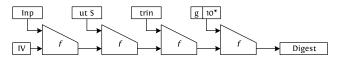
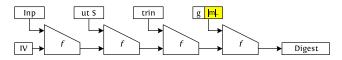
Basic Merkle-Damgård: very simple and elegant



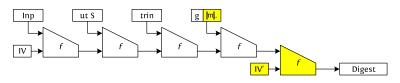
Yes, but can we have collision-resistance preservation?

Merkle-Damgård with strengthening



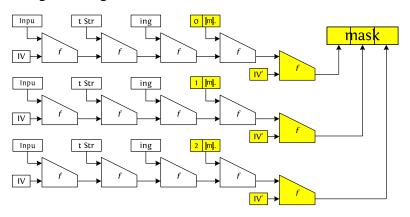
Yes, but what about length extension attacks and the like?

Enveloped Merkle-Damgård



Yes, but we need long output for full-domain hashing (OAEP, RSA-PSS, KEM, etc)?

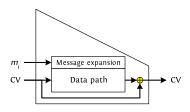
Mask generating function construction



This does what we need!

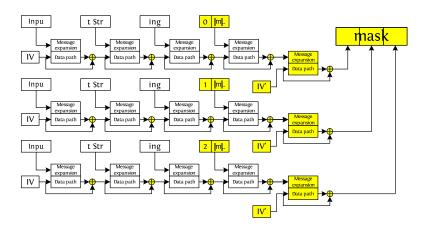
The compression function

Block cipher in Davies-Meyer mode



That's it!

The final solution

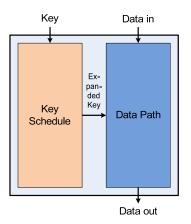


Now we just have to build a suitable block cipher ...

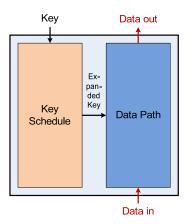
Block-cipher based hashing: time for re-factoring

- Goal: hashing mode that is sound and simple
 - with good level of security against generic attacks
 - calling a block cipher
- Remaining problem: design of a suitable block cipher
 - round function: several good approaches known
 - soundness proofs are typically in ideal cipher model
 - key schedule: not clear how to do design good one
- But do we really need a block cipher?

Block cipher operation



Block cipher operation: the inverse



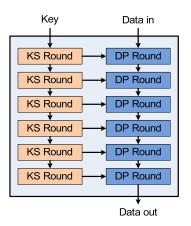
When do you need the inverse?

Indicated in red:

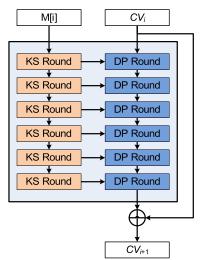
- Hashing and its modes HMAC, MGF1, ...
- Block encryption: ECB, CBC, ...
- Stream encryption:
 - synchronous: counter mode, OFB, ...
 - self-synchronizing: CFB
- MAC computation: CBC-MAC, C-MAC, ...
- Authenticated encryption: OCB, GCM, CCM ...
 - Most schemes with misuse-resistant claims

So for most uses you don't need the inverse!

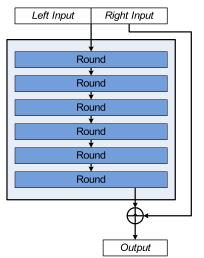
Block cipher internals



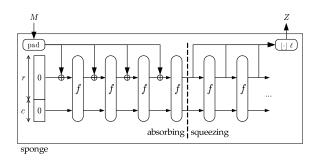
Hashing use case: Davies-Meyer compression function



Simplifying the view: iterated permutation



The result: the sponge construction



- f: a b-bit permutation with b = r + c
 - efficiency: processes *r* bits per call to *f*
 - security: provably resists generic attacks up to 2^{c/2}
- Flexibility in trading rate r for capacity c or vice versa

Security strength oriented approach

Security	Collision	Pre-image	Required	Relative	SHA-3
strength	resistance	resistance	capacity	perf.	instance
s = 80	<i>n</i> ≥ 160	<i>n</i> ≥ 80	c = 160	×1.406	SHA3c160
s = 112	n ≥ 224	$n \geq$ 112	c = 224	×1.343	SHA3c224
s = 128	$n \geq 256$	$n \ge 128$	c = 256	×1.312	SHA3c256
s = 192	<i>n</i> ≥ 384	<i>n</i> ≥ 192	c = 384	×1.188	SHA3c384
s = 256	$n \geq 512$	$n \geq 256$	c = 512	×1.063	SHA3c512
S	$n \geq 2s$	$n \geq s$	c = 2s	$\times \frac{1600-c}{1024}$	SHA3[c=2s]

s: security strength level [NIST SP 800-57]

- These SHA-3 instances
 - are consistent with philosophy of [NIST SP 800-57]
 - provide a one-to-one mapping to security strength levels
- Higher efficiency

Generic security of the sponge construction

Theorem (Indifferentiability of the sponge construction)

The sponge construction calling a random permutation, $\mathcal{S}'[\mathcal{F}]$, is (t_D, t_S, N, ϵ) -indifferentiable from a random oracle, for any t_D , $t_S = O(N^2)$, $N < 2^c$ and for any ϵ with $\epsilon > f_P(N) \approx \frac{N}{2^{c+1}}$.

[Keccak team, Eurocrypt 2008]

Informally, a random sponge is like a random oracle when $N < 2^{c/2}$.

- \blacksquare Collision-, preimage-resistance, etc., up to security strength c/2
- The bound assumes *f* is a random permutation
 - It covers generic attacks
 - ...but not attacks that exploit specific properties of *f*