

CIS529: Bioinformatics

Denovo Genome Assembly: Algorithmic Basis

Presented by

Dr. Fayyaz-ul-Amir Afsar Minhas

http://faculty.pieas.edu.pk/fayyaz

Department of Computer & Information Sciences Pakistan Institute of Engineering & Applied Sciences PO Nilore, Islamabad 45650 Pakistan

Basics

- Hamiltonian Path
- Eulerian Path
- De Bruijn graphs

Leonhard Euler 1805-1865

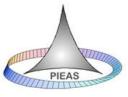
Eulerian path problem

William Rowan Hamilton 1805-1865

Nicolaas Govert de Bruijn 1918-2012

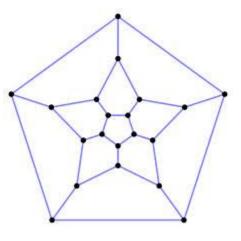
Hamiltonian path problem

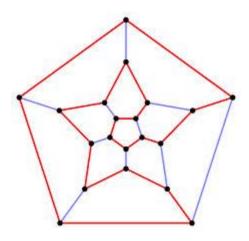
De Bruijn Graphs



Hamiltonian Path Problem

- Icosian Game
 - In the figure on the right, find a cycle (a path that begins and ends at the same node) that visits each and all nodes exactly once
- Hamiltonian path
- Hamiltonian cycles
- Examples
 - Knight's tour problem
 - Traveling Salesman problem





Knight's tour

		•		

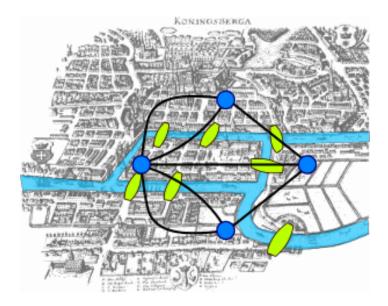
Hamiltonian path problem

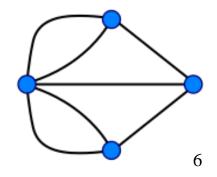
- Both determining the existence of a Hamiltonian cycle and finding it are NP-Complete
 - Time required to solve the problem using any currently known algorithm increases very quickly as the size of the problem grows.

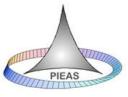
Eulerian Path Problem

- 7 Bridges of Koningsberg
 - Find a path that goes over all bridges exactly once

- Eulerian path / walk / trail /cycle
 - Visits each edge exactly once





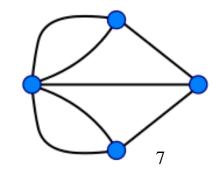


Eulerian Graphs

- A graph is said to be Eulerian if there is a Eulerian path in it
- Properties
 - An undirected graph has an Eulerian cycle if and only if all nodes of non-zero degree form a single connected component and have an even degree
 - An undirected graph has an Eulerian trail if and only if all nodes of non-zero degree form a single connected component and at most two nodes have odd degree

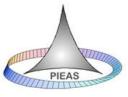
Does an Eulerian cycle exist in this graph?

Does an Eulerian path exist in this graph?



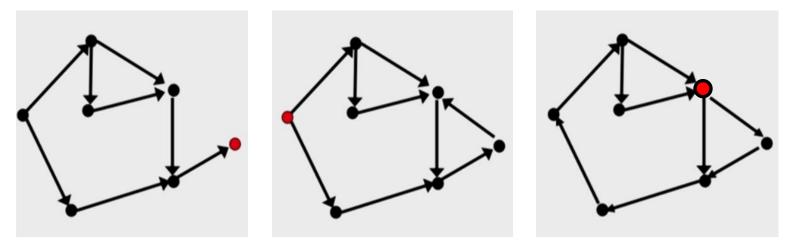
NO

NO



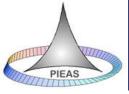
Eulerian Graphs

- Properties ...
 - A directed graph has an Eulerian cycle iff every vertex has equal in-degree and outdegree, i.e., it's a balanced graph
- Is the following graph Eulerian?
 - No

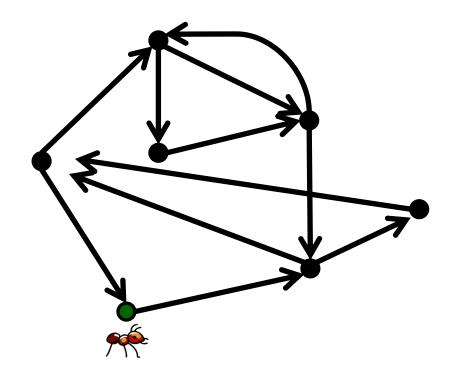


Finding an Eulerian Cycle

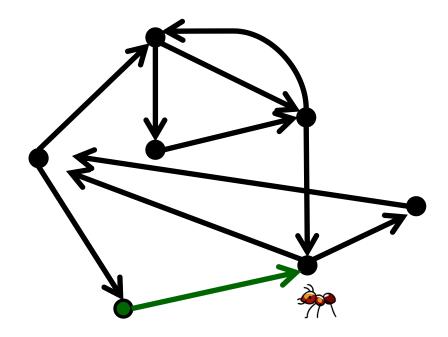
 An efficient algorithm exists for finding Eulerian cycle(s) in a balanced graph

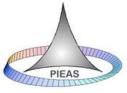


Finding Eulerian Cycles with Ants

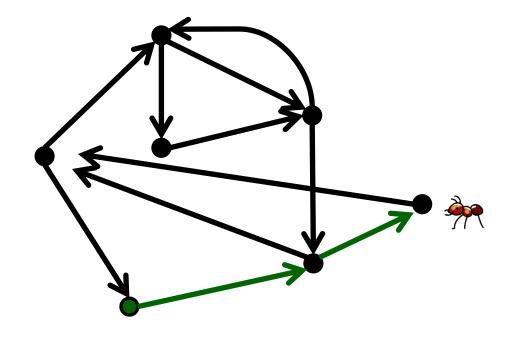


Explore unexplored edges at random



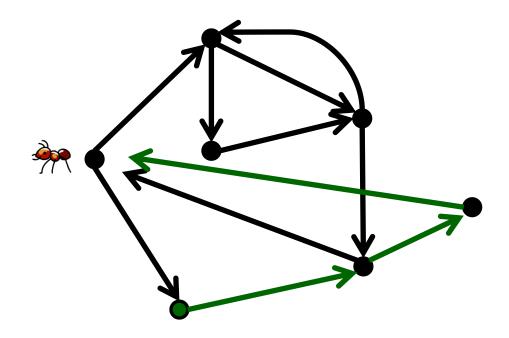


Exploring...



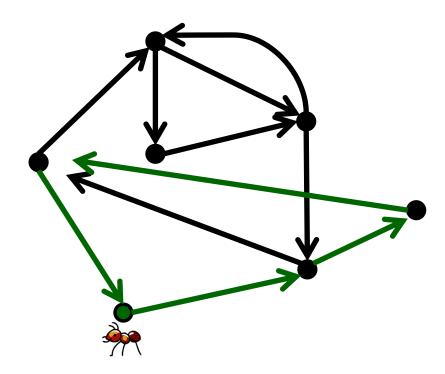
Walking ...

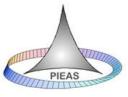
Can it get stuck? In what node?



Back! But not solved!!

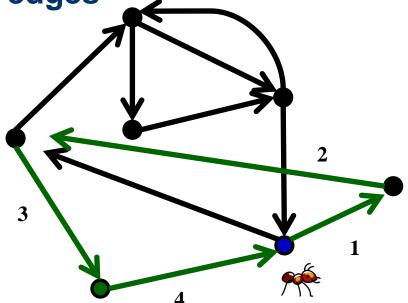
The ant will get stuck only in the starting node





What to do now?

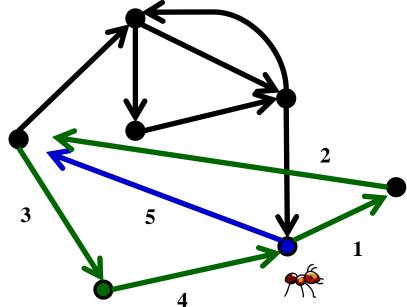
 Start at a node on the current cycle with still unexplored edges



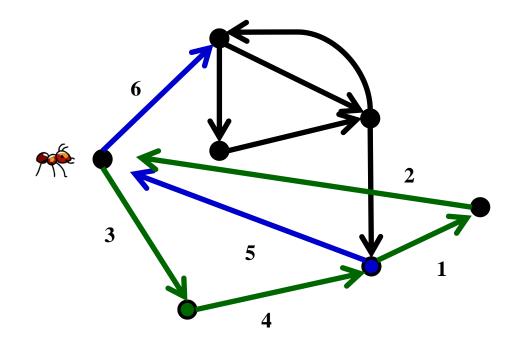
- Traverse all previously explored edges in the same order as before until you arrive back at the new start edge
 - Now the ant can continue because there is an edge!

Why repeat the cycle?

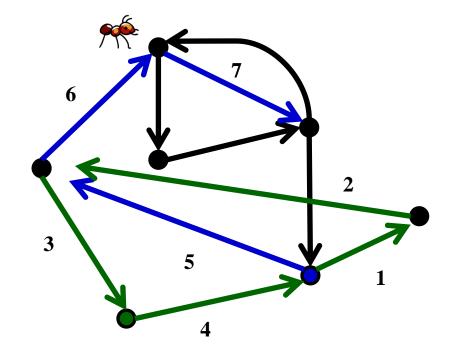
 After completing the cycle, start random exploration of untraversed edges in the graph



Walking ...

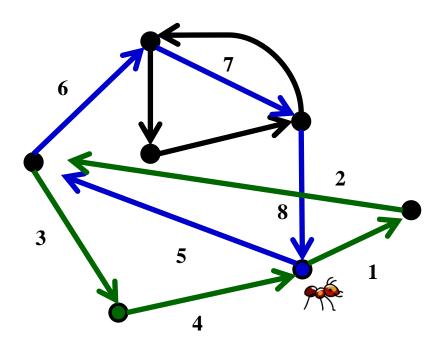


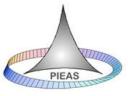
Walking ...



Walking

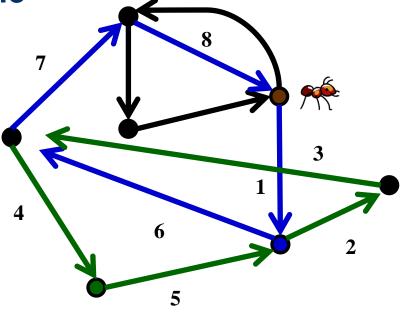
Stuck Again

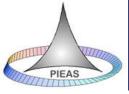




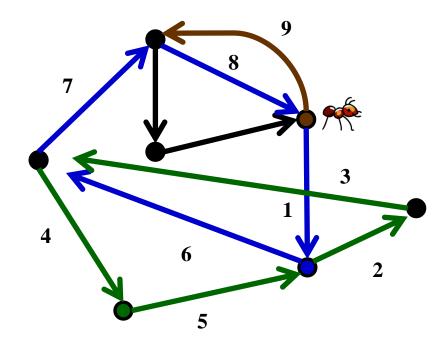
Stuck again!

 Enlarge cycle by starting again and traversing the original cycle

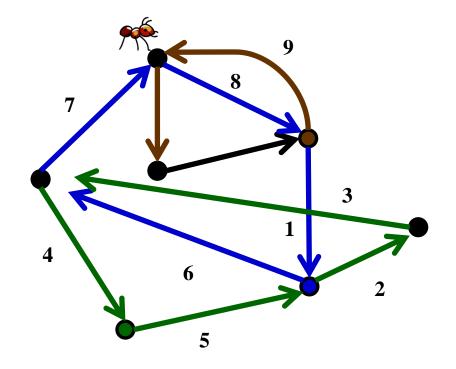




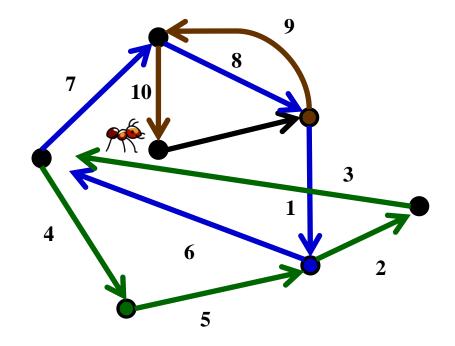
Completed the cycle! Walk again!



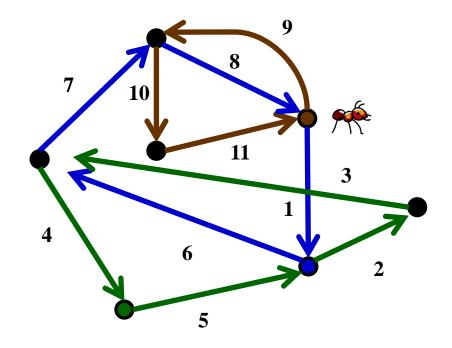
Walking!



Walking!



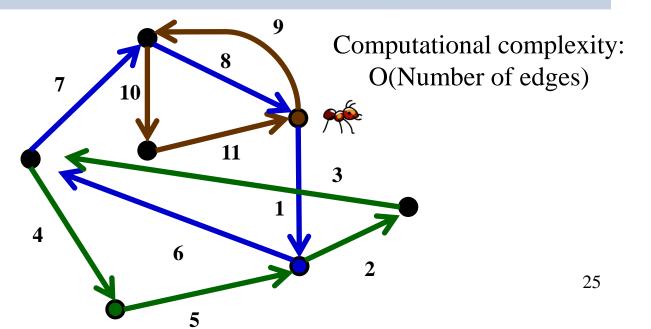
Done!

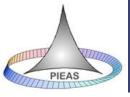


Algorithm

EulerianCycle(BalancedGraph)

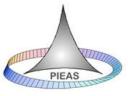
form a Cycle by randomly walking in BalancedGraph (avoiding already visited edges)
while Cycle is not Eulerian
select a node newStart in Cycle with still unexplored outgoing edges
form a Cycle' by traversing Cycle from newStart and randomly walking afterwards
Cycle ← Cycle'
return Cycle





k-Universal Circular String Problem

- The k-Universal Circular String Problem
 - Find a circular string containing each binary kmer exactly once
 - Such strings are called De Bruijn Sequences
- Example
 - Given: k=3, 8 possible binary k-mers
 - Solution: 00011101
 - **•** 000, 001, 011, 111, 110, 101, 010, 100
 - Given: k = 4, 16 possible binary k-mers
 - Solution: 0000110010111101
 - 0000, 0001, 0011, 0110, 1100, 1001, 0010, 0101, 1011, 0111, 1111, 1110, 1101, 1010, 0100, 1000

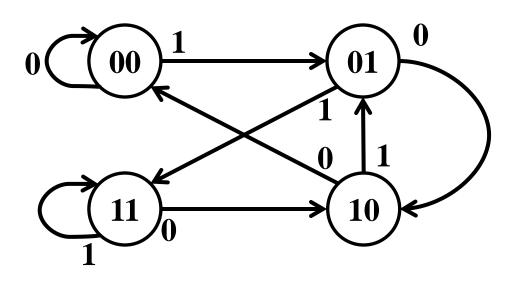


De Bruijn Graphs

- An (m,k) De Bruijn Graph is a graph defined over
 - An alphabet set S = {s₁, s₁, ..., s_m}
 - Example: S = {0,1} in case of binary strings (m = 2)
 - with the vertex set V = S^k = S x S x .. S
 - Example: V = {0,1} x {0, 1} = {(0,0), (0,1), (1,0), (1,1)} = {00, 01, 10, 11} (for k= 2)
 - and directional edges a→b between all nodes (a,b) such that b can be expressed in terms of a by shifting all its (a's) symbols to the left and adding a new symbol from S at the end of this vertex
 - Example:
 - $00 \rightarrow 01$ is okay because if we shift 00 left and add 1 we get 01
 - $00 \rightarrow 11$ is not valid because 11 cannot be obtained by single shift

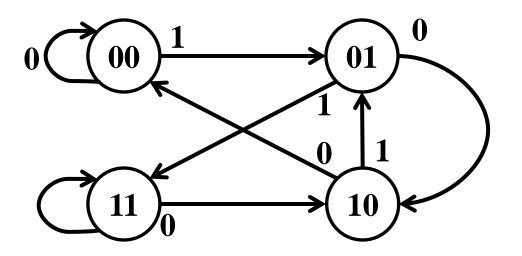
Exercise

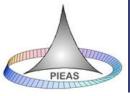
- Construct a (2,2) De Bruijn Graph with S = {0,1}
- Vertex Set: V = {00, 01, 10, 11}
- Edges:



(2,2) De Bruijn Graphs

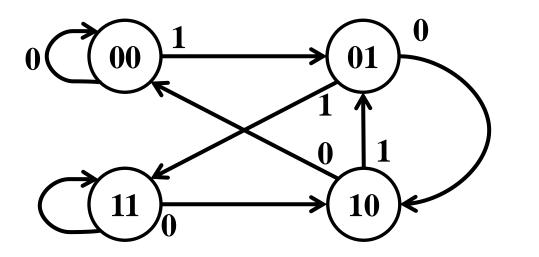
- Things to note
 - It's a balanced graph
 - Each vertex has m incoming and m outgoing edges

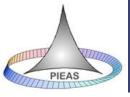




Hamiltonion cycle on (2,2) De Bruijn Graph

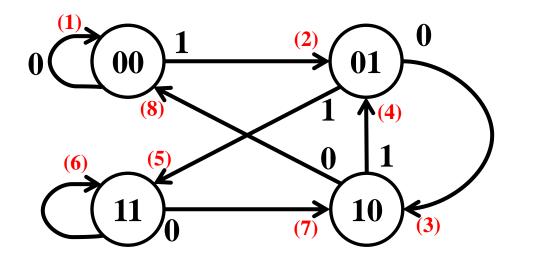
- Let's find the hamiltonian cycle in this graph
 - $00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00$
 - All De Bruijn Graphs as Hamiltonian Graphs
 - Furthermore, the this cycle can generate the De Bruijn Sequence 0011 which the solution to the 2-Universal Circular String Problem

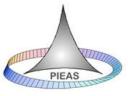




Eulerian cycle on (2,2) De Bruijn Graph

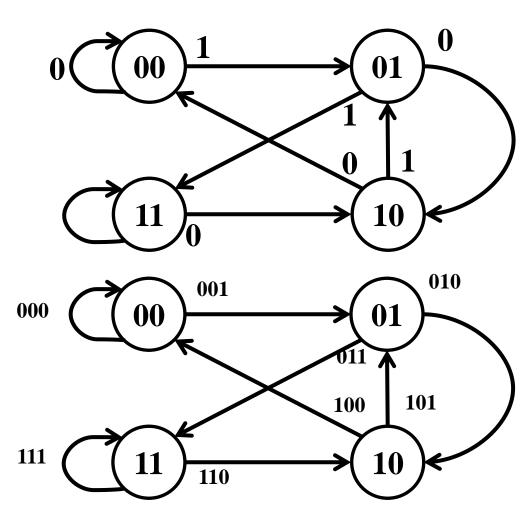
- Find a Eulerian Cycle on this graph
- All De Bruijn Graphs are Eulerian
- The solution 01011100 is the solution to the 3-Universal Circular String Problem
 - In general:
 - E(G(m,k)) = H(G(m,k+1)) = (k+1) binary De Bruijn Sequence





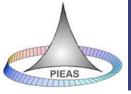
Alternative Labeling Style

 Edges can be labeled by the postappending the source node with the original edge label

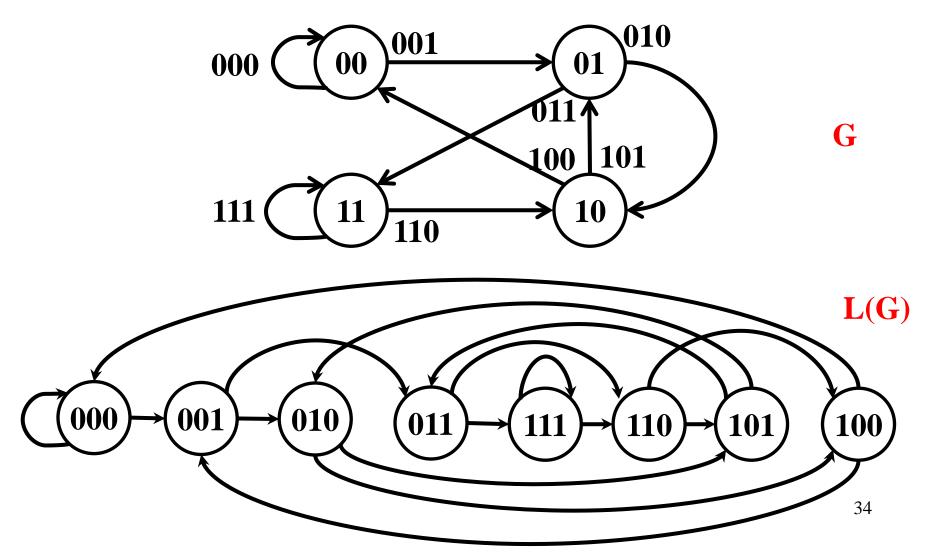


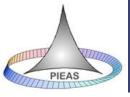
Line Graph Construction

- Given a graph G, its line graph L(G) is a graph such that
 - each vertex of L(G) represents an edge of G; and
 - two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint ("are incident") in G.



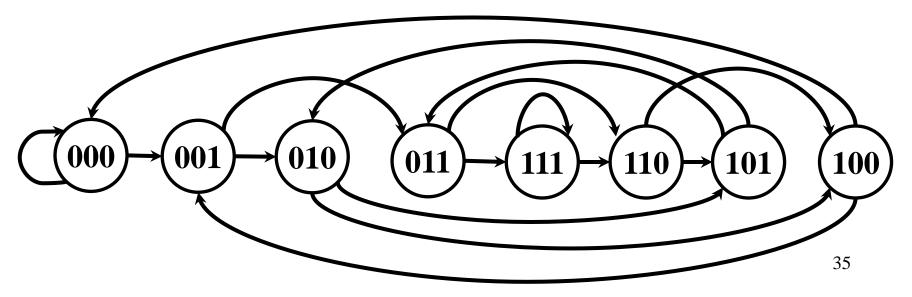
Line Graph of (2,2) De Bruijn Graph

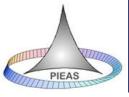




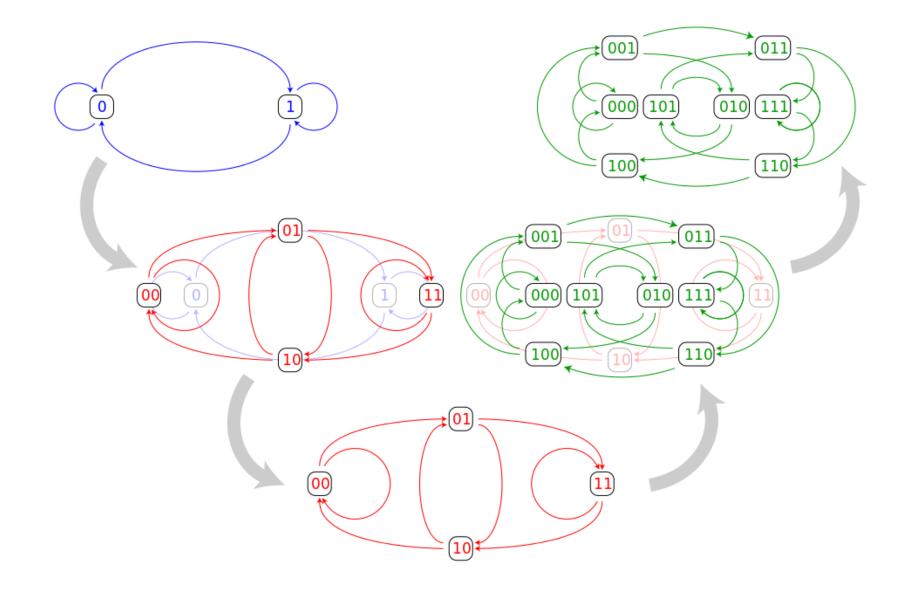
Line Graphs of De Bruijn Graphs

- Note that L(G(2,2)) is G(2,3)
- In general, for De Bruijn Graphs, L(G(m,k)) = G(m,k+1)
 - Since: E(G(m,k)) = H(G(m,k+1)) = (k+1) binary De Bruijn Sequence
 - Thus: E(G(m,k)) = H(L(G(m,k))) = (k+1) binary De Bruijn Sequence
- Thus, to find the solution to the k-Universal binary string problem, all we need is E(G(m,k-1))



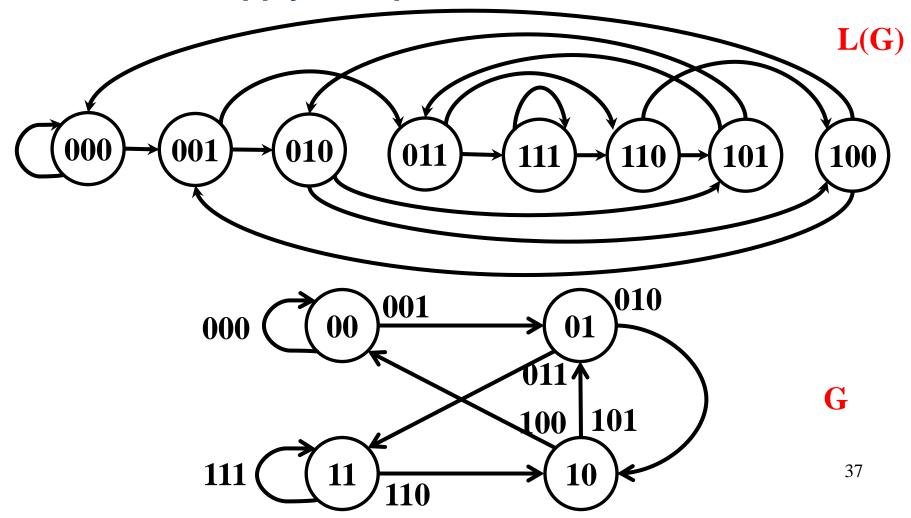


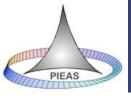
CIS529: BIOINFORMATICS Pakistan Institute of Engineering & Applied Sciences



Inverse Line Graphs

Can we apply the operation in reverse?





Number of possible De Bruijn Sequences

For (k,m), this number is

$$(m!)^{m^{k-2}}$$

For binary (m = 2)

•
$$\frac{(2)^{2^{k-1}}}{2^k} = 2^{2^{k-1}-k}$$

- For k = 3
 - **2**
- For k = 4
 - 16
- For k = 5
 - **2048**