Designing the permutation Keccak-f

Our mission

To design a permutation called Keccak-f that cannot be distinguished from a random permutation.

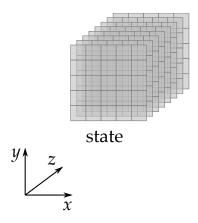
- Like a block cipher
 - sequence of identical rounds
 - round function that is nonlinear and has good diffusion
- ...but not quite
 - no need for key schedule
 - round constants instead of round keys
 - inverse permutation need not be efficient

Criteria for a strong permutation

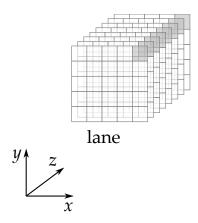
- Classical LC/DC criteria
 - Absence of large differential propagation probabilities
 - Absence of large input-output correlations
- Infeasibility of the CICO problem
 - Constrained Input Constrained Output
 - Given partial input and partial output, find missing parts
- Immunity to
 - Integral cryptanalysis
 - Algebraic attacks
 - Slide and symmetry-exploiting attacks
 - ...

KECCAK

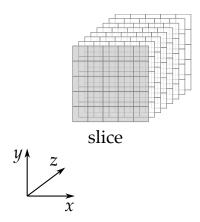
- Instantiation of a sponge function
- the permutation Keccak-f
 - **7** permutations: $b \in \{25, 50, 100, 200, 400, 800, 1600\}$
- Security-speed trade-offs using the same permutation, e.g.,
 - SHA-3 instance: r = 1088 and c = 512
 - permutation width: 1600
 - security strength 256: post-quantum sufficient
 - Lightweight instance: r = 40 and c = 160
 - permutation width: 200
 - security strength 80: same as SHA-1

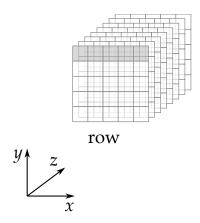

Keccak-f: the permutations in Keccak

Operates on 3D state:



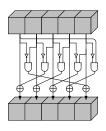
- $\frac{z}{x}$
- (5 × 5)-bit slices
- 2^ℓ-bit lanes
- \blacksquare param. $0 \le \ell < 7$


- Round function R with 5 steps:
 - \bullet : mixing layer
 - ρ : bit transposition
 - \blacksquare π : bit transposition
 - \blacksquare χ : non-linear layer
 - ι: round constants
- # rounds: $12 + 2\ell$ for $b = 2^{\ell}25$
 - 12 rounds in Keccak-f[25]
 - 24 rounds in Keccak-f[1600]


- 5 \times 5 lanes, each containing 2 $^{\ell}$ bits (1, 2, 4, 8, 16, 32 or 64)
- (5×5) -bit slices, 2^{ℓ} of them

- 5 × 5 lanes, each containing 2^{ℓ} bits (1, 2, 4, 8, 16, 32 or 64)
- \bullet (5 × 5)-bit slices, 2^{ℓ} of them

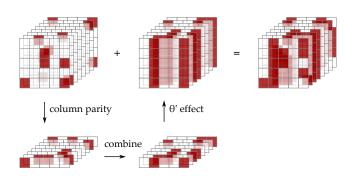
- 5 \times 5 lanes, each containing 2 $^{\ell}$ bits (1, 2, 4, 8, 16, 32 or 64)
- (5×5) -bit slices, 2^{ℓ} of them



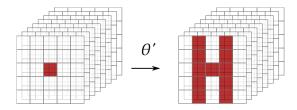
- 5 \times 5 lanes, each containing 2 $^{\ell}$ bits (1, 2, 4, 8, 16, 32 or 64)
- (5×5) -bit slices, 2^{ℓ} of them

- 5 \times 5 lanes, each containing 2 $^{\ell}$ bits (1, 2, 4, 8, 16, 32 or 64)
- (5×5) -bit slices, 2^{ℓ} of them

χ , the nonlinear mapping in Keccak-f



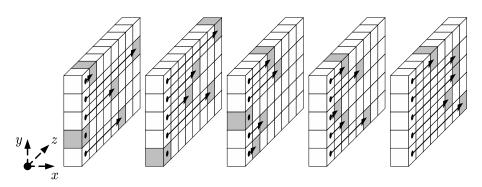
- "Flip bit if neighbors exhibit 01 pattern"
- Operates independently and in parallel on 5-bit rows
- Algebraic degree 2, inverse has degree 3
- LC/DC propagation properties easy to describe and analyze


θ' , a first attempt at mixing bits

- **Compute parity** $c_{x,z}$ of each column
- Add to each cell parity of neighboring columns:

$$b_{x,y,z}=a_{x,y,z}\oplus c_{x-1,z}\oplus c_{x+1,z}$$

Diffusion of θ'

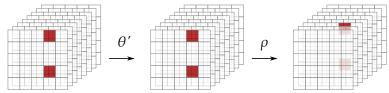


ρ for inter-slice dispersion

- We need diffusion between the slices ...
- ρ : cyclic shifts of lanes with offsets

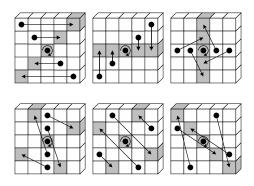
$$i(i+1)/2 \mod 2^{\ell}$$

 $lue{}$ Offsets cycle through all values below 2 $^{\ell}$



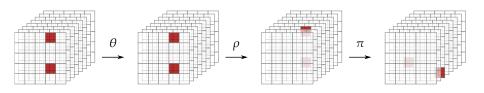
ι to break symmetry

- XOR of round-dependent constant to lane in origin
- Without ι , the round mapping would be symmetric
 - invariant to translation in the z-direction
- Without *i*, all rounds would be the same
 - susceptibility to slide attacks
 - defective cycle structure
- Without ι , we get simple fixed points (000 and 111)

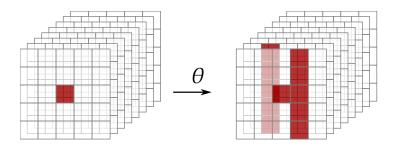

A first attempt at KECCAK-f

- Round function: $R = \iota \circ \rho \circ \theta' \circ \chi$
- Problem: low-weight periodic trails by chaining:

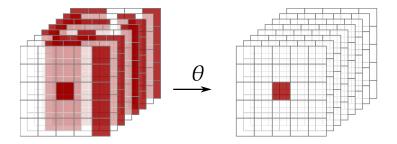
- \blacksquare χ : may propagate unchanged
- lacksquare θ' : propagates unchanged, because all column parities are 0
- ρ : in general moves active bits to different slices ...
- ...but not always


π for disturbing horizontal/vertical alignment

$$a_{x,y} \leftarrow a_{x',y'} \text{ with } \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$


A second attempt at Keccak-f

- Round function: $R = \iota \circ \pi \circ \rho \circ \theta' \circ \chi$
- Solves problem encountered before:

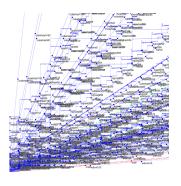


 \blacksquare π moves bits in same column to different columns!

Tweaking θ' to θ

Inverse of θ

- Diffusion from single-bit output to input very high
- Increases resistance against LC/DC and algebraic attacks

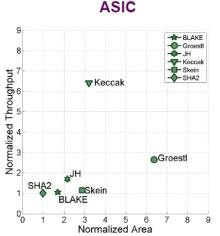

KECCAK-f summary

Round function:

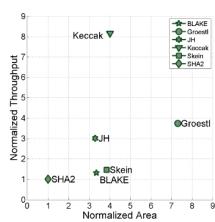
$$R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

- Number of rounds: $12 + 2\ell$
 - Keccak-f[25] has 12 rounds
 - KECCAK-f[1600] has 24 rounds
- Efficiency
 - high level of parallellism
 - flexibility: bit-interleaving
 - software: competitive on wide range of CPU
 - dedicated hardware: very competitive
 - suited for protection against side-channel attack

Performance in software


- Faster than SHA-2 on all modern PC
- KECCAKTREE faster than MD5 on some platforms

C/b	Algo	Strength		
4.79	keccakc256treed2	128		
4.98	md5	< 64		
5.89	keccakc512treed2	256		
6.09	sha1	< 80		
8.25	keccakc256	128		
10.02	keccakc512	256		
13.73	sha512	256		
21.66	sha256	128		


[eBASH, hydra6, http://bench.cr.yp.to/]

Efficient and flexible in hardware

From Kris Gaj's presentation at SHA-3, Washington 2012:

Stratix III FPGA

Our analysis underlying the design of KECCAK-f

- Presence of large input-output correlations
- Ability to control propagation of differences
 - Differential/linear trail analysis
 - Lower bounds for trail weights
 - Alignment and trail clustering
 - This shaped θ , π and ρ
- Algebraic properties
 - Distribution of # terms of certain degrees
 - Ability of solving certain problems (CICO) algebraically
 - Zero-sum distinguishers (third party)
 - This determined the number of rounds
- Analysis of symmetry properties: this shaped \(\ell \)
- See [Keccak reference], [Ecrypt II Hash 2011], [FSE 2012]

Third-party cryptanalysis of Keccak

Distinguishers on Keccak-f[1600]

Rounds	Work		
3	low	CICO problem [Aumasson, Khovratovich, 2009]	
4	low	cube testers [Aumasson, Khovratovich, 2009]	
8	2 ⁴⁹¹	unaligned rebound [Duc, Guo, Peyrin, Wei, FSE 2012]	
24	2 ¹⁵⁷⁴	zero-sum [Duan, Lai, ePrint 2011] [Boura, Canteaut,	
		De Cannière, FSE 2011]	

Academic-complexity attacks on Keccak

- 6-8 rounds: second preimage [Bernstein, 2010]
 - slightly faster than exhaustive search, but huge memory
- attacks taking advantage of symmetry
 - 4-round pre-images [Morawiecki, Pieprzyk, Srebrny, FSE 2013]
 - 5-rounds collisions [Dinur, Dunkelman, Shamir, FSE 2013]

Third-party cryptanalysis of Keccak

Practical-complexity attacks on Keccak

Rounds		
2	preimages and collisions [Morawiecki, CC]	
2	collisions [Duc, Guo, Peyrin, Wei, FSE 2012 and CC]	
3	40-bit preimage [Morawiecki, Srebrny, 2010]	
3	near collisions [Naya-Plasencia, Röck, Meier, Indocrypt 2011]	
4	key recovery [Lathrop, 2009]	
4	distinguishers [Naya-Plasencia, Röck, Meier, Indocrypt 2011]	
4	collisions [Dinur, Dunkelman, Shamir, FSE 2012 and CC]	
5	near-collisions [Dinur, Dunkelman, Shamir, FSE 2012]	

CC = Crunchy Crypto Collision and Preimage Contest

Observations from third-party cryptanalysis

- Extending distinguishers of Keccak-f to Keccak is not easy
- Effect of alignment on differential/linear propagation
 - Strong: low uncertainty in prop. along block boundaries
 - Weak: high uncertainty in prop. along block boundaries
 - Weak alignment in Keccak-f limits feasibility of rebound attacks
- **Effect** of the **inverse** of the mixing layer θ
 - \bullet θ^{-1} has very high average diffusion
 - Limits the construction of low-weight trails over more than a few rounds