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More on Set Operations and Cardinality of Infinite Sets



Announcements

e Hmwk 4 posted. Due at the start of class on Friday 2/17

e By this afternoon, all CAs/Graders will have their hats, so
look for them in CSEL




Sets and Set Operations

Def: Let A and B be sets. The union of the sets A and B, denoted
A U B, is the set that contains those elements that are either in A or
in B, or in both

AUB={x|x€eAVxeB}
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Sets and Set Operations

Def: Let A and B be sets. The intersection of the sets A and B,
denoted A N B, is the set containing those elements in both A and B

ANB={x|x€AAx¢€ B}
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Sets and Set Operations

Def: Let A and B be sets. The difference of A and B, written as
A — B, is the set containing those elements that are in A but not in B

A—-B={x|x€AAx & B}
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Sets and Set Operations

Def: Let l_] be the universal set. The complement of the set A,
denoted A,istheset U — A

A={xeU|xg&A}orjust {x|x&A}



Chris

Chris

Chris


Sets and Set Operations

Sometimes, you want to prove that two complicated sets are equal

Strategy: To show that S = 7, showthatS C Tand 7 C §

l.(=>)Toshow S C T, assumex € S impliesx € T

2.(&)Toshow T C S, assume x € T impliesx € S

Exercise: ShowthatA — B=ANBAB
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Sets and Set Operations

Exercise: ShowthatA — B=ANB

Proof:

1. (=) Let x be an arbitrary element in A — B.

This meansthatx € Aandx & B

But x € B implies that x is in the complement of B, i.e. x € B
Sincex € Aandx € Bweknowx € ANB

Since x was any elementin A — B we'veshownA — BCANB




Sets and Set Operations

Now we need to show that AN B C A — B

2. (&) Let x be an arbitrary elementin A N B

This means that x € A and x € B

But x € B implies that x is notin B, i.e. x € B

Sincexe Aandx € Bweknowx € A — B

Since x was any elementin A N Bwe'veshownANB CA —B
Since we've shown bothA —BCANBandANBCA-B

we've proved that A — B =A N B




Sets and Set Operations

It turns out that when sets are combined using only U, N, and

complements, there is this amazing symmetry between sets and set
operations and propositional logic

Example: DeMorgan's Laws: A N B = AUB
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Sets and Set Operations

It turns out that when sets are combined using only U, N, and

complements, there is this amazing symmetry between sets and set
operations and propositional logic

Example: DeMorgan's Laws: A N B = AUB
To formally prove an identity such as this we could use the strategy
SCT and TCS = S§=T

But often it's easier to use a proof based on set-builder notation




Sets and Set Operations

Example: DeMorgan's Laws: AN B = AUB

Set Builder Proof: Using only logical equivalences

ANB

x| x¢& ANB)
{x|(x€eAnNB)}

x| (xe€AAXx€EB)}
x| (x€A)V-(x €B)}
x| x&AVXx¢&B)}
{xIxEXVxEE}

(x| x € AUB)}

AUB

(def. complement)
(def. not 1n)

(def. intersection)
(DeMorgan's)
(def. not 1n)

(def. complement)

(def. union)



Sets and Set Operations

We of course have the other DeMorgan's Law: A U B = A N B
EFY: Prove this identity using set builder notation

There are crap-ton more Set |dentities that mirror logical
equivalences. They're summarized on the table on the next slide.

From our logical definitions of Union, Intersection, and Complement
we know that the natural logical equivalences are as follows:

Uu <& VvV
n < A

complement <<  negation




Sets and Set Operations

TABLE 1 Set Identities.

Identity Name

ANU=A Identity laws
AUP=A

AUU =U Domination laws
ANPG=0

AUA=A Idempotent laws
ANA=A

(tT) = A Complementation law
AUB=BUA Commutative laws
ANB=BNA

AUBUCO)=(AUB)UC Associative laws

ANBNC)=(ANB)NC

AUBNC)=(AUB)N(AUO) Distributive laws
AN(BUC)=(ANB)U(ANC)

ANB=AUB De Morgan’s laws
AUB=ANB
AUANB)=A Absorption laws

AN(AUB)=A

AUA=U Complement laws
ANA=0




Sets and Set Operations

Example: Use Set Identities to prove AU (BN C) = (CUB)NA

AN (BN C) (DeMorgan)
AN (1_3 U 5) (DeMorgan)
(BUC)NA (Commutativity)

AUBNCO)

(CUB)NA (Commutativity)

EFY: Use Set Identities to prove A UB) N (BNA) = B




Sets and Set Operations

The equivalent set-version of a truth table is called a membership
table. Can use to prove set equivalences

Example: Show that A U B = ANB

ANB | AUB | A

—_ = O O |

A | B B
1|1 0
10 1
0|1 0
0 0 1

_— O @ & | D

U
1
1
1
0

ik & & & |C

|dentical columns in the membership table means that the two set
expressions are equivalent




Sets and Set Operations

The equivalent set-version of a truth table is called a membership
table. Can use to prove set equivalences

Example: Show that A U B = ANB

ANB | AUB | A

—_ = O O |

B
0
1
0
1

A | B
1 |1
10
01
00

_— O @ & | D

U
1
1
1
0

ik & & & |C

EFY: Use a membership table to show (AU B)N (BN A) = B




Countable and Uncountable Sets

So far we've discussed sets like A = {a, b, c} where, e.g. [A| = 3

Such a set is said to be a finite set or have finite cardinality

But we've not talked about the cardinality of sets like {n € N | n*}
which clearly has an infinite number of elements

OK, so shouldn't the cardinality of B = {n € N | n*} be |B| = o0
and we're done?




Countable and Uncountable Sets

OK, so shouldn't the cardinality of B = {n € N | n*} be |B| = o
and we're done?

Note quite, it turns out that it's useful to break up just how infinite a
set is into two classes. Roughly they are described as follows:

Countably Infinite: We could count each member of the set if we
had infinite time

Uncountable: We could never even list each element of the set
even In infinite time




Countable and Uncountable Sets

OK, so shouldn't the cardinality of B = {n € N | n*} be |B| = o
and we're done?

Note quite, it turns out that it's useful to break up just how infinite a
set is into two classes. Roughly they are described as follows:

Countably Infinite: We could count each member of the set if we
had infinite time

Uncountable: We could never even list each element of the set
even In infinite time

Def: A set A is called countable or countably infinite if it is not
finite and there is a one-to-one map between each element of A and
the natural numbers. A set A is called uncountabile if it is infinite but
not countable.




Countable and Uncountable Sets

Example: Show that the set of positive even integers is countable

We want to find a one-to-one map between the positive even
integers {2,4, 5, 8, 10, ...} and the natural numbers {1, 2, 3, ...}




Countable and Uncountable Sets

Example: Show that the set of positive even integers is countable

We want to find a one-to-one map between the positive even
integers {2,4, 5, 8, 10, ...} and the natural numbers {1, 2, 3, ...}

This one's pretty straightforward. We have

N Evens
1 & 2
2 & 4
3 & 6

Better Yet: Define function relationship f(n) = 2n




Countable and Uncountable Sets

Example: Show that the set of all integers is countable




Countable and Uncountable Sets

Example: Show that the set of all integers is countable

We want to find a one-to-one map between the positive even
integers {...,—3,—2,—1,0,1, 2, 3, ...} and the natural numbers

|a*5;6¢$

N
1
2
0
4
5

¢ ¢ ¢ ¢ ¢
|

Better Yet: Define function relationship f(n) = (—=1)"|n /2|
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Countable and Uncountable Sets

Example: The positive rational numbers are countable

ey

' N
3

NN BN W[ NIO\%
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Countable and Uncountable Sets

Example: The real numbers are uncountable. Let's look at just [0, 1]

0. 1 2 3 4 3 5 3 4 5 3 0 8
0. 9 8 0 8 0 8 0 9 0 9 0 9
0. 7 5 0 0 3 8 4 2 3 4 0 8
0. 0 8 2 3 4 0 8 2 4 3 0 8
0. 5 9 8 2 3 6 1 5 3 8 9 4
0. 8 9 2 4 7 8 2 3 4 6 D 9

Let's suppose we can list them all, and look for a contradiction




Countable and Uncountable Sets

Example: The real numbers are uncountable. Let's look at just [0, 1]

L L L e @
co W O N O =
O O 00 Wb o0 N
D 00 N O O W
AN WO o0 B
N WA LW O W
0 N © 00 00 W
N = 00 h O W
W WL NN O B
S LW Bs WO W
AN o0 W S O W
L O O O O O
O H 00 00 O o©

Let's suppose we can list them all, and look for a contradiction

Contradiction: We'll construct a number that can't be in the list




Countable and Uncountable Sets

Example: The real numbers are uncountable. Let's look at just [0, 1]

0. 1 2 3 4 3 5 3 4 5 3 0 8
0. 9 8 0 8 0 8 0 9 0 9 0 9
0. 7 5 0 0 3 8 4 2 3 4 0 8
0. 0 8 2 3 4 0 8 2 4 3 0 8
0. 5 9 8 2 3 6 1 5 3 8 9 4
0. 8 9 2 4 7 8 2 3 4 6 D 9

Let's suppose we can list them all, and look for a contradiction

Contradiction: We'll construct a number that can't be in the list

Strategy: Set the k" digit of our new number based on the k™ digit
of the k™™ number in list according to a rule




Countable and Uncountable Sets

Example: The real numbers are uncountable. Let's look at just [0, 1]

0. 1 2 3 4 3 D 3 4 D 3 0 8
0. 9 8 0 8 0 8 0 9 0 9 0 9
0. 7 5 0 0 3 8 -+ 2 3 4 0 8
0. 0 8 2 3 4 0 8 2 4 3 0 8
0. D 9 8 2 3 6 1 > 3 8 9 4
0. 8 9 2 4 [ 8 2 3 4 6 5 9

Rule:

o If k" digit of the k™ number is a 3, our number's is a 5
o If kD digit of the k™ number is not a 3, our number'sisa 3




Countable and Uncountable Sets

Example: The real numbers are uncountable. Let's look at just [0, 1]

1
9
7
0
D
8

© © © © © ©
+ O O 00 Wh 00 N
s N0 N O O W
- AN WO o M
N VS - YL 7S I «o B §'S
. 0 N © 00 o0 W
¢« N = 00 S~ O W
VS B N \* N A" I~
s B LR LW O W
« ON OO0 W S O W
- G D 9 e W @
- O H 0 o0 O o©

Rule:

o If k" digit of the k™ number is a 3, our number's is a 5
o If kD digit of the k™ number is not a 3, our number'sisa 3

m=0.388583 -
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Countable and Uncountable Sets

Claim: Our constructed number, m, can't already be in the list

Argument:

1. misn't the 1% number b/c their 1% digits don't match
2. m isn't the 2™ number b/c their 2™ digits don't match
3. m isn't the 3™ number b/c their 3™ digits don't match

and so on and so on ..
Thus we've constructed an m that can't be Iin the list

This is our contradiction that proves that the real numbers in [0, 1]
are uncountable

This proof is called Cantor's Diagonal Argument




EFYs




Sets and Set Operations

We of course have the other DeMorgan's Law: A U B = ANB

EFY: Prove this identity using set builder notation

AUB

x| x¢& AUB}
{x|(x € AUB)}

(x| (x€eAVxeEB)}
x| (x €A A-(x € B)}
x| x&AAX & B}
{xIxEX/\xEE}
(x| x € ANB)}

ANB

(def. complement)
(def. not 1n)

(def. intersection)
(DeMorgan's)
(def. not 1n)

(def. complement)

(def. union)




Sets and Set Operations

EFY: Use Set Identities to prove (AU B)N (BN A) = B

(AU E) N (E U Z) (DeMorgan)
(AUB)N(AUB) (Comm.)
(ANA)UB (Distribution)
dUB (Complement)

B (Identity)

AUBN(BNA)




Sets and Set Operations

EFY: Use a membership table to show (A U E) N(BNA) = B

A B|B|AUB BNnA BnA| (AUBN(BNA)
1|10 1 1 0 0
1101 1 0 1 1
0(1/0]| O 0 1 0
0 0|1 1 0 1 1

The columns of interest are identical, so the two sets are equal.




