
CS 432: Distributed Systems

Distributed Systems
Architectures

Distributed SystemsSpring 2017

Reading

• Tanenbaum (2nd Edition): 2.1, 2.2
• Coulouris (5th Edition): 2.3

2

Distributed SystemsSpring 2017

Introduction

• Distributed systems:
• are complex pieces of software
• have components that are dispersed across multiple

machines
• It is important to organize these systems to

manage their complexity
• Organization of a distributed system

• Hardware architecture (physical realization)
• Software architecture: how software components are

organized and interacting

3

Distributed SystemsSpring 2017

System Models

• Physical models
Types of computers and devices that constitute a system and
their interconnectivity (sharing in local network, internet-
scale, ubiquitous computing, cloud computing, IoT)

• Architecture Models
The components of a distributed system and their
interrelationships

• Fundamental Models
• Interaction models
• Failure models
• Security models

4

Distributed SystemsSpring 2017

Outline
• Introduction
• Hardware Architectures
• Architecture Styles
• System Architectures

• Centralized Architecture
• Client-Server
• Multiple-clients / multiple-servers
• Mobile computing
• Thin client
• Application Layering

• Decentralized Architecture: peer-to-peer
• Hybrid Architecture

5

Distributed SystemsSpring 2017

Hardware Architectures (Legacy)

6

Shared-nothing design

David J. DeWitt and Jim Gray. Parallel Database Systems: The Future of High Performance Database
Systems. Communications of the ACM 35(6), 1992

Distributed SystemsSpring 2017

Outline
• Introduction
• Hardware Architectures
• Architecture Styles
• System Architectures

• Centralized Architecture
• Client-Server
• Multiple-clients / multiple-servers
• Mobile computing
• Thin client
• Application Layering

• Decentralized Architecture: peer-to-peer
• Hybrid Architecture

7

Distributed SystemsSpring 2017

Architectural Styles

• Software architecture focuses on the software
components and their interaction:
• how components are connected to each other
• data exchanged between components
• how components are jointly configured into a system

• Mian objective: transparency
• Architecture Styles:

• Layered architectures
• Object-based architectures
• Data-centered architectures
• Event-based architectures

8

Distributed SystemsSpring 2017

Layered Architecture

9

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

• Layering == Abstraction
• Components are organized in layers
• Calls are only allowed in one

direction
• Each layer offers a software

abstraction
• Higher layers are unaware of its

implementation and the layers beneath
it

• Layered architecture is used for
client-server model

Distributed SystemsSpring 2017

Distributed System Layers

10

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Distributed
applications,
services,..
Hides lower layers and
provides a
communication
platform
Communications and
other hardware
infrastructure

Distributed SystemsSpring 2017

Object-based Architecture

• Each object corresponds to a component
• Components are connected through

remote procedure calls (RPC)
• Object-based style is used for distributed

object systems

11

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Distributed SystemsSpring 2017

Data-centered Architecture

• Idea: Communication of processes is done
through a common repository

• Examples:
• Communication through files that are stored

on a shared distributed file system
• Shared Web-based data services

12

Distributed SystemsSpring 2017

Event-based Architecture

13

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

• Processes communicate through the
propagation of events

• Example: publish/subscribe systems
• Processes are loosely coupled
• Decoupled in space

Distributed SystemsSpring 2017

Event-based + Data-centered
Architecture

• A.K.A. shared data spaces
• Decoupled in space and time

• Processes do not need to be active when
communication takes place

14

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Distributed SystemsSpring 2017

Outline

• Introduction
• Hardware Architectures
• Architecture Styles
• System Architectures

• Centralized Architecture
• Client-Server
• Multiple-clients / multiple-servers
• Mobile computing
• Thin client
• Application Layering

• Decentralized Architecture: peer-to-peer
• Hybrid Architecture

15

Distributed SystemsSpring 2017

System Architectures

• Defines the structure of the system by identifying:
• the components of the system
• roles of each component
• interrelationships and interactions between these

components
• how they map to the distributed infrastructure

• Goals: the architecture meets current and future
demands

• Concerns: reliability, adaptability, manageability,
cost-efficiency

• Types: Centralized, Decentralized, Hybrid

16

Distributed SystemsSpring 2017

Client-Server Model

17

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

• Processes are divided into two groups:
• Servers: processes offering services
• Clients: processes requesting services

• Client-server interaction A.K.A. request-reply
• A connectionless protocol can be used (e.g.

HTTP), however, mostly connection-oriented
such as TCP/IP is used

Distributed SystemsSpring 2017

Client-Server Mechanism

• Client:
• Clients is usually invoked by end users when

they require service
• A client usually blocks until server responds

• Server:
• A process that provides service and usually

with special privileges
• A server waits for incoming requests
• A server can have many clients making

concurrent requests

18

Distributed SystemsSpring 2017

Client-Server Communication

• Client processes interact with individual server
processes in order to access shared resources

• Servers may be clients of other servers
• Example: a web browser is a client of a web server,

which can be a client of file server

19

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design

Edn. 5 © Pearson Education 2012

Distributed SystemsSpring 2017

An Example Client and Server (1)

• The header.h file used by the client and server

20

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Distributed SystemsSpring 2017

An Example Client and Server (2)

• A sample server

21

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Distributed SystemsSpring 2017

An Example Client and Server (3)

• A client using the server to copy a file

22

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Distributed SystemsSpring 2017

Advantages of the Client-Server
Architecture

• Efficient division of labor
• Horizontal and vertical scaling of resources
• Better price/performance on client machines
• Ability to use familiar tools on client machines
• Client access to remote data (via standards)
• Full DBMS functionality provided to client

workstations
• Overall better system price/performance

23

Distributed SystemsSpring 2017

Problems with the Multiple Client /
Single Server Architecture

• Server forms a bottleneck
• Server forms a single point of failure
• System scaling is difficult

24

Distributed SystemsSpring 2017

Multiple Clients / Multiple Servers

• Same service provided by multiple servers
• Data is partitioned (and/or replicated), each web server

manages its own set of resources
• A user can employ a browser to access resources at any of

the servers

25

Server

Server

Server

Service

Client

Client

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design

Edn. 5 © Pearson Education 2012

Distributed SystemsSpring 2017

Multiple Clients / Multiple Servers
Using Proxy Server

• A cache is a store of recently used data objects that is
closer to one client or a particular set of clients than
the objects themselves

• Web proxy servers provide a shared cache of web
resources

26

Client

Proxy

Web

server

Web

server

server
Client

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design

Edn. 5 © Pearson Education 2012

Distributed SystemsSpring 2017

Outline

• Introduction
• System Layers
• Hardware Architectures
• Architecture Styles
• System Architectures

• Centralized Architecture
• Client-Server
• Multiple-clients / multiple-servers
• Mobile computing
• Thin client
• Application Layering

• Decentralized Architecture: peer-to-peer
• Hybrid Architecture

27

Distributed SystemsSpring 2017

Mobile Computing

Mobile computing is the performance of computing tasks
while the user is on the move, or visiting places other than
their usual environment

28
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

Distributed SystemsSpring 2017

Characteristics of Mobile Computing

• Users who are away from their ‘home’ intranet
can still access their ‘home’ intranet resources
via the devices they carry with them

• Users can also access their ‘hosting’ intranet
resources.

(location-aware, context-aware computing)

29

Distributed SystemsSpring 2017

Applets as an Example of Mobile Code

• Advantages: does not suffer from the delays or variability
of the network bandwidth ➔ good interactive response

• Disadvantages: Mobile code is a potential security threat
to the local resources in the destination computer

30

a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code
Client

b) client interacts with the applet

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design

Edn. 5 © Pearson Education 2012

Distributed SystemsSpring 2017

Mobile Agents

• A mobile agent is a running program (code and
data) that travels from one computer to another in
a network carrying out a task on someone’s behalf,
such as collecting information, and eventually
returning with the results

• Remote invocations vs. mobile agents (data vs code)

• Advantages:
• Reduction in communication cost and time

• Disadvantages:
• Potential security threat to the resources in computers

that they visit

• Unable to complete their task if they are refused access
to the information they need

31

Distributed SystemsSpring 2017

Application Layering / Multitier systems

• Tiered architectures are complementary to layering:
• Layering deals with the vertical organization of services into

layers of abstraction
• Tiering organizes functionality of a given layer and place

this functionality into appropriate servers and on to physical
nodes

• Layers of a three-tier architecture
• User interface (presentation logic): user interaction and

updating the view of the application as presented to the user
• Application/ processing logic: application-specific processing
• Data logic: the persistent storage of the application, e.g.,

DBMS

32

Distributed SystemsSpring 2017

Two-tier and Three-tier Architectures

33
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

Distributed SystemsSpring 2017

Example of Multitier Systems: Internet
Search Engines

34

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Distributed SystemsSpring 2017

Alternatives of Multitier Systems

35

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Hard to manage
Thin client: easier to
maintain

Distributed SystemsSpring 2017

Thin Clients

• Moving complexity away from the end-user device
towards services in the Internet

• Advantage: the user does not need high end
computing machines

• Disadvantage: delays due to accessing remote
data, graphics, ..

36

Thin
Client

Application
Process

Network computer or PC
Compute server

network

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design

Edn. 5 © Pearson Education 2012

Distributed SystemsSpring 2017

Communication in Multitier Systems

37

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Distributed SystemsSpring 2017

Advantages of Multitier Systems

• Frees clients from dependencies on the exact
implementation of the database

• It allows “business logic” to be concentrated in
one place

• Software updates are restricted to the middle
layer

• Performance improvements are possible by
batching requests from many clients to the
database

• Database and business logic tiers could be
implemented by multiple servers for scalability

38

Distributed SystemsSpring 2017

Elasticity in a Multitenant DB

Database
tier

Load Balancer

Application/
Web/Caching
tier

39

Sudipto Das, Shoji Nishimura, Divyakant Agrawal, Amr El Abbadi: Albatross: Lightweight Elasticity in Shared Storage Databases for the Cloud
using Live Data Migration. VLDB 2011.

Distributed SystemsSpring 2017

Outline

• Introduction
• Hardware Architectures
• Architecture Styles
• System Architectures

• Centralized Architecture
• Client-Server
• Multiple-clients / multiple-servers
• Mobile computing
• Thin client
• Application Layering

• Decentralized Architecture: peer-to-peer
• Hybrid Architecture

40

Distributed SystemsSpring 2017

Decentralized Architectures

• Vertical distribution (multitier systems) vs
horizontal distribution (peer-to-peer)

• The processes that constitute a peer-to-peer
system are all equal

• The interaction between processes is symmetric:
each process will act as a client and a server at
the same time

• Peer-to-peer systems can be divided into:
• Structured P2P: nodes are organized through a

distributed data structure (e.g., DHT)
• Unstructured P2P: nodes have randomly selected

neighbors
• Hybrid P2P: some nodes are appointed special

functions
41

Distributed SystemsSpring 2017

Decentralized Architectures

• Vertical distribution (multitier systems) vs
horizontal distribution (peer-to-peer)

• The processes that constitute a peer-to-peer
system are all equal.

• The interaction between processes is symmetric:
each process will act as a client and a server at
the same time.

• Peer-to-peer systems can be divided into:
• Structured P2P: nodes are organized through a

distributed data structure (e.g., DHT).
• Unstructured P2P: nodes have randomly selected

neighbors.
• Hybrid P2P: some nodes are appointed special

functions.
42

Organize the processes in an overlay network, that is, a
network in which the nodes are formed by the processes
and the links represent the possible communication
channels (e.g., TCP connections ➔ application-level
multicasting).

Distributed SystemsSpring 2017

Peer-to-Peer Systems

43

Application
Coordination

Code
Objects

Peer i

Distributed SystemsSpring 2017

Structured Peer-to-Peer

44

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

• Chord System: nodes are
logically organized in a ring

• Mapping between nodes and
the data they own is
required

• Function lookup(k) returns
the network address of the
node owning k. Lookups can
be done in O(log(N)), where
N is the number of nodes

Distributed SystemsSpring 2017

Unstructured Peer-to-Peer

• Rely on randomized algorithms for constructing
overlay networks that resembles a random
graph

• Main idea:
• Each node maintains a list of neighbors, but that this

list is constructed in a more or less random way.
• Data items are assumed to be randomly placed on

nodes.
• Goal is that each node constructs a partial view of

the graph.

45

Distributed SystemsSpring 2017

Examples of Peer-to-Peer Applications

• File sharing
• Napster, Gnutella, KaZaa
• Second generation projects

• Oceanstore, PAST, Freehaven, FreeNet
• Distributed Computation

• SETI@home, Entropia, Parabon, United Devices,
Popular Power

• Other Applications
• Content Distribution (BitTorrent)
• Instant Messaging (Jabber), Anonymous Email
• Groupware (Groove)
• P2P Databases

46

Distributed SystemsSpring 2017

Outline

• Introduction
• Hardware Architectures
• Architecture Styles
• System Architectures

• Centralized Architecture
• Client-Server
• Multiple-clients / multiple-servers
• Mobile computing
• Thin client
• Application Layering

• Decentralized Architecture: peer-to-peer
• Hybrid Architecture

47

Distributed SystemsSpring 2017

Hybrid Architecture
• Solution with client-server architectures are combined with

decentralized architectures

• BitTorrent :
• A centralized server is needed to let the client know about

the nodes from which chunks of the file can be downloaded
• Once the client joins the system as a node, a decentralized

architecture will be used
48

Distributed SystemsSpring 2017

Summary

• Hardware architectures: shared noting, shared
memory, and shared disk architectures

• Software architectures: layered, object-based,
data centred, and event-based architectures

• System architectures: centralized,
decentralized, and hybrid architectures

49

CS432: Distributed Systems

 
Thank You

Spring 2017 50

