
Operating Systems

Dr. Shu Yin

Part II: Process Management

•Processes
•Threads
•Process Synchronization
•CPU Scheduling
•Deadlocks

2

Starvation vs. Deadlock

•Starvation: process waits indefinitely
–E.g., low-priority processes waiting for

resources constantly in use by high-priority
processes

•Deadlock: circular waiting for resources:
–E.g., Proc.A owns Res.1 and is waiting for Res.2;

Proc. B owns Res. 2 and is waiting for Res. 1

3

Starvation vs. Deadlock

•Starvation: process waits indefinitely
–E.g., low-priority processes waiting for

resources constantly in use by high-priority
processes

•Deadlock: circular waiting for resources:
–E.g., Proc.A owns Res.1 and is waiting for Res.2;

Proc. B owns Res. 2 and is waiting for Res. 1

3

Starvation vs. Deadlock (cont.)
•Deadlock → Starvation

•NOT vice versa
•Starvation can end
•Deadlock can’t end w/o external

intervention

4

Goals

•Description of Deadlocks
•Methods for Handling Deadlocks
•Deadlock Prevention
•Deadlock Avoidance
•Deadlock Detection
•Recovery from Deadlock
•Combined Approach to Deadlock

Handling
5

Deadlock Problem

•A Set of blocked processes
•Each holding a resource
•Waiting to acquire a resource held by

another process in the set

6

Deadlock: Definitions
•A process is Deadlocked

– if it is waiting for an event that will never
occur

–Typically, more than one process will be
involved in a deadlock (the deadly embrace)

•A process is indefinitely postponed
– if it is delayed repeatedly over a long period

of time while the attention of the system is
given to other processes

7

Example: Bridge Crossing

•Assume traffic in one direction
–Each section of the bridge is viewed as a

resource

8

Example: Bridge Crossing
•If a deadlock occurs, it can be resolved

only if one car backs up (preempt
resources and rollback)
–Several cars may have to be hacked up if a

deadlock occurs
–Starvation is possible

9

Resources
•Commodity required by a process to execute
•Resources can be of several types

–Serially reusable resources
•CPU cycles, memory space, I/O devices, files
•acquire → use → release

–Consumable resources
•Produced by a process, needed by a process

–e.g. message, buffer of information, interrupts

•create → acquire → use

•Resource ceases to exist after it has been used

10

System Model
•Resource types (R1 … Rm)
•Each resource type Ri has Wi instances
•Assume serially reusable resources

–request → use → release

11

Conditions for Deadlock
•Following condition are necessary and

sufficient for deadlock (simultaneously)
–Mutual exclusion
–Hold and wait
–No preemption
–Circular wait

12

Resource Allocation Graph
•A set of vertices V and a set of edges E
•V is partitioned into 2 types

–P={P1,… Pn} the set of processes in the system
– R={R1,… Rn} the set of resource types in the system

•Two kinds of edges
–Request edge - Direct edge Pi → Rj

–Assignment edge - Direct edge Rj → Pi

13

Resource Allocation Graph (cont.)
•Process
•Resource type with 4 instances
•Pi requests instance of Rj

•Pi is holding an instance of Rj

14

Graph with No Cycles

15

R4

R2 R1

R3

P1 P2 P3

Graph with Cycles

16

R1

P1

R2

P2

P3

P4

Graph with Cycles and Deadlocks

17

R4

R2 R1

R3

P1 P2 P3

Basic Facts
•If graph contains no cycles

–No Deadlock

•If graph contains a cycle
–If only one instance per resource type, then

deadlock
– If several instances per resource type,

possibility of deadlock

18

Methods for Handling Deadlocks
•Ensure never enter a deadlock state
•Allow to enter, detect it and recover
•Ignore, pretend never occur

–used by many OS, e.g., UNIX

19

Deadlock Management
•Prevention
•Avoidance
•Detection
•Recovery

20

Deadlock Prevention

•If any one of the conditions for deadlock
(with reusable resources) is denied,
deadlock is impossible

•Restrain ways in which requests can be
made
–Mutual exclusion

- Non-issue for sharable resources
- Can not deny this for non-sharable resources

21

Deadlock Prevention (cont.)
•Restrain ways in which requests can be

made
–Mutual exclusion
–Hold and Wait

•Guarantee that when a process requests a
resource, it does not hold other resources

– Force each process to acquire all the required resources
at once. Process can not proceed until all resources
have been acquired

– Low resource utilization, starvation possible

22

Deadlock Prevention (cont.)
•No Preemption

–If a process that is holding some resources
requests another resource that cannot be
immediately allocated to it, the process
releases the resources currently being held.

–Preempted resources are added to the list of
resources for which the process is waiting

–Process will be restarted only when it can
regain its old resources as well as the new ones
that is requesting.

23

Deadlock Prevention (cont.)
•Circular wait

– Impose a total ordering of all resource types
–Require that processes request resources in

increasing order of enumeration
– If a resource of type N is held, process can

only request resources of types > N

24

Deadlock Avoidance
•Set of resources, set of customers, banker
•Rules:

–Each customer tells banker maximum number
of resources it needs

–Customer borrows resources from banker
–Customer returns resources to banker
–Customer eventually pays back loan

•Banker only lends resources if the system
will be in a safe state after the loan

25

Deadlock Avoidance (cont.)
•Requires additional apriori information

–Simplest and Most useful Mode
•Maximum number of resources

–Deadlock-avoidance algorithm
•Resource-allocation state to ensure that there
can never be a circular-wait condition

•Resource allocation state
– the number of available and allocated resources,
– the maximum demands of the processes

26

Safe State
•When a process requests an available

resource
–If immediate allocation leaves the system in a

safe state

•System in safe sate → there exists a safe
sequence of all processes

27

Safe State (cont.)
•Sequence <P1, … Pn> is safe

–Each Pi, the requested resources satisfied by
•Currently available resources +

•Resources held by Pj (j<i)

– If resources by Pj not available, Pi waits until all Pj
have finished

–When Pj is finished, Pi can obtain needed resources,
execute, return allocated resources, and terminate

–Pi terminates, Pi+1 obtains resources

28

Resource Allocation Graph Algorithm
•Used for deadlock avoidance when

there is only one instance of each
resource type
–Claim edge: Pi → Rj indicates Pi may request resource Rj

•represented by a dashed line ()
–Claim edge converts to request edge when a process requests a

resource
–When a resource is released by a process, assignment edge

reconverts to claim edge
–Resources must be claimed a priori in the system

29

Resource Allocation Graph Algorithm
•Used for deadlock avoidance when

there is only one instance of each
resource type
–Claim edge: Pi → Rj indicates Pi may request resource Rj

•represented by a dashed line ()
–Claim edge converts to request edge when a process requests a

resource
–When a resource is released by a process, assignment edge

reconverts to claim edge
–Resources must be claimed a priori in the system

29

If request assignment does not result in the formation of a cycle in
the resource allocation graph - safe state, else unsafe state.

Claim Graph

30

Claim Graph

31

1 2 3

4 6 5

Claim Graph

31

1 2 3

4 6 5

Possible Deadlock

Banker’s Algorithm

•Multiple instances of each resource type
•MUST claim maximum use of each

resource type
•When a process requests a resource

–it may have to wait

•When a process gets all its resources
– it must return them in a finite amount of time

32

Data Structures for the Banker’s Algorithm
•n: number of processes
•m: number of resource types

–Available: vector of length m
•Available[j] = k

–Max: matrix (n*m)
•Max[i,j] = k

–Allocation: matrix (n*m)
•Allocation[i,j]=k

–Need: matrix (n*m)
•Need[i,j]=k

33

Data Structures for the Banker’s Algorithm
•n: number of processes
•m: number of resource types

–Available: vector of length m
•Available[j] = k

–Max: matrix (n*m)
•Max[i,j] = k

–Allocation: matrix (n*m)
•Allocation[i,j]=k

–Need: matrix (n*m)
•Need[i,j]=k

33

Need[i,j] = Max[i,j] - Allocation[i,j]

Banker’s Algorithm - Safety Algorithm
1.Let Work and Finish :vectors of length m & n

– Initially, Work = Available

–Finish[i] = false for i = 0,1,2,…, n-1

2.Find i (Pi) such that both
–Finish[i] == false
–Needi <= Work

 If no such i exists, go to step 4

3.Work = Work+Allocationi

 Finish[i] = true
 go to step 2
4.If Finish[i] == true for all i

– then the system is in a safe state
34

Banker’s Algorithm - Resource Request Algorithm
Requesti request vector for Pi

Requesti [j] ==k: process Pi wants k instances of resource type Rj

1.If Requesti <= Needi, go to step 2 Otherwise raise Error
2.If Requesti <= Availablei, go to step 3 Otherwise Pi must wait
3.Pretend to allocate requested resources to Pi by
modifying the state as:

•Available = Available - Requesti
•Allocationi = Allocationi + Requesti
•Needi = Needi - Requesti

•If safe: resources are allocated to Pi
•If unsafe: Pi wait for Requesti and state is restored

35

Banker’s Algorithm - Resource Request Algorithm
Requesti request vector for Pi

Requesti [j] ==k: process Pi wants k instances of resource type Rj

1.If Requesti <= Needi, go to step 2 Otherwise raise Error
2.If Requesti <= Availablei, go to step 3 Otherwise Pi must wait
3.Pretend to allocate requested resources to Pi by
modifying the state as:

•Available = Available - Requesti
•Allocationi = Allocationi + Requesti
•Needi = Needi - Requesti

•If safe: resources are allocated to Pi
•If unsafe: Pi wait for Requesti and state is restored

35

Example: Banker’s Algorithm
•5 processes: P0-P4
•3 resource types: A (10 instances), B (5

instance), C (7 instances)
•Snapshot at time T0

36

Example (cont.)
•The content of the matrix Need is

defined by (Max-Allocation)
•The system is in a safe state since the

sequence <P1, P3, P4, P2, P0> satisfies
safety criteria

37

Example: P1 requests (1,0,2)
•Check to see that Request1 <= Available

–((1,0,2) <= (3,3,2)) → TRUE

38

Example (cont.)
•Executing the safety algorithm shows

that sequence <P1, P3, P4, P2, P0> satisfies
safety requirement

•Can request for (3,3,0) by P4 be granted?
•Can request for (0,2,0) by P0 be granted?

39

Deadlock Detection

•Allow system to enter deadlock state
•Detection Algorithm
•Recovery Scheme

40

Single Instance of Each Resource Type
•Maintain wait-for graph

–Nodes are processes
–Pi → Pj if Pi is waiting for Pj

•Periodically invoke an algorithm that
searches for a cycle in the graph

•An algorithm to detect a cycle in a
graph requires an order of n2 operations
–n: number of vertices in the graph

41

42

Several Instances of A Resource Type
•Data Structures

43

Deadlock Detection Algorithm
•

44

Deadlock Detection Algorithm (cont.)
•

•

•Algorithm requires an order of m×n2 operations
to detect whether the system is in a deadlock
stack

45

Example of Detection Algorithm
•5 processes: P0-P4
•3 resource types: A (7 instances), B (2

instance), C (6 instances)
•Snapshot at time T0 <P0, P2, P3, P1, P4> will

result in Finish[i] = true for all i

46

Example of Detection Algorithm
•5 processes: P0-P4
•3 resource types: A (7 instances), B (2

instance), C (6 instances)
•Snapshot at time T0 <P0, P2, P3, P1, P4> will

result in Finish[i] = true for all i

46

Example (cont.)
•P2 requests an additional instance of

type C
•State of system

•Can reclaim resources held by process P0, but
insufficient resources to fulfill other processes’
requests

•Deadlock exists, consisting of P0, P2, P3, P1,
and P4

47

Example (cont.)
•P2 requests an additional instance of

type C
•State of system

•Can reclaim resources held by process P0, but
insufficient resources to fulfill other processes’
requests

•Deadlock exists, consisting of P0, P2, P3, P1,
and P4

47

Detection-Algorithm Usage
•When and how often to invoke depend on:

–How often a deadlock is likely to occur?
–How many processes will need to be

rolled back?
- One for each disjoint cycle

48

Detection-Algorithm Use (cont.)
•How often:

–Every time a request for allocation cannot be
granted immediately
•Allows us to detect set of deadlocked processes and
process that “caused” deadlock. Extra overhead

•Every hour or whenever CPU utilization drops

–With arbitrary invocation there may be many
cycles in the resource graph and we would not
be to tell which of the many deadlocked
processes “caused” the deadlocked

49

Recovery from Deadlock
•Process Termination

–Abort all deadlocked processes
–Abort one process at a time, until eliminated

–Abort order options
- Priority of the process
- Computing time (has computed, to complete)
- Resources used
- Resources needed to complete
- Resources will be needed to be terminated
- Is process interactive or batch?

50

Recovery from Deadlock (cont.)
•Resource Preemption

–Selecting a victim- minimize cost
–Rollback

•Return to some safe state
•Restart process from that state

–Starvation
•Same process may always be picked as a victim
•Include number of rollback in cost factor

51

Combined approach to deadlock handling

•Combination of 3 basic approaches
–Prevention
–Avoidance
–Detection
–Allowing the use of the optimal approach for

each class of resources in the system

52

Combined approach (cont.)
•Partition resources into hierarchically

ordered classes
–Use more appropriate technique for handling

deadlocks within each class

53

Summary

•Starvation vs. Deadlock
–process waits indefinitely
–circular waiting for resources

•Four conditions for deadlocks
–Mutual exclusion
–Hold and wait
–No preemption
–Circular wait

54

Summary (cont.)

•Techniques for addressing Deadlock
–Allow system to enter deadlock then recover
–Ensure that system never enter deadlock
– Ignore the problem and pretend deadlock

never occur in system

55

