
Chapter 3

Distributions of random
variables

3.1 Normal distribution

Among all the distributions we see in practice, one is overwhelmingly the most common.
The symmetric, unimodal, bell curve is ubiquitous throughout statistics. Indeed it is so
common, that people often know it as the normal curve or normal distribution,1 shown
in Figure 3.1. Variables such as SAT scores and heights of US adult males closely follow
the normal distribution.

Normal distribution facts

Many variables are nearly normal, but none are exactly normal. Thus the normal
distribution, while not perfect for any single problem, is very useful for a variety
of problems. We will use it in data exploration and to solve important problems
in statistics.

1It is also introduced as the Gaussian distribution after Frederic Gauss, the first person to formalize
its mathematical expression.

Figure 3.1: A normal curve.
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128 CHAPTER 3. DISTRIBUTIONS OF RANDOM VARIABLES

3.1.1 Normal distribution model

The normal distribution model always describes a symmetric, unimodal, bell-shaped curve.
However, these curves can look different depending on the details of the model. Specifically,
the normal distribution model can be adjusted using two parameters: mean and standard
deviation. As you can probably guess, changing the mean shifts the bell curve to the left or
right, while changing the standard deviation stretches or constricts the curve. Figure 3.2
shows the normal distribution with mean 0 and standard deviation 1 in the left panel
and the normal distributions with mean 19 and standard deviation 4 in the right panel.
Figure 3.3 shows these distributions on the same axis.

−3 −2 −1 0 1 2 3 7 11 15 19 23 27 31

Figure 3.2: Both curves represent the normal distribution, however, they
differ in their center and spread. The normal distribution with mean 0 and
standard deviation 1 is called the standard normal distribution.

0 10 20 30

Figure 3.3: The normal models shown in Figure 3.2 but plotted together
and on the same scale.

If a normal distribution has mean μ and standard deviation σ, we may write the
distribution as N(μ, σ). The two distributions in Figure 3.3 can be written as

N(μ, σ)
Normal dist.
with mean μ
& st. dev. σ

N(μ = 0, σ = 1) and N(μ = 19, σ = 4)

Because the mean and standard deviation describe a normal distribution exactly, they are
called the distribution’s parameters.
⊙

Guided Practice 3.1 Write down the short-hand for a normal distribution with2

(a) mean 5 and standard deviation 3,

(b) mean -100 and standard deviation 10, and

(c) mean 2 and standard deviation 9.

2(a) N(μ = 5, σ = 3). (b) N(μ = −100, σ = 10). (c) N(μ = 2, σ = 9).



3.1. NORMAL DISTRIBUTION 129

SAT ACT
Mean 1500 21
SD 300 5

Table 3.4: Mean and standard deviation for the SAT and ACT.

900 1200 1500 1800 2100

Ann

11 16 21 26 31

Tom

Figure 3.5: Ann’s and Tom’s scores shown with the distributions of SAT
and ACT scores.

3.1.2 Standardizing with Z-scores

� Example 3.2 Table 3.4 shows the mean and standard deviation for total scores on
the SAT and ACT. The distribution of SAT and ACT scores are both nearly normal.
Suppose Ann scored 1800 on her SAT and Tom scored 24 on his ACT. Who performed
better?

We use the standard deviation as a guide. Ann is 1 standard deviation above average
on the SAT: 1500 + 300 = 1800. Tom is 0.6 standard deviations above the mean on
the ACT: 21 + 0.6 × 5 = 24. In Figure 3.5, we can see that Ann tends to do better
with respect to everyone else than Tom did, so her score was better.

Example 3.2 used a standardization technique called a Z-score, a method most com-
monly employed for nearly normal observations but that may be used with any distribution.
The Z-score of an observation is defined as the number of standard deviations it falls above Z

Z-score, the
standardized
observation

or below the mean. If the observation is one standard deviation above the mean, its Z-score
is 1. If it is 1.5 standard deviations below the mean, then its Z-score is -1.5. If x is an
observation from a distribution N(μ, σ), we define the Z-score mathematically as

Z =
x− μ

σ

Using μSAT = 1500, σSAT = 300, and xAnn = 1800, we find Ann’s Z-score:

ZAnn =
xAnn − μSAT

σSAT
=

1800− 1500

300
= 1
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The Z-score

The Z-score of an observation is the number of standard deviations it falls above
or below the mean. We compute the Z-score for an observation x that follows a
distribution with mean μ and standard deviation σ using

Z =
x− μ

σ

⊙
Guided Practice 3.3 Use Tom’s ACT score, 24, along with the ACT mean and
standard deviation to compute his Z-score.3

Observations above the mean always have positive Z-scores while those below the
mean have negative Z-scores. If an observation is equal to the mean (e.g. SAT score of
1500), then the Z-score is 0.

⊙
Guided Practice 3.4 Let X represent a random variable from N(μ = 3, σ = 2),
and suppose we observe x = 5.19. (a) Find the Z-score of x. (b) Use the Z-score to
determine how many standard deviations above or below the mean x falls.4

⊙
Guided Practice 3.5 Head lengths of brushtail possums follow a nearly normal
distribution with mean 92.6 mm and standard deviation 3.6 mm. Compute the Z-
scores for possums with head lengths of 95.4 mm and 85.8 mm.5

We can use Z-scores to roughly identify which observations are more unusual than
others. One observation x1 is said to be more unusual than another observation x2 if the
absolute value of its Z-score is larger than the absolute value of the other observation’s Z-
score: |Z1| > |Z2|. This technique is especially insightful when a distribution is symmetric.

⊙
Guided Practice 3.6 Which of the observations in Guided Practice 3.5 is more
unusual?6

3.1.3 Normal probability table

� Example 3.7 Ann from Example 3.2 earned a score of 1800 on her SAT with a
corresponding Z = 1. She would like to know what percentile she falls in among all
SAT test-takers.

Ann’s percentile is the percentage of people who earned a lower SAT score than
Ann. We shade the area representing those individuals in Figure 3.6. The total area
under the normal curve is always equal to 1, and the proportion of people who scored
below Ann on the SAT is equal to the area shaded in Figure 3.6: 0.8413. In other
words, Ann is in the 84th percentile of SAT takers.

3ZTom = xTom−μACT
σACT

= 24−21
5

= 0.6
4(a) Its Z-score is given by Z = x−μ

σ
= 5.19−3

2
= 2.19/2 = 1.095. (b) The observation x is 1.095

standard deviations above the mean. We know it must be above the mean since Z is positive.
5For x1 = 95.4 mm: Z1 = x1−μ

σ
= 95.4−92.6

3.6
= 0.78. For x2 = 85.8 mm: Z2 = 85.8−92.6

3.6
= −1.89.

6Because the absolute value of Z-score for the second observation is larger than that of the first, the
second observation has a more unusual head length.
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600 900 1200 1500 1800 2100 2400

Figure 3.6: The normal model for SAT scores, shading the area of those
individuals who scored below Ann.

negative Z positive Z

Figure 3.7: The area to the left of Z represents the percentile of the obser-
vation.

We can use the normal model to find percentiles. A normal probability table,
which lists Z-scores and corresponding percentiles, can be used to identify a percentile
based on the Z-score (and vice versa). Statistical software can also be used.

A normal probability table is given in Appendix B.1 on page 427 and abbreviated
in Table 3.8. We use this table to identify the percentile corresponding to any particular
Z-score. For instance, the percentile of Z = 0.43 is shown in row 0.4 and column 0.03
in Table 3.8: 0.6664, or the 66.64th percentile. Generally, we round Z to two decimals,
identify the proper row in the normal probability table up through the first decimal, and
then determine the column representing the second decimal value. The intersection of this
row and column is the percentile of the observation.

We can also find the Z-score associated with a percentile. For example, to identify Z
for the 80th percentile, we look for the value closest to 0.8000 in the middle portion of the
table: 0.7995. We determine the Z-score for the 80th percentile by combining the row and
column Z values: 0.84.

⊙
Guided Practice 3.8 Determine the proportion of SAT test takers who scored
better than Ann on the SAT.7

7If 84% had lower scores than Ann, the proportion of people who had better scores must be 16%.
(Generally ties are ignored when the normal model, or any other continuous distribution, is used.)
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Second decimal place of Z
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

...
...

...
...

...
...

...
...

...
...

...

Table 3.8: A section of the normal probability table. The percentile for
a normal random variable with Z = 0.43 has been highlighted, and the
percentile closest to 0.8000 has also been highlighted.

3.1.4 Normal probability examples

Cumulative SAT scores are approximated well by a normal model, N(μ = 1500, σ = 300).

� Example 3.9 Shannon is a randomly selected SAT taker, and nothing is known
about Shannon’s SAT aptitude. What is the probability Shannon scores at least
1630 on her SATs?

First, always draw and label a picture of the normal distribution. (Drawings need
not be exact to be useful.) We are interested in the chance she scores above 1630, so
we shade this upper tail:

900 1500 2100

The picture shows the mean and the values at 2 standard deviations above and below
the mean. The simplest way to find the shaded area under the curve makes use of the
Z-score of the cutoff value. With μ = 1500, σ = 300, and the cutoff value x = 1630,
the Z-score is computed as

Z =
x− μ

σ
=

1630− 1500

300
=

130

300
= 0.43

We look up the percentile of Z = 0.43 in the normal probability table shown in Ta-
ble 3.8 or in Appendix B.1 on page 427, which yields 0.6664. However, the percentile
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describes those who had a Z-score lower than 0.43. To find the area above Z = 0.43,
we compute one minus the area of the lower tail:

1.0000 0.6664 0.3336 = 

The probability Shannon scores at least 1630 on the SAT is 0.3336.

TIP: always draw a picture first, and find the Z-score second

For any normal probability situation, always always always draw and label the
normal curve and shade the area of interest first. The picture will provide an
estimate of the probability.

After drawing a figure to represent the situation, identify the Z-score for the obser-
vation of interest.

⊙
Guided Practice 3.10 If the probability of Shannon scoring at least 1630 is
0.3336, then what is the probability she scores less than 1630? Draw the normal
curve representing this exercise, shading the lower region instead of the upper one.8

� Example 3.11 Edward earned a 1400 on his SAT. What is his percentile?

First, a picture is needed. Edward’s percentile is the proportion of people who do not
get as high as a 1400. These are the scores to the left of 1400.

900 1500 2100

Identifying the mean μ = 1500, the standard deviation σ = 300, and the cutoff for
the tail area x = 1400 makes it easy to compute the Z-score:

Z =
x− μ

σ
=

1400− 1500

300
= −0.33

Using the normal probability table, identify the row of −0.3 and column of 0.03,
which corresponds to the probability 0.3707. Edward is at the 37th percentile.

⊙
Guided Practice 3.12 Use the results of Example 3.11 to compute the proportion
of SAT takers who did better than Edward. Also draw a new picture.9

8We found the probability in Example 3.9: 0.6664. A picture for this exercise is represented by the
shaded area below “0.6664” in Example 3.9.

9If Edward did better than 37% of SAT takers, then about 63% must have done better than him.

900 1500 2100
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TIP: areas to the right

The normal probability table in most books gives the area to the left. If you would
like the area to the right, first find the area to the left and then subtract this amount
from one.

⊙
Guided Practice 3.13 Stuart earned an SAT score of 2100. Draw a picture for
each part. (a) What is his percentile? (b) What percent of SAT takers did better
than Stuart?10

Based on a sample of 100 men,11 the heights of male adults between the ages 20 and
62 in the US is nearly normal with mean 70.0” and standard deviation 3.3”.
⊙

Guided Practice 3.14 Mike is 5’7” and Jim is 6’4”. (a) What is Mike’s height
percentile? (b) What is Jim’s height percentile? Also draw one picture for each part.12

The last several problems have focused on finding the probability or percentile for a
particular observation. What if you would like to know the observation corresponding to a
particular percentile?

� Example 3.15 Erik’s height is at the 40th percentile. How tall is he?

As always, first draw the picture.

63.4 70 76.6

  40%
(0.40)

In this case, the lower tail probability is known (0.40), which can be shaded on the
diagram. We want to find the observation that corresponds to this value. As a first
step in this direction, we determine the Z-score associated with the 40th percentile.

Because the percentile is below 50%, we know Z will be negative. Looking in the
negative part of the normal probability table, we search for the probability inside the
table closest to 0.4000. We find that 0.4000 falls in row −0.2 and between columns
0.05 and 0.06. Since it falls closer to 0.05, we take this one: Z = −0.25.
Knowing ZErik = −0.25 and the population parameters μ = 70 and σ = 3.3 inches,
the Z-score formula can be set up to determine Erik’s unknown height, labeled xErik:

−0.25 = ZErik =
xErik − μ

σ
=

xErik − 70

3.3

Solving for xErik yields the height 69.18 inches. That is, Erik is about 5’9” (this is
notation for 5-feet, 9-inches).

10Numerical answers: (a) 0.9772. (b) 0.0228.
11This sample was taken from the USDA Food Commodity Intake Database.
12First put the heights into inches: 67 and 76 inches. Figures are shown below. (a) ZMike = 67−70

3.3
=

−0.91 → 0.1814. (b) ZJim = 76−70
3.3

= 1.82 → 0.9656.

67 70

Mike

70 76

Jim
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� Example 3.16 What is the adult male height at the 82nd percentile?

Again, we draw the figure first.

63.4 70 76.6

  82%
(0.82)

  18%
(0.18)

Next, we want to find the Z-score at the 82nd percentile, which will be a positive
value. Looking in the Z-table, we find Z falls in row 0.9 and the nearest column is
0.02, i.e. Z = 0.92. Finally, the height x is found using the Z-score formula with the
known mean μ, standard deviation σ, and Z-score Z = 0.92:

0.92 = Z =
x− μ

σ
=

x− 70

3.3

This yields 73.04 inches or about 6’1” as the height at the 82nd percentile.

⊙
Guided Practice 3.17 (a) What is the 95th percentile for SAT scores? (b) What
is the 97.5th percentile of the male heights? As always with normal probability
problems, first draw a picture.13

⊙
Guided Practice 3.18 (a) What is the probability that a randomly selected male
adult is at least 6’2” (74 inches)? (b) What is the probability that a male adult is
shorter than 5’9” (69 inches)?14

� Example 3.19 What is the probability that a random adult male is between 5’9”
and 6’2”?

These heights correspond to 69 inches and 74 inches. First, draw the figure. The area
of interest is no longer an upper or lower tail.

63.4 70.0 76.6

The total area under the curve is 1. If we find the area of the two tails that are not
shaded (from Guided Practice 3.18, these areas are 0.3821 and 0.1131), then we can
find the middle area:

1.0000 0.3821 0.1131 0.5048 = 

That is, the probability of being between 5’9” and 6’2” is 0.5048.

13Remember: draw a picture first, then find the Z-score. (We leave the pictures to you.) The Z-score
can be found by using the percentiles and the normal probability table. (a) We look for 0.95 in the
probability portion (middle part) of the normal probability table, which leads us to row 1.6 and (about)
column 0.05, i.e. Z95 = 1.65. Knowing Z95 = 1.65, μ = 1500, and σ = 300, we setup the Z-score formula:
1.65 = x95−1500

300
. We solve for x95: x95 = 1995. (b) Similarly, we find Z97.5 = 1.96, again setup the

Z-score formula for the heights, and calculate x97.5 = 76.5.
14Numerical answers: (a) 0.1131. (b) 0.3821.
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⊙
Guided Practice 3.20 What percent of SAT takers get between 1500 and 2000?15

⊙
Guided Practice 3.21 What percent of adult males are between 5’5” and 5’7”?16

Calculator videos

Videos covering calculations for the normal distribution using TI and Casio graph-
ing calculators are available at openintro.org/videos.

3.1.5 68-95-99.7 rule

Here, we present a useful rule of thumb for the probability of falling within 1, 2, and 3
standard deviations of the mean in the normal distribution. This will be useful in a wide
range of practical settings, especially when trying to make a quick estimate without a
calculator or Z-table.

μ − 3σ μ − 2σ μ − σ μ μ + σ μ + 2σ μ + 3σ

99.7%

95%

68%

Figure 3.9: Probabilities for falling within 1, 2, and 3 standard deviations
of the mean in a normal distribution.

⊙
Guided Practice 3.22 Use the Z-table to confirm that about 68%, 95%, and
99.7% of observations fall within 1, 2, and 3, standard deviations of the mean in the
normal distribution, respectively. For instance, first find the area that falls between
Z = −1 and Z = 1, which should have an area of about 0.68. Similarly there should
be an area of about 0.95 between Z = −2 and Z = 2.17

It is possible for a normal random variable to fall 4, 5, or even more standard deviations
from the mean. However, these occurrences are very rare if the data are nearly normal.
The probability of being further than 4 standard deviations from the mean is about 1-in-
15,000. For 5 and 6 standard deviations, it is about 1-in-2 million and 1-in-500 million,
respectively.

15This is an abbreviated solution. (Be sure to draw a figure!) First find the percent who get below 1500
and the percent that get above 2000: Z1500 = 0.00 → 0.5000 (area below), Z2000 = 1.67 → 0.0475 (area
above). Final answer: 1.0000− 0.5000− 0.0475 = 0.4525.

165’5” is 65 inches. 5’7” is 67 inches. Numerical solution: 1.000− 0.0649− 0.8183 = 0.1168, i.e. 11.68%.
17First draw the pictures. To find the area between Z = −1 and Z = 1, use the normal probability

table to determine the areas below Z = −1 and above Z = 1. Next verify the area between Z = −1 and
Z = 1 is about 0.68. Repeat this for Z = −2 to Z = 2 and also for Z = −3 to Z = 3.
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Male heights (inches)
60 65 70 75 80
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Figure 3.10: A sample of 100 male heights. The observations are rounded
to the nearest whole inch, explaining why the points appear to jump in
increments in the normal probability plot.

⊙
Guided Practice 3.23 SAT scores closely follow the normal model with mean
μ = 1500 and standard deviation σ = 300. (a) About what percent of test takers
score 900 to 2100? (b) What percent score between 1500 and 2100?18

3.2 Evaluating the normal approximation

Many processes can be well approximated by the normal distribution. We have already seen
two good examples: SAT scores and the heights of US adult males. While using a normal
model can be extremely convenient and helpful, it is important to remember normality is
always an approximation. Testing the appropriateness of the normal assumption is a key
step in many data analyses.

Example 3.15 suggests the distribution of heights of US males is well approximated
by the normal model. We are interested in proceeding under the assumption that the data
are normally distributed, but first we must check to see if this is reasonable.

There are two visual methods for checking the assumption of normality, which can be
implemented and interpreted quickly. The first is a simple histogram with the best fitting
normal curve overlaid on the plot, as shown in the left panel of Figure 3.10. The sample
mean x̄ and standard deviation s are used as the parameters of the best fitting normal
curve. The closer this curve fits the histogram, the more reasonable the normal model
assumption. Another more common method is examining a normal probability plot,19

shown in the right panel of Figure 3.10. The closer the points are to a perfect straight line,
the more confident we can be that the data follow the normal model.

18(a) 900 and 2100 represent two standard deviations above and below the mean, which means about
95% of test takers will score between 900 and 2100. (b) Since the normal model is symmetric, then half

of the test takers from part (a) ( 95%
2

= 47.5% of all test takers) will score 900 to 1500 while 47.5% score
between 1500 and 2100.

19Also commonly called a quantile-quantile plot.
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Figure 3.11: Histograms and normal probability plots for three simulated
normal data sets; n = 40 (left), n = 100 (middle), n = 400 (right).

� Example 3.24 Three data sets of 40, 100, and 400 samples were simulated from
a normal distribution, and the histograms and normal probability plots of the data
sets are shown in Figure 3.11. These will provide a benchmark for what to look for
in plots of real data.

The left panels show the histogram (top) and normal probability plot (bottom) for
the simulated data set with 40 observations. The data set is too small to really see
clear structure in the histogram. The normal probability plot also reflects this, where
there are some deviations from the line. We should expect deviations of this amount
for such a small data set.

The middle panels show diagnostic plots for the data set with 100 simulated observa-
tions. The histogram shows more normality and the normal probability plot shows a
better fit. While there are a few observations that deviate noticeably from the line,
they are not particularly extreme.

The data set with 400 observations has a histogram that greatly resembles the normal
distribution, while the normal probability plot is nearly a perfect straight line. Again
in the normal probability plot there is one observation (the largest) that deviates
slightly from the line. If that observation had deviated 3 times further from the line,
it would be of greater importance in a real data set. Apparent outliers can occur in
normally distributed data but they are rare.

Notice the histograms look more normal as the sample size increases, and the normal
probability plot becomes straighter and more stable.
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Figure 3.12: Histogram and normal probability plot for the NBA heights
from the 2008-9 season.

� Example 3.25 Are NBA player heights normally distributed? Consider all 435
NBA players from the 2008-9 season presented in Figure 3.12.20

We first create a histogram and normal probability plot of the NBA player heights.
The histogram in the left panel is slightly left skewed, which contrasts with the
symmetric normal distribution. The points in the normal probability plot do not
appear to closely follow a straight line but show what appears to be a “wave”. We can
compare these characteristics to the sample of 400 normally distributed observations
in Example 3.24 and see that they represent much stronger deviations from the normal
model. NBA player heights do not appear to come from a normal distribution.

� Example 3.26 Can we approximate poker winnings by a normal distribution? We
consider the poker winnings of an individual over 50 days. A histogram and normal
probability plot of these data are shown in Figure 3.13.

The data are very strongly right skewed in the histogram, which corresponds to the
very strong deviations on the upper right component of the normal probability plot.
If we compare these results to the sample of 40 normal observations in Example 3.24,
it is apparent that these data show very strong deviations from the normal model.

⊙
Guided Practice 3.27 Determine which data sets represented in Figure 3.14 plau-
sibly come from a nearly normal distribution. Are you confident in all of your con-
clusions? There are 100 (top left), 50 (top right), 500 (bottom left), and 15 points
(bottom right) in the four plots.21

20These data were collected from www.nba.com.
21Answers may vary a little. The top-left plot shows some deviations in the smallest values in the data

set; specifically, the left tail of the data set has some outliers we should be wary of. The top-right and
bottom-left plots do not show any obvious or extreme deviations from the lines for their respective sample
sizes, so a normal model would be reasonable for these data sets. The bottom-right plot has a consistent
curvature that suggests it is not from the normal distribution. If we examine just the vertical coordinates
of these observations, we see that there is a lot of data between -20 and 0, and then about five observations
scattered between 0 and 70. This describes a distribution that has a strong right skew.
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Figure 3.13: A histogram of poker data with the best fitting normal plot
and a normal probability plot.
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Figure 3.14: Four normal probability plots for Guided Practice 3.27.
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Figure 3.15: Normal probability plots for Guided Practice 3.28.

⊙
Guided Practice 3.28 Figure 3.15 shows normal probability plots for two distri-
butions that are skewed. One distribution is skewed to the low end (left skewed) and
the other to the high end (right skewed). Which is which?22

3.3 Geometric distribution (special topic)

How long should we expect to flip a coin until it turns up heads? Or how many times
should we expect to roll a die until we get a 1? These questions can be answered using the
geometric distribution. We first formalize each trial – such as a single coin flip or die toss –
using the Bernoulli distribution, and then we combine these with our tools from probability
(Chapter 2) to construct the geometric distribution.

3.3.1 Bernoulli distribution

Stanley Milgram began a series of experiments in 1963 to estimate what proportion of
people would willingly obey an authority and give severe shocks to a stranger. Milgram
found that about 65% of people would obey the authority and give such shocks. Over
the years, additional research suggested this number is approximately consistent across
communities and time.23

Each person in Milgram’s experiment can be thought of as a trial. We label a person
a success if she refuses to administer the worst shock. A person is labeled a failure if she
administers the worst shock. Because only 35% of individuals refused to administer the
most severe shock, we denote the probability of a success with p = 0.35. The probability
of a failure is sometimes denoted with q = 1− p.

Thus, success or failure is recorded for each person in the study. When an indi-
vidual trial only has two possible outcomes, it is called a Bernoulli random variable.

22Examine where the points fall along the vertical axis. In the first plot, most points are near the low
end with fewer observations scattered along the high end; this describes a distribution that is skewed to
the high end. The second plot shows the opposite features, and this distribution is skewed to the low end.

23Find further information on Milgram’s experiment at
www.cnr.berkeley.edu/ucce50/ag-labor/7article/article35.htm.


