CS 577: Introduction to Algorithms

Homework 8

Out: 04/07/17

Ground Rules

- Review problems will be discussed at the following week's review.
- Self-graded problems will be discussed at the following week's review, and are to be self-graded by you during the review. Only students present at the review session and turning in their graded solutions in person will earn points.
- Graded problems are to be turned in on the due date at the beginning of the lecture.
- Self-graded problems should be done individually.
- Graded problems should be done in pairs.
- Please follow page limits for all self-graded and graded problems.
- Write your name(s) clearly on your submissions, and turn in each problem on separate sheets of paper.

Review Problems

- 1. An edge in a flow network is called *lower-binding* if reducing its capacity by one unit decreases the maximum flow in the network. Describe and analyze an algorithm for finding all the lower-binding edges in a network G when given the edge capacities, the source and the sink, as well as a maximum flow f^* in G. Your algorithm should run in time O(mn).
- 2. Describe and analyze an efficient algorithm to determine whether a given flow network contains a *unique* maximum flow.

Self-graded Problems

3. (Page limit: 1 sheet; 2 sides) (Taken from "Algorithms, Etc.") A data stream is an extremely long sequence of items that you can read only once, in order. A good example of a data stream is the sequence of packets that pass through a router. Data stream algorithms must process each item in the stream quickly, using very little memory; there is simply too much data to store, and it arrives too quickly for any complex computations. Every data stream algorithm looks roughly like this:

Algorithm 1: DoSomethingInteresting(stream S)	
1 repeat	
2	$x \leftarrow \text{next item in } S.$
3	$\langle\!\langle Do \text{ something fast with } x \rangle\!\rangle$.
4 until S ends;	
5 return (something).	

Describe and analyze an algorithm that chooses one element uniformly at random from a data stream, without knowing the length of the stream in advance. Your algorithm should spend O(1) time per stream element and use O(1) space (not counting the stream itself).

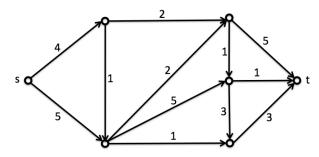
Graded Problems

- 4. (Page limit: 2 sheets; 3 sides) (Taken from "Algorithms, Etc.") Let M[1...n, 1...n] be an $n \times n$ matrix in which every row and every column is sorted. Such a matrix is called *totally monotone*. No two elements of M are equal.
 - (a) Describe and analyze an algorithm to solve the following problem in O(n) time: Given indices i, j, i', j' as input, compute the number of elements of M smaller than M[i, j] and larger than M[i', j'].
 - (b) Describe and analyze an algorithm to solve the following problem in O(n) time: Given indices i, j, i', j' as input, return an element of M chosen uniformly at random from the elements smaller than M[i, j] and larger than M[i', j']. Assume the requested range is always non-empty, and that you have a random number generator that returns a uniformly random integer in a specified range.
 - (c) Describe and analyze a randomized algorithm to compute the median element of M in $O(n \log n)$ expected time.

Hint: Use a randomized version of binary search, as in HW 7 problem 3.

5. (Page limit: 1 sheet; 2 sides)

(a) For the network G below determine the max s-t flow, f^* , the residual network G_{f^*} , and a minimum s-t cut.



- (b) An edge in a flow network is called *upper-binding* if increasing its capacity by one unit increases the maximum flow in the network. See problem 1 for the definition of lower-binding edges. Identify all of the upper-binding and all of the lower-binding edges in the above flow network.
- (c) Describe and analyze an algorithm for finding all the upper-binding edges in a network G when given a maximum flow f^* in G. Your algorithm should run in linear time.