
CS 577: Introduction to Algorithms Sample Midterm Solutions
1. To show that the solitaire game is NP-hard, it suffices to reduce a known NP-hard problem to it. We will reduce

from 3-SAT. Given a 3-CNF formula φ, we will construct an instance M of the solitaire game so that M has a
solution if and only if φ has a satisfying assignment.

Let C1, C2, . . . , Ck be the clauses in φ, and let x1, x2, . . . , xn be the variables in φ. We say a literal is positive
if it is of the form xi for some i, and we say a literal is negative if it is of the form xi for some i. We assume
without loss of generality that, for every clause Cj , no variable appears as both positively and negatively in Cj .

We constructM to be the game with one row for each clause, and one column for each variable. For each clause
Cj and each variable xi, we place a blue/circular stone in the corresponding cell of M if xi appears positively
in Cj , and we place a red/cross stone in the corresponding cell of M if xi appears negatively in Cj . (By our
assumption that no clause of φ has both the positive and negative form of a literal, at most one stone is placed in
any particular cell.) This completes the reduction.

We now argue that M has a solution if and only if φ has a satisfying assignment.

In one direction, suppose that xi ← ai : i = 1, . . . , n is a satisfying assignment to φ. We give the following rule
for removing stones from M : for each variable xi, if ai = 1, remove the red/cross stones from xi’s column; if
ai = 0, remove the blue/circular stones from xi’s column. Clearly, this leaves every column with at most one
type of stone in it. To see that every row has at least one stone left in it, consider the row for the clause Cj . Since
x← a is a satisfying assignment for φ, some literal of Cj is set to 1. Accordingly, there is a variable xi so that
the stone placed in the Cj row and xi column is left in by the above rule. Thus every row of M has a stone left
in it, and hence M is solvable.

In the other direction, suppose that M is solvable. We take this to mean that for each column, there is a type of
stone (blue/circular or red/cross) so that every stone remaining in that column has that type. (This allows for the
possibility that some column has no stones, in which case a stone-type is chosen arbitrarily.) Moreover, for each
row, there is a stone remaining in that row. We now use this solution of M to construct a satisfying assignment
x← a to φ. For each variable xi, if the solution of M leaves blue/circular stones, set xi ← 1 (ie ai = 1), and if
the solution of M leaves red/cross stones, set xi ← 0 (ai = 0). For any clause Cj , we know that in the solution
to M , there is a stone in some column in Cj’s row. It follows that the corresponding literal is set to true in the
assignment x← a. Thus every clause of φ is satisfied, and so φ is satisfied. This completes the proof.

2. Our solution will reformulate the escape problem as a network flow problem. We can think of vertex-disjoint
paths through the grid as distinct paths carrying flow through a network. Since we want to determine whether
there are m disjoint paths from the terminals to the boundaries, we will try to push m units of flow through the
terminals to the boundaries, bounding the flow along each path to 1 unit.

Some caution is required, though. If we just turn the grid into a network in the obvious way (by connecting
a source to the terminals, the boundaries to a sink, and setting directed edge capacities of 1 throughout), it is
possible that we could achieve a flow value of m even if there aren’t m vertex-disjoint paths. This is because
the flow paths need not be vertex-disjoint: two units of flow could enter the same vertex and then continue along
different out-edges. We need to modify the “obvious” network to make sure that each vertex has at most one
unit of flow sent through it.

One way to accomplish this is by adding a single “internal” edge of capacity 1 inside each vertex. This way,
we can’t send more than one unit of flow through any vertex because the internal edge will be saturated. While
internal edges aren’t one of the basic building blocks of graphs or networks, we can achieve the same effect by
splitting each vertex v into two vertices vin and vout and including a directed edge (vin, vout) of capacity 1. The
intuition here is that vin is where flow enters v, while vout is where it exits, and (vin, vout) plays the part of the
desired internal edge. With this construct in mind, we are now ready to present our algorithm.

Escape(G):

1

1. Construct a flow network G′ as follows:
(i) Create a source s and a sink t.

(ii) For each vertex v in G, create a pair of vertices vin and vout, with a directed edge (vin, vout) of
capacity 1.

(iii) For each pair v, w of adjacent vertices in G, create (in G′) directed edges of capacity 1 from vout to
win and from wout to vin.

(iv) For each terminal vertex v in G, create (in G′) a directed edge of capacity 1 from s to vin.
(v) For each boundary vertex w in G, create a directed edge of capacity 1 from wout to t.

2. Run Ford-Fulkerson on G′ to determine the value of a maximum flow.
3. If that max flow is m, return true (escape problem can be solved); else, return false.

Runtime Analysis: There are 2n2 + 2 vertices in the network G′. (Two for each vertex of G, and also s and
t.) Each of s and t has O(n2) edges, and each other vertex has at most 5 edges (as many as 4 neighbors, plus
the internal edge). The number of edges in G′ is therefore O(n2) + O(n2) + 5O(n2) = O(n2). So the time
required for network construction is O(|V |+ |E|) = O(n2) +O(n2) = O(n2).

The runtime of Ford-Fulkerson is O(|E| · |f∗|). We have |E| = O(n2), and the maximum flow value cannot
be more than m, so this runtime is O(mn2). This dominates the O(n2) term for network construction, so we
conclude that our overall runtime is O(mn2).

Proof of Correctness: It suffices to show that the escape problem is solvable if and only ifG′ has a flow of total
weight m.

First suppose the escape problem is solvable, so that there exist m vertex-disjoint paths from all of the terminals
to boundary vertices. Since s has an edge to each terminal and each boundary vertex has an edge to t, this means
that there are m vertex-disjoint paths from s to t in G′. All edges in all of these paths have capacity 1, so by
sending a single unit of flow through each path, we obtain a flow of total weight m.

Now suppose that G′ has a flow of weight m. Since all edge capacities are integers, we know that there exists a
flow f∗ with only integral flow values such that |f∗| = m. The flow f∗ is obtainable (via Ford-Fulkerson) by
sequentially sending one more unit of flow along an augmenting path. All edge capacities are 1, so no single
path can carry more than a single unit of flow; to have a total flow of m, there must therefore be m different s, t
paths in G′. These paths are, furthermore, edge-disjoint—if any two of them shared an edge, then the shared
edge would carry at least two units of flow, violating the edge capacity of 1.

Each of the m paths in G′ can be specified by listing the visited vertices in order, and each path will have
the form (s, v1in, v

1
out, . . . , v

k
in, v

k
out, t), where (v1in, v

1
out) corresponds to a terminal vertex v1 and (vkin, v

k
out)

corresponds to a boundary vertex vk. We can “collapse” this path into the terminal-boundary path (v1, . . . , vk)
in G by eliminating s, t, and the internal edges. No two of the paths obtained in this way can share any vertices.
If two of the paths shared a vertex v, then the internal edge (vin, vout) would be used by both corresponding
paths in G′, and so that edge would be filled over capacity in f∗. We conclude that there are m vertex-disjoint
paths in G from terminal vertices to boundary vertices, so the escape problem is solvable.

3. (a) For i > 1, the probability that i is a leaf at the end of the process is the probability that no node j > i
connects to it. For a particular j, this probability is 1− 1/(j− 1), since there are j− 1 potential nodes that
j could connect to, of which i is one. Since these events are independent for all j, the probability is(

1− 1

i

)
·
(
1− 1

i+ 1

)
· · · · ·

(
1− 1

n− 1

)
=
i− 1

i
· i

i+ 1
· · · · · n− 2

n− 1

=
i− 1

n− 1

2

For i = 1, the calculation is slightly different. In order to be a leaf, two later vertices need to select it.
However, the second vertex always chooses vertex 1. The net result is(

1− 1

i+ 1

)
·
(
1− 1

i+ 2

)
· · · · ·

(
1− 1

n− 1

)
=

i

n− 1

where we use i = 1 to contrast with the previous formula. This expression simplifies to 1/(n− 1).

(b) To get the answer, we sum over the above probabilities for all i in {1, . . . , n}. We get

1

n− 1
(1 + 1 + 2 + · · ·+ n− 1) =

n

2
+

1

n− 1

4. With a little initial processing, it is possible to make a greedy approach work here. Consider the jogger i with
minimal bi—that is, the jogger who exits the path at the earliest point. In order for jogger i to see one of the
advertisements, we must place an ad on one of the billboards ai, . . . , bi. We might as well choose board bi (the
last one that jogger i sees). Each other jogger j has bj ≥ bi, so if jogger j sees a given board b ∈ {ai, . . . , bi},
then they will also see board bi before exiting the path. After selecting board bi, we can repeat this selection
strategy for the other joggers, adding a new billboard only when a jogger’s path does not already contain a
billboard. Our algorithm makes use of two facts: for each jogger i, at least one of the boards {ai, . . . , bi} must
be chosen; and in each such case, board bi is at least as good a choice as any other. Our initial processing will
consist of sorting the joggers in increasing order of bi. The joggers who exit the path earliest come first, and
those who exit latest come last.

BillboardSelection:

1. Sort the joggers’ board intervals in increasing order of bi. For convenience, permute the indices so that
b1 ≤ b2 ≤ · · · ≤ bm.

2. Keep track of the last billboard selected. Initialize prevBoard = 0.

3. for i = 1, . . . ,m:

(a) If ai ≤ prevBoard, do nothing. (The jogger will have already seen the previous board, so we don’t
need to add another for jogger i.)

(b) Else, add board bi, and update prevBoard← bi.

4. Return the set of selected boards.

Runtime Analysis: Steps 2 and 4 take constant time each. Step 3 takes constant time for each of m joggers,
for a total of O(m) work. Step 1 is a sort over m elements, so it takes time O(m logm). This last term is the
dominant one, so our overall runtime is O(m logm).

Proof of Correctness: It is clear that each jogger passes a board in our algorithm’s solution. Step 3 considers
each jogger and, if necessary, adds a board that that jogger will see.

To prove optimality, letB = {bi1 , . . . , bik} be the set of billboards chosen by our algorithm. Also let Ji1 , . . . , Jik
be the joggers considered by the algorithm when bi1 , . . . , bik are selected. We claim that any two of these jog-
gers must have disjoint board intervals.

To prove that, consider joggers Ji1 and Ji2 , and suppose without loss of generality that bi1 < bi2 . (This reason-
ing will extend to any pair of the Jir .) Suppose, by way of contradiction, that the intervals {ai1 , . . . , bi1} and
{ai2 , . . . , bi2} overlap. Since bi1 < bi2 , this implies that ai2 ≤ bi1 . The joggers are considered in ascending
order of bi, so jogger Ji1 is considered before Ji2 in the algorithm. When considering Ji1 , the algorithm adds
board bi1 . We already noted that ai2 ≤ bi1 , so board bi1 is seen by jogger Ji2 , too. Thus, when jogger Ji2 is

3

considered in a later iteration of step 3, no new boards will be added. But by assumption, a new board—namely,
bi2—is added when Ji2 was considered. This gives us our contradiction, and so we conclude that the intervals
for Ji1 and Ji2 are disjoint.

Joggers Ji1 , . . . , Jik must each pass by a board, and since their intervals are disjoint, we need a separate board
for each of them. This establishes k as a lower bound on the number of boards in an optimal solution. By
assumption, our algorithm only selects k boards, so our algorithm is optimal.

4

