
Checkpoin*ng	
 and	
 Recovery	
 in	

Parallel	
 Systems	
 	

EECE	
 513:	
 Error	
 Resilient	
 Computer	

Systems	

(based	
 on	
 Prof.	
 Saurabh	
 Bagchi’s	
 lecture	

slides	
 for	
 ECE695B	
 at	
 Purdue	
 Univ	
 –	

used	
 with	
 permission)	

Outline	

•  Checkpoin*ng	
 basics	
 and	
 terminology	

•  Uncoordinated	
 Checkpoin*ng	

•  Coordinated	
 Checkpoin*ng	

•  Asynchronous	
 Checkpoin*ng	

Recovery - Basic Concepts

■  Providing fault tolerance involves three phases
–  Error detection
–  Assessment of the extent of the damage
–  Error recovery to eliminate errors and restart afresh

■  Forward error recovery - the continuation of the
currently executing process from some further point with
compensation for the corrupted and missed data. The
assumptions:
–  The precise error conditions that caused the detection and the resulting

damage can be accurately assessed
–  The errors in the process’s (system’s) state can be removed

–  The process (system) can move forward
–  Example: exception handling and recovery

Recovery - Basic Concepts (cont.)

■  Backward error recovery - the current process
is rolled back to a certain, error-free, point and
re-executes the corrupted part of the process
thus continuing the same requested service.
The assumptions:
–  The nature of faults cannot be foreseen and errors in the

process’s (system’s) states cannot be removed without re-
executing

–  The process (system) state can be restored to a previous error-
free state of the process (system)

Comparison Forward & Backward Error
Recovery

Advantages Disadvantages

Forward
error
recovery

Relatively low overhead Dependent on damage assessment and
prediction.
Inappropriate as a means of recovery for
unanticipated damage.
Cannot provide a general mechanism for
recovery
Design specifically for a particular system

Backward
error
recovery

A general concept applicable to
all systems.
Independent of damage
assessment, i.e., capable of
providing recovery from arbitrary
damage.
Can be application or system
based.

Performance penalty - the overhead to restore a
process state can be quite significant.
No guarantee that error will not persist when
processing is repeated, e.g., permanent fault,
software design errors.
Some component of the system state may be
unrecoverable, e.g., if an error affects an external
state.

Checkpoint and Rollback

■  Applicability
–  When time redundancy is allowed
–  To transient hardware and many software design faults (e.g., timing

faults)
–  To both nonredundant and redundant architectures
–  When it is feasible to determine checkpoints in an application

■  Checkpointing
–  Maintains/saves precise system state or a “snapshot” at regular

intervals
•  Snapshot interval can be as small as one instruction
•  Typically, checkpoint interval includes many instructions
•  May not be ideal when there is much error detection latency

■  Rollback recovery
–  When error is detected

•  Roll back (or restore) process(es) to the saved state, i.e., a checkpoint
•  Restart the computation

Checkpoint and Rollback: What do we need?

■  Implement an appropriate error-detection mechanism
–  Internal to the application: various self-checking mechanisms (e.g.,

data integrity, control-flow checking, acceptance tests)
–  External to the application: signals (e.g., abnormal termination),

missing heartbeats, watchdog timers

■  Determine the data to be checkpointed - process state
–  Volatile states

•  Program stack (local variables, return pointers of function calls)
•  Program counter, stack pointer, open file descriptors, signal handlers
•  Static and dynamic data segments

–  Persistent states
•  User files related to the current program execution (whether to include the

persistent state in the process state depends on the application, e.g., the persistent
state is often an important part of a long-running application)

■  Store the checkpoint data on a stable storage

Checkpoint and Rollback: What do we need?
(cont.)

■  Determine events to be logged and replayed
–  Messages

–  Events (provoke a message to be sent)

–  Transactions

■  Determine checkpoint times based on
–  Elapsed time

–  Message received or sent, e.g., parallel or distributed applications

–  Amount of dirtied state, e.g., database applications

–  Critical function invocation/exit

■  Provide procedure to restart the computation

■  Provide way to handle a persistent error

Recovery in Distributed/Networked Systems

■  Processes cooperate by exchanging information to
accomplish a task
–  Message passing (distributed systems)
–  Shared memory (e.g., multiprocessor systems)

■  Rollback of one process may require that other
processes also roll back to an earlier state.

■  All cooperating processes need to establish recovery
points.

■  Rolling back processes in concurrent systems is more
difficult than for a single process due to
–  Domino effect
–  Lost messages
–  Livelocks

Outline

■  Checkpointing basics and terminology

■  Uncoordinated Checkpointing

■  Coordinated Checkpointing

■  Asynchronous Checkpointing

Networked/Distributed Systems: Local State

■  For a site (computer, process) Si, its local state LSi, at
a given time is defined by the local context of the
distributed application. Let’s denote:
 send(mij) - send event of a message mij by Si to Sj
 rec(mij) - receive event of message mij by site Sj
 time(x) - time in which state x was recorded

■  We say that
 send(mij) ∈ LSi iff time(send(mij)) < time(LSi)
 rec(mij) ∈ LSj iff time(rec(mij)) < time(LSj)

■  Two sets of messages are defined for sites Si and Sj
–  Transit

 transit(LSi, LSj) = {mij | send(mij) ∈ LSi ∧ rec(mij) ∉ LSj}
–  Inconsistent

 inconsistent (LSi, LSj) = {mij | send(mij) ∉LSi ∧ rec(mij) ∈ LSj}

Networked/Distributed Systems:
 Global State

■  A global state (GS) of a system is a collection of the
local states of its sites, i.e., GS = {LS1, LS2, …, LSn},
where n is the number of sites in the system.

■  Consistent global state:
 A global state GS is consistent iff

∀i, ∀j : 1 ≤ i, j ≤ n :: inconsistent(LSi, LSj) = Φ

■  Transitless global state:
A global state GS transitless iff

∀i, ∀j : 1 ≤ i, j ≤ n :: transit(LSi, LSj) = Φ

■  Strongly consistent global state:
A global state that is both consistent and transitless

All communication channels are empty

Networked/Distributed Systems
Local/Global State - Examples

■  What are examples of:
–  Strongly consistent global state
–  Consistent global state
–  Inconsistent global state

Time S1

S2

S3 •
•

•

•
•

•
•

•
LS21

LS12

LS22 LS23

LS31 LS32 LS33

LS11

Domino Effect: Uncoordinated Checkpoints

X

Y

Z

x1

y1

z1

x2

y2

z2

x3

Time

X, Y, Z - cooperating processes
[- recovery points

•  Rollback of X does not affect other processes.
•  Rollback of Z requires all three processes
 to roll back to their very first recovery points.

m

Other issues: Uncoordinated Checkpoint

X

Y
y1

x1

X
failure

Time

m
Message loss due to
rollback recovery

Livelock is a situation in which a single failure can cause an infinite
number of rollbacks, preventing the system from making progress

X

Y
y1

failure

Time

m1

x1

n1
X

Y
y1

Time

m2

x1

n2

X

Y
y1

X

Time x1

n1

2nd roll back to restore
consistent global state

Lost Messages

Livelocks

•

Consistent Set of Checkpoints:
Recovery Lines
■  A strongly consistent set of checkpoints (recovery line) corresponds

to a strongly consistent global state.
–  there is one recovery point for each process in the set during the

interval spanned by checkpoints, there is no information flow between
any

•  pair of processes in the set
•  a process in the set and any process outside the set

■  A consistent set of checkpoints corresponds to a consistent global
state.
 Set {x1, y1, z1} is a strongly consistent set of checkpoints
 Set {x2, y2, z2} is a consistent set of checkpoints (need to handle lost
messages)

Y

Z

y1

z1

y2

z2

Time

X
x1 x2

Outline

■  Checkpointing basics and terminology

■  Uncoordinated Checkpointing

■  Coordinated Checkpointing

■  Asynchronous Checkpointing

Synchronous Checkpointing and Recovery
(Koo & Toueg)

■  Assumptions
–  Processes communicate by exchanging messages through

communication channels

–  Channels are FIFO

–  End-to-end protocols (such a sliding window) are assumed to
cope with message loss due to rollback recovery and
communication failures

–  Communication failures do not partition the network

■  A single process invokes the algorithm

■  The checkpoint and the rollback recovery
algorithms are not invoked concurrently.

Synchronous Checkpointing and Recovery
(Koo & Toueg)

■  Two types of checkpoints

–  Permanent - a local checkpoint at a process

–  Tentative - a temporary checkpoint that is made a
permanent checkpoint on the successful termination
of the checkpoint algorithm

Checkpoint Algorithm

■  Phase One
–  Initiating process Pi takes a tentative checkpoint and requests that all

the processes take tentative checkpoints.
–  Each process informs Pi whether it succeeded in taking a tentative

checkpoint.
–  If Pi learns that all processes have taken tentative checkpoints, Pi

decides that all tentative checkpoints should be made permanent.
–  Otherwise, Pi decides that all tentative checkpoints should be

discarded.

■  Phase Two
–  Pi propagates its decision to all processes.
–  On receiving the message from Pi , all processes act accordingly.
–  No process sends message after taking a tentative checkpoint till phase

2 is completed.

Checkpoint Algorithm (cont.)

■  Optimization of the checkpoint algorithm
–  A minimal number of processes take checkpoints
–  Processes use a labeling scheme to decide whether to take a

checkpoint.
–  All processes from which Pi has received messages after it has

taken its last checkpoint take a checkpoint to record the sending
of those messages

X

Y

Z

x1

y1

z1

x2

y2

z2

Time

m

Tentative
checkpoint

Messages to
take a checkpoint

Labeling Scheme

■  Each process uses monotonically increasing labels in its
outgoing messages

■  For any two processes X and Y, let m be the last
message that X received from Y after X has taken its
last permanent or tentative checkpoint then

■  Let m be the first message that X sent to Y after X took
its last permanent or tentative checkpoint then

⊥ = smallest label
T = largest label

m.l. if m exists
⊥ otherwise last_label_rcvdX[Y] = {

m.l. if m exists
⊥ otherwise first_label_sentX[Y] = {

Labeling Scheme (cont.)

■  When X requests Y to take a tentative checkpoint, X
sends last_label_rcvdX[Y] along with its request; Y takes a
tentative checkpoint only if

last_label_rcvdX[Y] ≥ first_label_sentY[X] > ⊥

■  Checkpoint cohort - Set of all processes that should be
asked to take a checkpoint initiated by X

ckpt_cohortX = {Y | last_label_rcvdX[Y] > ⊥ }

Rollback Recovery Algorithm

■  Phase One:
–  Process Pi checks whether all processes are willing to restart from their

previous checkpoints.
–  A process may reply “no” if it is already participating in a checkpointing

or recovering process initiated by some other process.
–  If all processes are willing to restart from their previous checkpoints, Pi

decides that they should restart.
–  Otherwise, Pi decides that all the processes continue with their normal

activities.

■  Phase Two:
–  Pi propagates its decision to all processes.
–  On receiving Pi’s decision, the processes act accordingly.

Rollback Recovery Algorithm (cont.)

■  Optimization
–  A minimum number of processes roll back
–  Processes use a labeling scheme to decide whether they need

to roll back
–  Y will restart from its permanent checkpoint only if X is rolling

back to a state where the sending of one or more messages
from X to Y is being undone

X

Y

Z

x1

y1

z1

x2

y2

z2

Time
X
Failure

Labeling Scheme - extension

■  For any two processes X and Y, let m be the last
message that X sent to Y before its last permanent
checkpoint. Then

■  When X requests Y to restart from the permanent
checkpoint, it sends last_label_sentX[Y] along with this
request

■  Y will restart from its permanent checkpoint only if

 last_label_rcvdY[X] > last_label_sentX[Y]

m.l if m exists
T otherwise last_label_sentX[Y] = {

Synchronous Checkpointing
Disadvantages

■  Additional messages must be exchanged to coordinate
checkpointing.

■  Synchronization delays are introduced during normal
operations.
–  No computational messages can be sent while the checkpointing

algorithm is in progress.

■  If failure rarely occurs between successive checkpoints,
then the checkpoint algorithm places an unnecessary
extra load on the system, which can significantly affect
performance.

Outline

■  Checkpointing basics and terminology

■  Uncoordinated Checkpointing

■  Coordinated Checkpointing

■  Asynchronous Checkpointing

Asynchronous Checkpointing and Recovery

■  Checkpoints at each process are taken independently without any
synchronization among the processors.

■  There is no guarantee that a set of local checkpoints taken will be
a consistent set of checkpoints.

■  The recovery algorithm must search for the most recent consistent
set of checkpoints before it initiates recovery.

X

Y

Z

x1

y1

z1

x2

y2

z2

Time

y3

x3
Inconsistent
recovery line

Most recent
consistent
recovery line

Asynchronous Checkpointing and Recovery
(cont.)

■  All incoming messages are logged at each process.
–  This minimizes the amount of computation to undo during a rollback.

–  The messages received after setting the recovery point can be
processed again.

■  Message logging
–  Pessimistic: An incoming message is logged before it is processed

•  This slows down the computation, even when there are no failures.

–  Optimistic: Processors continue to perform the computation, and the
message received are stored in volatile storage and logged at certain
intervals.

•  Messages that are not logged (stored on stable storage) can be lost in the
event of rollback.

•  This does not slow down the underlying computation.

Optimistic Message Logging

■  Messages not necessarily logged before being
processed.

■  Unlogged messages are not available during recovery.
■  States in other processes that causally depend upon lost

messages are called orphan states.
■  Processes that have orphan states must rollback.

■  Dependencies tracked trough state intervals:
–  Process consists of sequence of state intervals.
–  Receipt of message starts a new state interval.
–  Outgoing messages dependent upon

current state interval of a process
85 86

state interval

4 3
X

Y

Optimistic Message Logging (cont.)

■  Each process keeps a dependency vector:
–  One entry per process in the system.
–  Entry for process j specifies latest state interval in process j on

which the process is dependent.

■  Dependency vector piggybacked on outgoing
messages.

■  Receivers update their own dependency vector
from piggybacked vector.

■  Causal dependencies propagated through
piggybacked vector.

X

Y

Z

 5 11 -

4 5

10 11

3 4

state interval

X Y Z dependency vector

 5 - -

 5 11 4

Piggybacked Dependency Vector

■  Example shows dependency vector being updated as time
progresses.

■  Dependency vector of Z after receipt of m3 shows that Z is
dependent upon state 5 of X and state 11 of Y.

m1

m2

m3

X

Y

Z

 5 11 -

4 5

10 11

3 4

state interval

X Y Z dependency vector

 5 - -

 5 11 4

Recovery

■  X fails; if X has not logged m1 to disk at time of failure, then m1 is unrecoverable.
■  Cannot guarantee that state 5 of X can be recreated exactly as before.
■  All states dependent on state 5 of X are orphan states.
■  When X recovers, it broadcasts to other processes that it can recreate its state up to

state 4.
■  Other processes check their dependency vectors and rollback if they are dependent

on a state interval of X greater than 4.

m1

m2

m3

X

Asynchronous Checkpoint and Recovery
Algorithm: An Example

■  Communication channels are reliable.

■  Messages are delivered in the order in which they were sent.

■  Each process keeps track of the number of messages that were
–  Sent to other processes

–  Received from other processes

■  A process, upon restarting (after failure) broadcasts a message
that it had failed.

■  All processes determine orphan messages by comparing the
numbers of messages sent and received.

■  The process rolls back to a state where the number of messages
received (at the process) is not greater than the number of
messages sent (according to the state at other processes).

Asynchronous Checkpoint and Recovery
Algorithm: An Example (cont.)

X

Y

Z

ex0

ey0

ez0

Time
ez1 ez2 ez3

ey1 ey2 ey3

ex1 ex2

If Y rolls back to a state ey1, then
•  Y has sent only one message to X
•  X has received two messages from Y thus far
•  X must roll back to a state preceding ex1 (to be consistent with Y’s state)
•  For similar reasons, Z must also roll back

X

Outline

■  Checkpointing basics and terminology

■  Uncoordinated Checkpointing

■  Coordinated Checkpointing

■  Asynchronous Checkpointing

References

■  D. K. Pradhan, “Fault Tolerant Computer System
Design”, Chapter 3.10 (“Forward recovery”).

■  Singhal and Shivaratri, “Advanced Concepts in
Operating Systems”, Chapter 12: Recovery (“Backward
recovery”).

■  Synchronous Checkpointing: “Checkpointing and
Rollback-Recovery for Distributed Systems” by R. Koo
and S. Toueg, IEEE Transactions on Software
Engineering, Jan 1987, pp. 23-31.

■  Asynchronous Checkpointing: “Crash Recovery with
Little Overhead” by T. Juang and S. Venkatesan, 11th
International Conference on Distributed Computing
Systems, May 1991, pp. 454-461.

