask for new input
 =>use default value and raise flag
 2. Self checking software

•  FAULT CONTAINMENT: Faults in one module should not affect
other modules.
 Example: Reasonable checks
 Watchdog timers
 Overflow/divide-by-zero detection
 Assertion checking

•  FAULT TOLERANCE: Provides uninterrupted operation in
presence of program fault through multiple implementations of a
given function

Features	of	so#ware	faults	

•  Mature	so#ware	exhibits	nearly	constant	
failure	rate	
– Bathtub	curve	for	modeling	enNre	lifeNme	from	
release	to	reNrement	

•  Number	of	failures	is	correlated	with	
– ExecuNon	Nme		
– Code	density	
– So#ware	Nming,	
– SynchronizaNon	points	

Temporal Redundancy
•  Reexecution of a program when error is

encountered
•  Error may be faulty data, faulty execution or

incorrect output
•  Reexecution will clear errors arising from

temporary circumstances
•  Examples: Noisy communication channel, Full

buffers, Power supply transients, Resource
exhaustion in multiprocess environment

•  Provides fault containment
•  Possible to apply to applications with loose time

constraints

Multi-Version Software Fault
Tolerance

•  Use of multiple versions (or “variants”) of a piece
of software

•  Different versions may execute in parallel or in
sequence

•  Rationale is that multiple versions will fail
differently, i.e., for different inputs

•  Versions are developed from common
specifications

•  Three main approaches
–  Recovery Blocks
–  N-version Programming
–  N Self-Checking Programming

Learning	ObjecNves	

•  Define	So#ware	Fault-tolerance	and	enumerate	
its	challenges	

•  Apply	Process	Pairs	for	So#ware	Fault	Tolerance	

•  List	three	diversity-based	techniques	and	
evaluate	their	respecNve	pros	and	cons	

•  Use	robust	data	structures	for	structural	integrity	

Process Pairs

■  Used in HP Himalaya servers as part of their NonStop
Advanced Architecture

■  Bragging rights of the architecture
–  Run the majority of credit and debit card systems in N.America
–  More than US$3 billion of electronic funds transfers daily
–  Run many of the E911 systems in North America

■  Primary and backup processes on two different
processors

■  Primary process executes actively
–  Backup process is kept current by periodically sending state of

primary process
■  Processors execute fail-stop failure

–  When processor failure detected, backup takes over

Process Pairs

■  Applicability
–  Permanent and transient hardware and software failures

–  Loosely coupled redundant architectures

–  Message passing process communication

–  Well suited for maintaining data integrity in a transactional type of
system

–  Can be used to replicate a critical system function or user application

■  Assumptions
–  Hardware and software modules design to fail-fast, i.e., to rapidly detect

errors and subsequently terminate processing

–  Errors can be corrected by re-executing the same software copy in
changed environment

Process Pairs Mechanism in
Tandem Guardian OS

Primary Backup

Operating
System

Operating
System

Backup
exists?

Backup
exists?

Checkpoint
•  data
•  file status
•  PC

I/O I/O

I/O

I am alive

Mirrored disks

1. The application executes as Primary
2. Primary starts a Backup on another processor
3. Duplicated file images are also created
4. Primary periodically sends checkpoint information
 to Backup
5. Backup reads checkpoint messages and updates its
 data, file status, and program counter
 - the checkpoint information is inserted in the
 corresponding memory locations of the Backup
7. Backup loads and executes if the system reports that
 Primary processor is down
 - the error detection is done by Primary OS or
 - Primary fails to respond to “I am alive”
message
8. All file activities by Primary are performed on both
 the primary and backup file copies
9. Primary periodically asks the OS if a Backup exists
 - if there is no Backup, the Primary can request
 the creation of a copy of both the process and
 file structure

Evaluation of Process-Pairs

■  Done for Tandem’s Guardian OS Studied Tandem
Product Report (TPR) which are used to report product
failures

■  Problem classified as software fault only after analysts
have pinpointed the cause

■  Classes of software faults (not exhaustive)
–  Incorrect computation (3%)
–  Data fault (15%)
–  Missing operation (20%)
–  Side effect of code update (4%)
–  Unexpected situation (29%)
–  Microcode defect (4%)

Results from Evaluation

■  Out of total software failures, 138 out of 169 (82%)
caused single processor halt (recoverable). This is a
measure of the software fault tolerance of the system.

■  Reasons for multiple processor fault
–  Same fault as in the primary: 17/28 (60%)
–  Second fault during job recovery: 4/28 (14.3%)
–  Second halt is not related to process pairs: 4/28 (14.3%)

Results from Evaluation

■  Reasons for uncorrelated software fault
–  Backup reexecutes same task, but same fault not exercised:

29%.
•  Different memory state
•  Race or timing related problem

–  Example:
•  Privileged process on primary requests a buffer
•  Because of high user activity on primary, buffer exhaustion
•  Bug in buffer management routine and returns “success”
•  Primary privileged process uses uninitialized buffer pointer and

causes processor halt
•  Backup process served the request after takeover
•  But buffer was available on the backup processor

Figure for Cases of Software Fault Tolerance

Results from Evaluation

■  Reasons for uncorrelated software fault
–  Backup does not reexecute failed request on takeover: 20%.

•  Processor monitoring task
•  Interactive task

–  Effect of error latency: 5%
•  Task that caused the error finished before detection
•  Example: I/O process for copying buffer from source to destination.
•  Copied an additional byte overwriting buffer tag.
•  No problem in data transfer.
•  The successful data transfer was checkpointed but not the

corrupted buffer tag
•  Problem surfaces later when buffer manager verifies buffer.
•  No problem when reexecuting on backup.

Results from Evaluation

■  Process pairs with checkpointing and restart recovers
from 75% of reported software faults that result in
processor failures

■  The complexity of process pairs introduces some faults
–  16% of single processor halts were failures of backup processes

■  Counter-intuitive result since same software run on both
processors

■  Loose coupling between processors, long error latency,
operation using checkpoints and not lock-step

■  Are process triples better than process pairs?

Process Pairs
Advantages & Disadvantages

Advantages
–  Extremely successful in Tandem OLTP applications

–  Tolerates hardware, operating system, and application failures

–  High coverage (> 90%) of hardware and software faults

–  The backup does not significantly reduce the performance

■  Disadvantages
–  Necessity of error detection checks and signaling techniques to make

a process fail-fast

–  Process pairs are difficult to construct for non-transaction-based
applications

Learning	ObjecNves	

•  Define	So#ware	Fault-tolerance	and	enumerate	
its	challenges	

•  Apply	Process	Pairs	for	So#ware	Fault	Tolerance	

•  List	three	diversity-based	techniques	and	
evaluate	their	respecNve	pros	and	cons	

•  Use	robust	data	structures	for	structural	integrity	

Diversity	
•  Diversity	as	a	technique	for	fault-tolerance	goes	back	
to	the	BriNsh	Astronmer,	Lord	Maskelyne	[Anh-2009]	
–  Used	two	computers	(human)	to	calculate	lunar	tables,	
when	moon	is	at	peak	and	its	lowest	point	and	compare	
the	values	

•  Charles	Babbage	used	Diversity	in	analyNcal	engine	
“When the formula to be computed is very complicated, it

may be algebraically arranged for computation in two
or more totally distinct ways, and two or more sets of
cards may be made. If the same constants are now
employed with each set, and if under these
circumstances the results agree, we may be quite secure
of the accuracy of them all.”	

MulN-Version	So#ware	Fault	
Tolerance	

•  Use	of	mulNple	versions	(or	“variants”)	of	a	piece	of	
so#ware	

•  Different	versions	may	execute	in	parallel	or	in	
sequence	

•  RaNonale	is	that	mulNple	versions	will	fail	differently,	
i.e.,	for	different	inputs	

•  Versions	are	developed	from	common	specificaNons	
•  Three	main	approaches	

–  N-version	Programming	
–  Recovery	Blocks	
–  N	Self-Checking	Programming	

N-Version	Programming	

•  All	versions	designed	to	saNsfy	same	basic	
requirement	

•  Decision	of	output	comparison	based	on	voNng	
•  Different	teams	build	different	versions	to	avoid	
correlated	failures	

Due to Al Avizienis,
first appeared in CompSAC 1977

Voter

Pros	and	Cons	of	NVP	

– NVP	relies	on	independence	among	the	versions	
•  But	not	always	true	in	pracNce	[Knight	and	Leveson’83]	

– Why	does	this	happen	?	
•  People	make	same	mistakes,	e.g.,	incorrect	treatment	of	
boundary	condiNons	

•  Some	parts	of	a	problem	are	more	difficult	than	others	-	
similarity	in	programmer’s	view	of	“difficult”	regions	

•  SpecificaNons	may	themselves	be	incorrect/incomplete	

– Note:	This	does	not	mean	NVP	is	useless.	Rather,	it	
does	not	always	mean	that	NVP	will	detect	S/W	faults.	
Its	reliability	is	upper-bounded	by	independence.	

Knight	and	Leveson	Study	[1981]	
•  Experimental	study	at	the	UniversiNes	of	Virginia	and	
California	at	Irvine	in	the	1980s	
–  27	students	wrote	code	for	anN-missile	applicaNon	
–  Some	had	no	prior	industrial	experience	while	others	had	
over	ten	years	of	experience		

–  All	versions	wrilen	in	Pascal	(popular	at	that	Nme)	
–  93	correlated	faults	idenNfied	by	standard	staNsNcal	
–  hypothesis-tesNng	methods:	if	versions	had	been	
stochasNcally	independent,	we	would	expect	no	more	
than	5	correlated	failures	(work	it	out	yourselves)	

–  No	correlaNon	observed	between	quality	of	programs	
produced	and	experience	of	programmer	

How	to	ensure	version	
independence	?	

•  No	communicaNon	between	teams	
– Hard	to	enforce	in	age	of	email	and	Skype	

•  SpecificaNons	wrilen	by	different	people	
– Common	“judge”	to	ensure	they’re	similar	

•  Different	Oses	and	compilers	
– Makes	it	difficult	for	hidden	dependencies	to	
cause	problems	

•  Diverse	programming	languages		
– Avoids	common	mode	errors	due	to	the	language	

Consistent	Comparison	Problem	

•  Even	if	versions	are	truly	diverse	and	
independent,	comparing	them	is	difficult	
–  Small	differences	in	computaNon	can	lead	to	different	
results,	especially	for	floaNng	point	

•  Let	V1,…,VN	-	N	independently	wrilen	versions	
for	compuNng	a	quanNty	X	and	comparing	it	to	
some	constant	C.	Let	Xi	-	value	of	x	computed	by	
version	Vi	(i=1,…,N).	The	comparison	with	C	is	
said	to	be	consistent	if	either	all	Xi	<	C	or	all	Xi	>	C	

How	to	address	the	consistent	
comparison	problem	?	

•  Have	the	versions	agree	on	a	common	value	prior	to	
comparing	them	
–  Requires	a	distributed	consensus	protocol		

•  Make	the	comparison	approximate,	with	some	
confidence	values	of	the	results	
–  Requires	knowledge	of	the	numerical	properNes	

•  Compare	intermediate	computaNons,	which	may	have	
lesser	variance	with	each	other	
–  Reduces	the	amount	of	diversity	produced	as	it	constrains	
developers	to	produce	the	same	intermediate	values	

Recovery	Blocks	

■  Checkpoint and restart approach
–  Try a version, if error detected through acceptance test, try a different

version
–  Ordering of the different versions according to reliability

■  Checkpoints needed to provide valid operational state for subsequent
versions (hence, discard all updates made by a version)

■  Acceptance test needs to be faster and simpler than actual code

Due to Brian Randell,
first appeared in ToSE 1975

Pros	and	Cons	of	RB	
•  Advantages	

–  No	performance	or	area	
overheads	in	the	fault-free	
case,	except	the	state	saving	
overhead.	

–  Allows	gradual	evoluNon	of	
so#ware	components.	Old	
versions	can	be	replaced	with	
new	ones,	and	used	as	
secondary.	

–  Nice	hierarchical	design	
(structured	approach)	

•  Disadvantages	
–  Reliability	depends	on	the	
coverage	of	the	
acceptance	test.	
Acceptance	test	should	be	
independent	of	the	main	
version,	but	faster	(e.g.,	
range	checks)	

–  State	saving	mechanisms	
need	to	be	employed.	

–  Requires	transacNon-like	
semanNcs.	Cannot	always	
undo	side-effects.	

Acceptance	Tests	
•  FuncNon:	ensure	the	operaNon	of	recovery	blocks	
is	saNsfactory	

•  Should	access	variables	in	the	program,	NOT	local	
to	the	recovery	block,	since	these	cannot	have	
effect	a#er	exit.		Also,	different	alternates	use	
different	local	variables.	

•  Need	not	check	for	absolute	“correctness”	-	cost/
complexity	trade-off	

•  Run-Nme	overheads	should	be	LOW	
•  NO	RESIDUAL	EFFECTS	should	be	present,	since	
variables,	if	updated,	might	result	in	passing	of	
successive	alternates	

System	state	restoraNon	

•  Restoring	system	state	is	automaNc	
•  Taking	a	copy	of	enNre	system	state	on	entry	
to	each	recovery	block	is	too	costly	

•  Use	Recovery	Caches	or	“Recursive”	Caches	
•  When	a	process	is	to	be	backed	up,	it	is	to	a	
state	just	before	entry	to	primary	alternate	

•  Only	NONLOCAL	variables	that	have	been	
MODIFIED	have	to	be	reset	

Process	ConversaNon	
•  Recovery	block	spanning	two	or	more	processes	is	called	a	conversaNon	
•  Within	a	conversaNon,	processes	communicate	among	themselves,	NOT	

with	others	
•  OperaNons	of	a	conversaNon	
•  Within	a	conversaNon,	communicaNon	is	only	among	parNcipants,	not	

external	
•  On	entry,	a	process	establishes	a	checkpoint	
•  If	an	error	is	detected	by	any	process,	then	all	processes	restore	their	

checkpoints	
•  Next	to	ALL	processes	execute	their	available	alternaNve	
•  All	processes	leave	the	conversaNon	together	(perform	their	acceptance	

tests	just	prior	to	leaving)	
•  At	the	end	of	the	conversaNon,	ALL	processes	must	saNsfy	their	respecNve	

acceptance	tests,	and	none	may	proceed	otherwise	

N	Self-Checking	Programming	

•  MulNple	so#ware	versions	with	structural	
variaNons	of	RB	and	NVP	

•  Use	of	separate	acceptance	tests	for	each	
version	

Due to J. C. Laprie,
FTCS 87

Voter

Pros	and	Cons	of	NSCP	

•  Advantages	
–  Combines	advantages	of	
NVP	and	RBs	

–  Ensure	that	some	errors	
are	caught	before	the	
voNng	stage	

–  Provides	error	
containment		

–  Almost	no	disrupNon	in	
service	due	to	faults	

•  Cons	
–  Incurs	more	overhead	
than	NVP	and	‘N’	Nmes	
the	overhead	of	RB	

–  Does	not	protect	against	
errors	in	specificaNons	

–  Extra	effort	to	derive	
acceptance	tests	and	
write	the	N-versions	

	

Similarity	to	H/W	Fault-tolerance	

•  RB	is	equivalent	to	the	stand-by	sparing	(of	
passive	dynamic	redundancy)	

•  NVP	is	equivalent	to	N-modular	redundancy	
(staNc	redundancy)	

•  NSCP	is	equivalent	to	acNve	dynamic	redundancy.	
A	self-checking	component	results	either	from:	
– AssociaNon	of	an	acceptance	test	to	a	version	
– AssociaNon	of	two	variants	with	a	comparison	
algorithm	

Learning	ObjecNves	

•  Define	So#ware	Fault-tolerance	and	enumerate	
its	challenges	

•  Apply	Process	Pairs	for	So#ware	Fault	Tolerance	

•  List	three	diversity-based	techniques	and	
evaluate	their	respecNve	pros	and	cons	

•  Use	robust	data	structures	for	structural	integrity	

Robust	Data	Structures:	Goals	

•  The	goal	is	to	find	storage	structures	that	are	
robust	in	the	face	of	errors	and	failures	

•  What	do	we	want	to	preserve?	

Seman&c	integrity	-	the	data	is	not	corrupted	

Structural	integrity	-	the	correct	data	
representa&on	is	preserved	

Robust	Data	Structure:	DefiniNon	
A	robust	data	structure	contains	redundant	data	which	
allow	erroneous	changes	to	be	detected,	and	corrected	

–  a	change	is	defined	as	an	elementary	(e.g.,	as	single	word)	
modificaNon	to	the	encoded	form	(e.g.,	data	structure	
representaNon	in	memory)	of	a	data	structure	instance		

•  Structural	redundancy	examples	
•  a	stored	count	of	the	numbers	of	nodes	in	a	structure	instance	
•  idenNfier	fields	
•  addiNonal	pointers	

Robust	Data	Structure:	Example	
Example:	Data	structure	which	consists	of	a	header	and	a	set	of	nodes	

	the	header	contains	 		
•  pointers	to	certain	nodes	of	the	instance	or	to	parts	of	itself	
•  counts	
•  	idenNfier	fields	
	

	a	node	contains	
	 		data	items	
	 	structural	informaNon:	pointers	and	node	type	idenNfier	fields	

Error	detecNon	and	correcNon	
–	in-line	checks	may	be	introduced	into	normal	system	code	to	
perform	error	detecNon	and	possibly	correcNon	as	well	

Example:	Linked	Lists	

•  Non-robust	data	structure:	No	redundant	
informaNon	to	detect/recover	from	pointer	errors	

	 header node node

data data
next NULL next

0-detectable and 0-correctable
changing one pointer to NULL can
reduce any list to empty list

Example:	Robust	List	
	•  AddiNons	for	improving	robustness	

•  an	idenNfier	field	to	each	node	
•  replace	the	NULL	pointer	in	the	last	node	by	pointer	to	the	
header	of	the	list	

•  stores	a	count	of	the	number	of	nodes	

	
header node node

data data

next next

H -ID ID ID

next
count =3

1-detectable and 0-correctable
• change to the count can be detected by comparing it against the number of nodes
 found by following pointers
• change to the pointer may be detected by a mismatch in count number or
 the new pointer points to a foreign node (which cannot have a valid identifier)

Example:	Robust	Double	Linked	List	

•  AddiNons	for	improving	robustness:	Make	it	a	
double	linked	list	

header node node

data data

next next

H -ID ID ID

next
count =3

previous previous previous

2-detectable and 1-correctable
the data structure has two independent, disjoint sets of pointers,
each of which may be used to reconstruct the entire list

Error	CorrecNng	in	Double-Linked	List		
•  Scan	the	list	in	the	forward	direc3on	unNl	an	idenNfier	field	error	or	

forward/backward	pointer	mismatch	is	detected	
•  When	this	happens	scan	the	list	in	the	reverse	direc3on	unNl	a	similar	

error	is	detected	
•  Repair	the	data	structure	

Header Node Node

data data

B C (F)

H -ID ID ID

A
count =3

C A B

Node

ID

?
?

?
?

A C B

The forward scan detects a mismatch
in Node B and sets
Local_PtrB = B (local node’s pointer)
Next_PtrB = F (pointer to the next node)
The reverse scan detects a mismatch
in Node C and sets
Local_PtrC = C (local node’s pointer)
Back_PtrC = B (pointer to the previous node)

 Correction
 (Local_PtrB == Back_PtrC) ⇒
 Next_PtrB := Local_PtrC
 i.e., (Next_PtrB = C)

F

Robust	Data	Structures:	Summary	

•  Advantages	
–  Incurs	much	lower	overheads	than	full	duplicaNon	
–  Can	detect	both	S/W	and	H/W	errors	that	corrupt	DS	
–  Independent	of	programming	language/compiler	

•  LimitaNons	
– Not	transparent	to	the	applicaNon	
–  Best	in	toleraNng	errors	which	corrupt	the	structure	of	
the	data	(not	the	semanNcs)	

–  Increased	complexity	of	the	update	rouNnes	may	
make	them	error	prone	–	error	propagaNon	

Learning	ObjecNves	

•  Define	So#ware	Fault-tolerance	and	enumerate	
its	challenges	

•  Apply	Process	Pairs	for	So#ware	Fault	Tolerance	

•  List	three	diversity-based	techniques	and	
evaluate	their	respecNve	pros	and	cons	

•  Use	robust	data	structures	for	structural	integrity	

50

References
•  “History's Worst Software Bugs” Wired Magazine, 11/8/05.

•  D. K. Pradhan, ed., “Fault Tolerant Computer System Design”,
Chapter 7: Fault Tolerance in Software

•  Multi-version software
–  Lui Sha, “Using Simplicity to Control Complexity,” IEEE Software, Jul/Aug

01, pp. 20-28.
–  Wilfredo Torres-Pomales, “Software Fault Tolerance: A Tutorial,” Technical

Report: NASA-2000-tm210616, 2000.

•  Process pairs
–  Inhwan Lee, R.K. Iyer: “Software dependability in the Tandem GUARDIAN

system”, IEEE Transactions on Software Engineering, 1995.

•  Robust data structures
–  David J. Taylor, David E. Morgan, James P. Black: “Redundancy in Data

Structures: Improving Software Fault Tolerance.” TSE 6(6): 585-594
(1980)

