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Recovery - Basic Concepts 

■  Providing fault tolerance involves three phases 
–  Error detection 
–  Assessment of the extent of the damage 
–  Error recovery to eliminate errors and restart afresh  

■  Forward error recovery - the continuation of the 
currently executing process from some further point with 
compensation for the corrupted and missed data. The 
assumptions: 
–  The precise error conditions that caused the detection and the resulting 

damage can be accurately assessed 
–  The errors in the process’s (system’s) state can be removed 

–  The process (system) can move forward 
–  Example: exception handling and recovery 



Recovery - Basic Concepts (cont.)  

■  Backward error recovery - the current process 
is rolled back to a certain, error-free, point and 
re-executes the corrupted part of the process 
thus continuing the same requested service. 
The assumptions: 
–  The nature of faults cannot be foreseen and errors in the 

process’s (system’s) states cannot be removed without re-
executing 

–  The process (system) state can be restored to a previous error-
free state of the process (system) 



Comparison Forward & Backward Error 
Recovery 

Advantages Disadvantages 

Forward 
error 
recovery 

Relatively low overhead Dependent on damage assessment and 
prediction. 
Inappropriate as a means of recovery for 
unanticipated damage. 
Cannot provide a general mechanism for 
recovery 
Design specifically for a particular system 
 

Backward 
error 
recovery 

A general concept applicable to 
all systems. 
Independent of damage 
assessment, i.e., capable of 
providing recovery from arbitrary 
damage. 
Can be application or system 
based.  

Performance penalty - the overhead to restore a 
process state can be quite significant. 
No guarantee that error will not persist when 
processing is repeated, e.g., permanent fault, 
software design errors. 
Some component of the system state may be 
unrecoverable, e.g., if an error affects an external 
state.  



Checkpoint and Rollback 

■  Applicability 
–  When time redundancy is allowed  
–  To transient hardware and many software design faults (e.g., timing 

faults) 
–  To both nonredundant and redundant architectures 
–  When it is feasible to determine checkpoints in an application 

■  Checkpointing  
–  Maintains/saves precise system state or a “snapshot” at regular 

intervals 
•  Snapshot interval can be as small as one instruction 
•  Typically, checkpoint interval includes many instructions 
•  May not be ideal when there is much error detection latency 

■  Rollback recovery  
–  When error is detected   

•  Roll back (or restore) process(es) to the saved state, i.e., a checkpoint 
•  Restart the computation 



Checkpoint and Rollback: What do we need? 

■  Implement an appropriate error-detection mechanism 
–  Internal to the application: various self-checking mechanisms (e.g., 

data integrity, control-flow checking, acceptance tests) 
–  External to the application: signals (e.g., abnormal termination), 

missing heartbeats, watchdog timers 

■  Determine the data to be checkpointed - process state 
–  Volatile states  

•  Program stack  (local variables, return pointers of function calls) 
•  Program counter, stack pointer, open file descriptors, signal handlers 
•  Static and dynamic data segments 

–  Persistent states 
•  User files related to the current program execution (whether to include the 

persistent state in the process state depends on the application, e.g., the persistent 
state is often an important part of a long-running application) 

■  Store the checkpoint data on a stable storage 



Checkpoint and Rollback: What do we need? 
(cont.) 

■  Determine events to be logged and replayed 
–  Messages 

–  Events (provoke a message to be sent) 

–  Transactions 

■  Determine checkpoint times based on 
–  Elapsed time 

–  Message received or sent, e.g., parallel or distributed applications 

–  Amount of dirtied state, e.g., database applications 

–  Critical function invocation/exit 

■  Provide procedure to restart the computation 

■  Provide way to handle a persistent error 



Recovery in Distributed/Networked Systems 

■  Processes cooperate by exchanging information to 
accomplish a task 
–  Message passing (distributed systems)  
–  Shared memory (e.g., multiprocessor systems) 

■  Rollback of one process may require that other 
processes also roll back to an earlier state. 

■  All cooperating processes need to establish recovery 
points. 

■  Rolling back processes in concurrent systems is more 
difficult than for a single process due to 
–  Domino effect 
–  Lost messages 
–  Livelocks 
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Networked/Distributed Systems: Local State 

■  For a site (computer, process) Si, its local state LSi, at 
a given time is defined by the local context of the 
distributed application. Let’s denote: 
  send(mij) - send event of a message mij by Si to Sj 
  rec(mij)    - receive event of message mij by site Sj 
  time(x)     - time in which state x was recorded 

■  We say that 
  send(mij) ∈ LSi   iff  time(send(mij)) < time(LSi) 
  rec(mij)    ∈ LSj   iff  time(rec(mij))    < time(LSj) 

■  Two sets of messages are defined for sites Si and Sj 
–  Transit   

 transit(LSi, LSj) = {mij | send(mij) ∈ LSi  ∧ rec(mij) ∉ LSj} 
–  Inconsistent  

 inconsistent (LSi, LSj) = {mij | send(mij) ∉LSi  ∧ rec(mij) ∈ LSj}  



Networked/Distributed Systems:  
 Global State 

■  A global state (GS) of a system is a collection of the 
local states of its sites, i.e., GS = {LS1, LS2, …, LSn}, 
where n is the number of sites in the system. 

■  Consistent global state: 
 A global state GS is consistent iff 

∀i, ∀j : 1 ≤ i, j ≤ n :: inconsistent(LSi, LSj) = Φ 
 

■  Transitless global state: 
A global state GS transitless iff  

∀i, ∀j : 1 ≤ i, j ≤ n :: transit(LSi, LSj) = Φ 
 

■  Strongly consistent global state: 
A global state that is both consistent and transitless 

All communication channels are empty 



Networked/Distributed Systems 
Local/Global State - Examples 

■  What are examples of: 
–  Strongly consistent global state 
–  Consistent global state 
–  Inconsistent global state 
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Domino Effect: Uncoordinated Checkpoints 
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X, Y, Z - cooperating processes 
[ - recovery points 

•  Rollback of X does not affect other processes. 
•  Rollback of Z requires all three processes 
  to roll back to their very first recovery points. 

m 



Other issues: Uncoordinated Checkpoint 
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Livelock is a situation in which a single failure can cause an infinite  
number of rollbacks, preventing the system from making progress 
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Consistent Set of Checkpoints:   
Recovery Lines 
■  A strongly consistent set of checkpoints (recovery line) corresponds 

to a strongly consistent global state. 
–  there is one recovery point for each process in the set during the 

interval spanned by checkpoints, there is no information flow between 
any 

•  pair of processes in the set 
•  a process in the set and any process outside the set 

■  A consistent set of checkpoints corresponds to a consistent global 
state. 
 Set {x1, y1, z1} is a strongly consistent set of checkpoints 
 Set {x2, y2, z2} is a consistent set of checkpoints (need to handle lost 
messages) 
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Synchronous Checkpointing and Recovery  
(Koo & Toueg) 

■  Assumptions 
–  Processes communicate by exchanging messages through 

communication channels 

–  Channels are FIFO 

–  End-to-end protocols (such a sliding window) are assumed to 
cope with message loss due to rollback recovery and 
communication failures 

–  Communication failures do not partition the network 

■  A single process invokes the algorithm 

■  The checkpoint and the rollback recovery 
algorithms are not invoked concurrently. 



Synchronous Checkpointing and Recovery  
(Koo & Toueg) 

■  Two types of checkpoints 

–  Permanent - a local checkpoint at a process  

–  Tentative -  a temporary checkpoint that is made a 
permanent checkpoint on the successful termination 
of the checkpoint algorithm 



Checkpoint Algorithm 

■  Phase One 
–  Initiating process Pi takes a tentative checkpoint and requests that all 

the processes take tentative checkpoints. 
–  Each process informs Pi whether it succeeded in taking a tentative 

checkpoint. 
–  If Pi learns that all processes have taken tentative checkpoints, Pi 

decides that all tentative checkpoints should be made permanent.  
–  Otherwise, Pi decides that all tentative checkpoints should be 

discarded. 

■  Phase Two 
–  Pi propagates its decision to all processes. 
–  On receiving the message from Pi , all processes act accordingly. 
–  No process sends message after taking a tentative checkpoint till phase 

2 is completed. 



Checkpoint Algorithm (cont.) 

■  Optimization of the checkpoint algorithm 
–  A minimal number of processes take checkpoints 
–  Processes use a labeling scheme to decide whether to take a 

checkpoint. 
–  All processes from which Pi has received messages after it has 

taken its last checkpoint take a checkpoint to record the sending 
of those messages 
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Labeling Scheme 

■  Each process uses monotonically increasing labels in its 
outgoing messages 

■  For any two processes X and Y, let m be the last 
message that X received from Y after X has taken its 
last permanent or tentative checkpoint then  

■  Let m be the first message that X sent to Y after X took 
its last permanent or tentative checkpoint then 

⊥ = smallest label 
T = largest label 

m.l.  if m exists 
⊥     otherwise last_label_rcvdX[Y] = { 

m.l.  if m exists 
⊥     otherwise first_label_sentX[Y] = { 



Labeling Scheme (cont.) 

■  When X requests Y to take a tentative checkpoint, X 
sends last_label_rcvdX[Y] along with its request; Y takes a 
tentative checkpoint only if 

last_label_rcvdX[Y] ≥ first_label_sentY[X] > ⊥ 
 

■  Checkpoint cohort  - Set of all processes that should be 
asked to take a checkpoint initiated by X 

ckpt_cohortX = {Y | last_label_rcvdX[Y] > ⊥ } 



Rollback Recovery Algorithm 

■  Phase One: 
–  Process Pi checks whether all processes are willing to restart from their 

previous checkpoints. 
–  A process may reply “no” if it is already participating in a checkpointing 

or recovering process initiated by some other process. 
–  If all processes are willing to restart from their previous checkpoints, Pi 

decides that they should restart. 
–  Otherwise, Pi decides that all the processes continue with their normal 

activities. 

■  Phase Two: 
–  Pi propagates its decision to all processes. 
–  On receiving Pi’s decision, the processes act accordingly. 



Rollback Recovery Algorithm (cont.) 

■  Optimization 
–  A minimum number of processes roll back 
–  Processes use a labeling scheme to decide whether they need 

to roll back 
–  Y will restart from its permanent checkpoint only if X is rolling 

back to a state where the sending of one or more messages 
from X to Y is being undone 
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Labeling Scheme - extension 

■  For any two processes X and Y, let m be the last 
message that X sent to Y before its last permanent 
checkpoint. Then 

■  When X requests Y to restart from the permanent 
checkpoint, it sends last_label_sentX[Y] along with this 
request  

■  Y will restart from its permanent checkpoint only if 
   

  last_label_rcvdY[X] > last_label_sentX[Y]  

 

m.l   if m exists 
T    otherwise last_label_sentX[Y] = { 



Synchronous Checkpointing 
Disadvantages 

■  Additional messages must be exchanged to coordinate 
checkpointing.  

■  Synchronization delays are introduced during normal 
operations. 
–  No computational messages can be sent while the checkpointing 

algorithm is in progress.  

■  If failure rarely occurs between successive checkpoints, 
then the checkpoint algorithm places an unnecessary 
extra load on the system, which can significantly affect 
performance. 
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Asynchronous Checkpointing and Recovery 

■  Checkpoints at each process are taken independently without any 
synchronization among the processors. 

■  There is no guarantee that a set of local checkpoints taken will be 
a consistent set of checkpoints. 

■  The recovery algorithm must search for the most recent consistent 
set of checkpoints before it initiates recovery. 
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Asynchronous Checkpointing and Recovery 
(cont.) 

■  All incoming messages are logged at each process. 
–  This minimizes the amount of computation to undo during a rollback. 

–  The messages received after setting the recovery point can be 
processed again. 

■  Message logging 
–  Pessimistic: An incoming message is logged before it is processed 

•  This slows down the computation, even when there are no failures. 

–  Optimistic:  Processors continue to perform the computation, and the 
message received are stored in volatile storage and logged at certain 
intervals. 

•  Messages that are not logged (stored on stable storage) can be lost in the 
event of rollback.  

•  This does not slow down the underlying computation. 



Optimistic Message Logging 

■  Messages not necessarily logged before being 
processed. 

■  Unlogged messages are not available during recovery. 
■  States in other processes that causally depend upon lost 

messages are called orphan states. 
■  Processes that have orphan states must rollback. 

■  Dependencies tracked trough state intervals: 
–  Process consists of sequence of state intervals. 
–  Receipt of message starts a new state interval. 
–  Outgoing messages dependent upon  

current state interval of a process 
85 86 

state interval

4 3 
X 

Y 



Optimistic Message Logging (cont.) 

■  Each process keeps a dependency vector: 
–  One entry per process in the system. 
–  Entry for process j specifies latest state interval in process j on 

which the process is dependent. 

■  Dependency vector piggybacked on outgoing 
messages. 

■  Receivers update their own dependency vector 
from piggybacked vector. 

■  Causal dependencies propagated through 
piggybacked vector. 
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Piggybacked Dependency Vector 

■  Example shows dependency vector being updated as time 
progresses. 

■  Dependency vector of Z after receipt of m3 shows that Z is 
dependent upon state 5 of X and state 11 of Y. 
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Recovery 

■  X fails; if X has not logged m1 to disk at time of failure, then m1 is unrecoverable. 
■  Cannot guarantee that state 5 of X can be recreated exactly as before. 
■  All states dependent on state 5 of X are orphan states. 
■  When X recovers, it broadcasts to other processes that it can recreate its state up to 

state 4. 
■  Other processes check their dependency vectors and rollback if they are dependent 

on a state interval of X greater than 4. 
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m2 

m3 

X 



Asynchronous Checkpoint and Recovery 
Algorithm: An Example 

■  Communication channels are reliable. 

■  Messages are delivered in the order in which they were sent. 

■  Each process keeps track  of the number of messages that were 
–  Sent to other processes  

–  Received from other processes 

■  A process, upon restarting (after failure) broadcasts a message 
that it had failed. 

■  All processes determine orphan messages by comparing  the 
numbers of messages sent and received. 

■  The process rolls back to a state where the number of messages 
received (at the process) is not greater than the number of 
messages sent (according to the state at other processes). 



Asynchronous Checkpoint and Recovery 
Algorithm: An Example (cont.) 
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If Y rolls back to a state ey1, then   
•  Y has sent only one message to X 
•  X has received two messages from Y thus far 
•  X must roll back to a state preceding ex1 (to be consistent with Y’s state) 
•  For similar reasons, Z must also roll back 

X 
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