Operating Systems

Dr. Shu Yin

Part Il: Process Management

Processes

Threads

Process Synchronization
CPU Scheduling

Deadlocks

GEID L s - ¥ ¥
() B M HORS
AV oY Shangh-"-iTFfCh ”nivef.‘;i?}"

L& / -~ .‘

Starvation vs. Deadlock

Starvation: process waits indefinitely

E.Q.,

low-priority processes waiting for

resources constantly in use by high-priority
processes

Dead
E.Q.,

Proc.

ock: circular waiting for resources:

°roc. A owns Res.1 and is waiting for Res.2;
B owns Res. 2 and is waifing for Res. 1

;%g R A

3 \\"u.,,.,r"/ Shangh

Starvation vs. Deadlock

Starvai
E.g., |c Owned

resour oY,

proce

Deadl¢ Wai Owned DUICES:
E.g..P For 5 for Res.2;
Proc. t _ es. |

(ER3 : "
\ ElEHE R
nghaiTech University

350N

REI N

S o

'_’.\" o 0/ - Nant
3 ‘:Q’j:?”n?,’f;’vf/

Starvation vs. Deadlock (cont.)
Deadlock — Starvation V
NOT vice verso
Starvation can end

Deadlock can’'t end w/o external
INnfervention

G 8 H AT

4 N /'S

Goals

Description of Deadlocks
Methods for Handling Deadlocks
Deadlock Prevention

Deadlock Avoidance

Deadlock Detection

Recovery from Deadlock

Combined Approach to Deadlock
Handling

LRI o 4
(k) B8 H SR
7 ShanghaiTech University

kB

Deadlock Problem

A Set of blocked processes
Each holding a resource

Waiting to acquire a resource held by
another process in the set

R L ¥
I'J"*EE?“%" AR AT AN
A B hanghziTech University

(R : 7 <) S

Deadlock: Definitions

A process is Deadlocked

If 1T Is waiting for an event that will never
OCcCur

Typically, more than one process will be
iInvolved in a deadlock (the deadly embrace)
A process is iIndefinitely postponed

If It Is delayed repeatedly over a long period
of fime while the attention of the system Is
given to other processes

R - M s .
|'¢;f,-...e£;:‘;'_ Wk =% Ky
Tech University

,'..1 ” .\/‘:‘ Sh -
e, =) Shanghai
/ g/ oo

Example: Bridge Crossing

* Assume traffic In one direction

—Each section of the bridge is viewed as o
resource

LB
() FmH Bk
angh

8 \Q&'N,,/ Shq

Example: Bridge Crossing

If a deadlock occurs, It can be resolved
only If one car backs up (preempt
resources and rollback)

Several cars may have to be hacked up it a
deadlock occurs

Starvation is possible

ERERN - oz
ME“, E#dHBKT
o \Q\h,%/:, ShanghaiTech University
ire s T

Resources

Commodity required by a process to execute

Resources can be of several types

Serially reusable resources
CPU cycles, memory space, |/O devices, files
acqguire — use — release

Consumable resources

Produced by a process, needed by a process
e.g. message, buffer of information, interrupts

create — acquire — use
Resource ceases to exist after it has been used

1

LEEEIN i .
G kA

10 ‘:\%\h#,/}}' ShanghaziTech University

System Model
Resource types (Ri ... Rm)
Each resource type R has Wi Instances

Assume serially reusable resources
request — use — release

R L ¥
I'J"*EE?“%" AR AT AN
A B hanghziTech University

(R & 7 <) S

Conditions for Deadlock

Following condition are necessary and

sufficient for deadlock (simultaneously)
Mutual exclusion

old and wait

No preemption

Circular wait

R L ¥
I'J"*EE?“%" AR AT AN
A B hanghziTech University

(R : 7 <) S

Resource Allocation Graph
A set of vertices V and a set of edges E

V Is partfitioned info 2 types

P={P1,... Pn} the set of processes in the system
R={R1,... Rn} the set of resource types in the system

Two kinds of edges
Request edge - Direct edge Pi— R;
Assignment edge - Direct edge Rj— P;

R - M s .
|'¢;f,-...e£;:‘;'_ Wk =% Ky
Tech University

.'..1 AN /‘-:‘ -
\le, F0 .-'." Shan h:’.l
13 g e

Resource Allocation Graph (cont.)

Process ©

Resource type with 4 Instances

Pirequests instance of R; o—

Piis holding an insfance of Rj @——

oo
o0

A
B yoray,
LB
REI AN
e]

'-"1\ & /,'o;)

EidH R
ShanghziTech University

Graph with No Cycles

Q

PI P2 P3

-

13 R4

Eﬂ&kf

15 ,,_;,/;' anghaiTech University

Graph with Cycles

el

E ?Eﬂﬁkf
16 '*:

Graph with Cycles and Deadlocks

Q

.\
Pl y Pk

\‘/

13 R4

GED L s S
RE ;:1‘37;_', EE M BAT
A ShanghaiTech University

L& b / -~ ,'
17 N>

Basic Facts

If graph contains no cycles
No Deadlock

If graph contains a cycle

If only one Instance per resource type, then
deadlock

f several instances per resource type,
oossibility of deadlock

G R A

18 gy Shanah

Methods for Handling Deadlocks
Ensure never enter a deadlock state
Allow to enter, detect It and recover

lgnore, pretend never occur
used by many OS, e.g., UNIX

GEID L s - ¥ ¥
() B M HORS
AV oY Shangh-"-iTFfCh ”nivef.‘;i?}"

o)

Deadlock Management
Prevention
Avoidance
Detection
Recovery

BRI : s,
(5 ks R Ry
20 ‘:\%\h%}' ShanghaiTech University
ire s T

Deadlock Prevention

If any one of the conditions for deadlock
(with reusable resources) is denied,
deadlock is impossible

Restrain ways in which requests can be
made

Mutual exclusion
Non-issue for sharable resources
Can not deny this for non-sharable resources

G R A

21 gy Shanah

Deadlock Prevention (cont.)

Restrain ways in which requests can be
made

Mutual exclusion

Hold and Wait

Guarantee that when a process requests o
resource, It does not hold other resources

Force each process to acquire all the required resources
at once. Process can not proceed until all resources
have been acquired

Low resource utilization, starvation possible

——

LEEEN s 3 o4
(s Eig Ry

29 ‘{%:%w;{j,' ShanghaiTech University

Deadlock Prevention (cont.)

No Preemption

If a process that is holding some resources
requests anofther resource that cannoft be
Immediately allocated to if, the process

releases the resources currently being held.

Preempted resources are added to the list of
resources for which the process is waiting

Process will be restarted only when it can
regain its old resources as well as the new ones

that is requesting. T s
RE 57‘:-_'| - f

23 gy Shanah

Deadlock Prevention
Circular walit

(cont.)

Impose a total ordering of all resource types

f aresource of type N is he
only request resources of ty

24

Require that processes request resources in
INncreasing order of enumeration

d, process can

nes > N

/"’ D
|¢“ FE:\: 3-:'| 'ﬁ ﬂ & k f

Deadlock Avoldance

Set of resources, set of customers, banker

Rules:

FEach customer tells banker maximum number
of resources It needs

Customer borrows resources from banker
Customer returns resources to banker
Customer eventuadlly pays back loan

Banker only lends resources If the system

will be in a safe state after the ‘OO.-'EZS‘??{??‘?;-. ok

=%/ ™ 35
‘e, & 47 Shan
25 N :

Deadlock Avoidance (cont.)

Requires additional apriori iInformation

Simplest and Most useful Mode
Maximum number of resources

Deadlock-avoidance algorithm

Resource-allocation state to ensure that there
can never be a circular-wait condition

Resource allocation state
the number of available and allocated resources,
the maximum demands of the processes

——

LEEEN s 3 o4
(Fab:) R H B KRP

26 ‘{%:%w;{j,' ShanghaiTech University

Safe State

When a process requests an available
resource

It iImmediate allocation leaves the system in a
safe state

System in safe sate — there exists a safe
sequence of all processes

G R A

27 gy Shanah

Safe State (cont.)

Sequence <P;, ... P> Is safe

Each Pj, The requested resources saftisfied by
Currently available resources +

Resources held by Pj (j<i)

if resources by Pj not available, P; waits unftil all P;
have finished

When Pj is finished, Pi can obtfain needed resources,
execute, return allocated resources, and terminate

Pi terminates, Pi+1 obtains resources
FED kiR

28 .‘:‘:a:x,.,;;’_j" ShanghaiTech University

Resource Allocation Graph Algorithm

Used for deadlock avoidance when
there Is only one instance of each
resource type

Claim edge: Pi— Rjindicates Pimay request resource R,

represented by a dashed line (---»)
Claim edge converts to request edge when a process requests a
resource
When a resource is released by a process, assignment edge
reconverts to claim edge
Resources must be claimed a priori in the system

——

LEEERN S X
TED) B M A

29 %M’;/},' ShanghaiTech University

Resource Allocation Graph Algorithm

Used for deadlock avoidance when
there Is only one instance of each
resource type

Claim edge: Pi— Rjindicates Pimay request resource R;
represented by a dashed line (---»)

Claim edge converts to request edge when a process requests a

resource

When a resource is released by a process, assignment edge

reconverts to claim edge

Resources must be claimed a priori in the system

If request assignment does not result in the formation of a cycle in
the resource allocation graph - safe state, else unsafe state.

T FE R B AT

o N3 | - . .
&2, & 7%/ ShanghaiTech University
29 N g L

Claim Graph

O

® Process claims resource

® Process requests resource
® Process is assigned resource
® Process releases resgurce

30 N

Claim Graph

.7

\.

.7

/'

@ @

o e

o s »
| - ‘4\
« o
s N
gf 3 H K

anghaiTech Un sity

Claim Graph

¢ e g2
2 O arh
40) 3 O

”’

.\
"~ -
® e
~
" ~al -
® e
.\
" ~al
. /

5 | ~

Possible Deadlock
,é‘éf - ¥ # Bk

anghaiTech Un sity

31

Banker’s Algorithm

Mulfiple Instances of each resource type

MUST claim maximum use of each
resource type

When a process requests a resource
It may have to wait

When a process gets all ifs resources
It must return them in a finite amount of time

;%g R A

32 gy Shanah

Data Structures for the Banker's Algorithm

N: nuMber of processes

mM: number of resource types

Available: vector of length m
Availablelj] = k
Max: matrix (n*m)
Max[i.j] = k
Allocation: matrix (n*mj
Allocation]i,j]=k
Need: maftrix (n*m)|
Need|i,|]|=k Py | \
o)) LR A

(R & 7 <) S

Data Structures for the Banker's Algorithm

N: nuMber of processes

mM: number of resource types

Available: vector of length m
Availablelj] = k

Max: matrix (n*m)
Max[i.j] = k

Allocation: matrix (n*mj
Allocation]i,j]=k

Need: maftrix (n*m)|
Need|i,|]|=k

Need|i,]] = Max]i,j] - Allocationi,]]

e T 2
I.J"-EE;:”‘:T:W b H R s
AN B hanghaiTech University

(R : 7 <) S

Banker’'s Algorithm - Safety Algorithm

Let Work and Finish :vectors of length m & n

Initially, Work = Available

Finish[i] = false fori=0,1,2,..., n-1
Find 1 (P;) such that both

Finish[i] == false

Need. <= Work

If no such | exists, go to step 4

Work =

Work+Allocation;

Finish[i] = frue
go to step 2
It Finish[i] == true for all i
then the system is in a safe state

34

——

R T i
I' 1;'33';&;:”‘:7;" SR AES
e

&7/ ShanghaiTech Universit
4 . Y

Banker’s Algorithm - Resource Request Algorithm

Request,request vector for P;
Request; []] ==k: process P;wants k instances of resource fype R;
f Request;<= Need; go to step 2 Otherwise raise Error
f Request; <= Available; go to step 3 Otherwise Pi must wait
Pretend to allocate requested resources to Pi by
modifying the state as:

Available = Available - Request;

Allocation; = Allocation; + Request;

Need: = Need; - Request;
If safe: resources are allocated to P;
If unsafe: P; wait for Request;and state is restored

——

LEEERN S .
|¢f ;:l'g;_'| I‘ {\ﬁ ﬂ *}li j(PJ"'

35 %x,,,;/}" ShanghaiTech University

Banker’s Algorithm - Resource Request Algorithm

[Avail] = [FreeResources]
Request Add all nodes to UNFINISHED

Requesh o done = true » Type R,
FReqy O C[Requestao] <o [Aveil]) { ror
FRequ [‘ﬁﬂg‘;‘f]“°d‘fAﬁgiT]UTF%ﬁ{§g§ide] Jst wait
Pretenr) done = false

modify]

} until(done)
Availapre=Avanrope = KequUEST;

Allocation; = Allocation; + Request;
Need: = Need; - Request;
It safe: resources are allocated to P;
If unsafe: P; wait for Request;and state is restored

/553
|5{"~EE;’73_:', ks #4 k ¥
\1‘\..

\ah. & 77/ ShanghaiTech Universit
NS ng ¥

35

Example: Banker's Algorithm
5 processes:. Po-P4

3 resource types: A (10 instances), B (5
iInstance), C (7 instances)

‘ Allocation Max Available
Snapshot at fime To A T
PO 0 1 0 7 5 33 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0O 0 2 4 3 3

LRI o 4
(Fab:) R H B KRP
A 7#/ ShanghaiTech University

a2 S
36 N

Example (cont.)

The content of the matrix Need Is
defined by (Max-Allocation)

The system is In a safe state since the
sequence <Pj, P3, P4, P2, Po> satisfies
safety criteria

Need

A B C
PO 7 4 3
P1 1 2 2
P2 6 0 O
P3 0 1 1
P4 4 3 1

R L ¥
I'J"*EE?“%" AR AT AN
A B hanghziTech University

(R : 7 <) S

Example: Py requests (1,0,2)

Check to see that Request; <= Available
((1,0,2) <= (3,3,2)) — TRUE

Allocation Need Available
A B CA B CABTZC
PO 01 07 4 32 3 0
P1 3 0 20 2 O
P2 3 0 26 0 0
P3 2 1 10 1 1
P4 0 0 2 4 3 1

LRI o 4
() R HEAT
A 7#/ ShanghaiTech University

" - /: / S

Example (cont.)

Executing the safety algorithm shows
that sequence <P, P3, P4, P2, Po> satisfies
safety requirement

Can request for (3,3,0) by P4 be grantede
Can request for (0,2,0) by Po be granted®e

LRI o 4
(k) B8 H SR
7 ShanghaiTech University

A N,

Deadlock Detection

Allow system to enter deadlock state
Detection Algorithm
Recovery Scheme

R L ¥
I'J"*EE?“%" AR AT AN
A B hanghziTech University

(R : 7 <) S

Single Instance of Each Resource Type
Maintain wait-for graph
Nodes are processes
Pi — Pjif Piis waiting for P;

Periodically invoke an algorithm that
searches for a cycle in the graph

An algorithm to detect a cycle in a
graph requires an order of n? operations

N: number of vertices in the graph
i) Eis Mk

AT Wi :
a7/ Shanghai
4] a9

-.\Ei.*f\ R) ~
k) BB BARY

':’Q: 1'9»: ShanghaiTech University

o
)
Fd-

Several Instances of A Resource Type

Data Structures

J Available: Vector of length m. If Available[j] = k, there are k ‘
Instances of resource type Rj available.

3 Allocation: n x m matrix. If Allocation|i,j] = k, then process
Pi is currently allocated k instances of resource type Rj.

J Request : An n x m matrix indicates the current request of
each process. If Request [i,j] = k, then process Pi IS
requesting kK more instances of resource type RJ.

.T,I ; -
G

e Y

r kR A
hanghziTech University

4

43 Qéw E

Deadlock Detection Algorithm

® Step 1: Let Work and Finish be vectors of length m and

n, respectively. Initialize
3 Work = Avallable

d Fori=1,2,...,n, if Allocation(i) # 0, then Finish[i] := false,

otherwise Finishli] := true.

Step 2: Find an index / such that both:
3 Finish[i] = false

J Request (i) £ Work

3 If no such i exists, go to step 4.

44

Deadlock Detection Algorithm (cont.)

® Step 3. Work .= Work + Allocation(/)
3 Finishli] := true
J goto step 2

® Step 4. If Finish[i] = false for some i, 1 £ i £ n, then the

system is in a deadlock state. Moreover, If Finish[i] =
false, then Pi is deadlocked.

» Algorithm requires an order of mxn? operations
to detect whether the system is in a deadlock

stack ST 1w ad b
|'=?23§5:‘§;"| Fig #H B KT
45 '\z}',k_,‘;‘gj‘ ShanghaiTech University

Example of Detection Algorithm
S processes: Po-P4

3 resource types: A (7 iInstances), B (2
iInstance), C (6 Instances)

Snapshot at time To <Po, P2, P3, P1, P4> will
result in Finishi] = tfrue for all i

LRI o 4
(k) B8 H SR
7 ShanghaiTech University

A N,

Example of Detection Algorithm

S processes: Po-P4

3 resource types: A (7 iInstances), B (2

iInstance), C (6 Instances)

Snapshot at time To <P,
result in Finish[i] = true

46

PO
P1
P2
P3
P4

Allocation Request Available
A B CA B CABZC

1 0

O N W N O
o P © o
N B WO

0

QS B ODN

O 00 O O

© © o ©
N © O |,

LRI o 4
I.C?REEE”\‘:TL"l b H R s
AN B hanghaiTech University

(R & 7 <) S

Example (cont.)

P>requests an addifional instance of

type C

State of system

Can reclaim resources he
INnsufficient resources to fu
requests

d by process Po, but
fill other processes’

Deadlock exists, consisting of Po, P2, P3, P1,

and P4

47

;%g R A

\\"u.,,.,r"/ Shangh

Example (cont.)

P>requests an addifional instance of
type C

State of system

Can reclaim resources held by pr Request
Insufficient resources to fulfill othe - OA :" ;3
requests o1 s o
Deadlock exists, consisting of Po, | ™ o
and P4 o o

LEEER
G 9N 'ﬁ ’H & 7‘ =

a2/ Sh
- e

Detection-Algorithm Usage

When and how often to invoke depend on:
How offen a deadlock is likely to occur?

How many processes will need to be
rolled backe

One for each disjoint cycle

LRI o 4
(k) B8 H SR
7 ShanghaiTech University

kB

Detection-Algorithm Use (cont.)
How often:

Every time a request for allocation cannot be
granted immediately

Allows us to detect set of deadlocked processes and
process that “caused” deadlock. Extra overhead

Every hour or whenever CPU utilization drops

With arbitrary invocation there may be many
cycles in the resource graph and we would not
be to tell which of the many deadlocked

porocesses “caused” the deadlocked
G 8 H AT

."..1‘ < ™ ‘5: / .
49 gy s

Recovery from Deadlock

Process Termination

Abort all deadlocked processes
Abort one process at a fime, until eliminated

Abort order options
Priority of the process
Computing time (has computed, to complete)
Resources used
Resources needed fo complete
Resources will be needed to be terminated
S process inferactive or batche Ry -6 8 A

.‘.ﬁ,“ ; : ! N
50 Q’f;-éﬁ ;’7;/ P

Recovery from Deadlock (cont.)

Resource Preemption
Selecting a victim- minimize cost

Rollback

Restart process from 1
Starvation

Return tTo some safe st

ate

Nat state

Same process may always be picked as a victim

Include number of ro

llback in cost factor

G R A

51 Gagy Shanon

Combined approach to deadlock handling

Combination of 3 basic approaches

Prevention
Avoldance
Detection

Allowing the use of the optimal approach for
each class of resources In the system

G R A

52 gy Shanah

Combined approach (cont.)

Partitfion resources intfo hierarchically
ordered classes

Use more appropriate technique tor handling
deadlocks within each class

e T 2
I.J"-EE;:”‘:T:W b H R s
AN B hanghaiTech University

(R & 7 <) S

Summary

Starvation vs. Deadlock

process waits indefinitely
circular waiting for resources

Four condifions for deadlocks
Mutual exclusion

Hold and wait

No preemption

Circular wait

R L ¥
I'J"*EE?“%" AR AT AN
A B hanghziTech University

(R : 7 <) S

Summary (cont.)

Techniques for addressing Deadlock
Allow system to enter deadlock then recover
Ensure that system never enter deadlock

gnhore the problem and pretend deadlock
never OCcur in system

LRI o 4
I.C?REEE”\‘:TL"l b H R s
AN B hanghaiTech University

(R : 7 <) S

