CS 432: Distributed Systems

Distributed Systems
Architectures

Reading

* Tanenbaum (2"d Edition): 2.1, 2.2
 Coulouris (5th Edition): 2.3

Introduction

 Distributed systems:
« are complex pieces of software

* have components that are dispersed across multiple
machines

* |t is important to organize these systems to
manage their complexity
« Organization of a distributed system
« Hardware architecture (physical realization)

» Software architecture: how software components are
organized and interacting

System Models

* Physical models

Types of computers and devices that constitute a system and
their interconnectivity (sharing in local network, internet-
scale, ubiquitous computing, cloud computing, loT)

|+ Architecture Models |

The components of a distributed system and their
interrelationships

* Fundamental Models
 Interaction models
» Failure models
* Security models

Outline

 Hardware Architectures
* Architecture Styles

« System Architectures

» Centralized Architecture

Client-Server

Multiple-clients / multiple-servers

Mobile computing

Thin client

Application Layering

* Decentralized Architecture: peer-to-peer
« Hybrid Architecture

Hardware Architectures (Legacy)
Interconnection icmb

Shared-nothing design

0 @ jjj@

llllt‘l\Ollllet.llon Network l I

Global Shared Memory | C Interconnection Netw oxk

Shared Memory Multiprocessor Shared Disk I\Iultlpmccssox

David J. DeWitt and Jim Gray. Parallel Database Systems: The Future of High Performance Database
Systems. Communications of the ACM 35(6), 1992

Spring 2017 Distributed Systems 6

Outline

* Architecture Styles

« System Architectures

» Centralized Architecture

Client-Server

Multiple-clients / multiple-servers

Mobile computing

Thin client

Application Layering

* Decentralized Architecture: peer-to-peer
« Hybrid Architecture

Architectural Styles

» Software architecture focuses on the software
components and their interaction:
* how components are connected to each other
« data exchanged between components
« how components are jointly configured into a system

* Mian objective: transparency

» Architecture Styles:
» Layered architectures
« Object-based architectures
« Data-centered architectures
« Event-based architectures

Layered Architecture

« Layering == Abstraction
 Components are organized in layers

* Calls are only allowed in one Layer N
direction I
Layer N-1
* Each layer offers a software ... l T p Resons
abstraction flow flow
» Higher layers are unaware of its 'L:,,.erzl
implementation and the layers beneath | £
it Layer 1

Layered architecture is used for
client-server model

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002
Spring 2017 Distributed Systems 9

Distributed System Layers

Distributed
applications,
services,..

Hides lower layers and
provides a
communication
platform

Communications and
other hardware
infrastructure

Machine A Machine B Machine C
Distributed applications
1 1 1 1
Middleware service
Local OS Local OS Local OS
Network

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Spring 2017

Distributed Systems

10

Object-based Architecture

« Each object corresponds to a component

 Components are connected through
remote procedure calls (RPC)

* Object-based style is used for distributed
object systems [Object J~———{ Object |

/’////’ $
¥/
Object | Method call

" ‘/

— Y -
_| Object |

ALY
Object &

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigfns. Prenfice-Hall, Inc. 2002

Data-centered Architecture

* |dea: Communication of processes is done
through a common repository

* Examples:

 Communication through files that are stored
on a shared distributed file system

 Shared Web-based data services

Event-based Architecture

* Processes communicate through the
propagation of events

* Example: publish/subscribe systems
* Processes are loosely coupled

o Decoup[ed in Space Component Component
Event delivery T T
< : Event bus ! >
T Publish
Component

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002
Spring 2017 Distributed Systems 13

Event-based + Data-centered
Architecture

* A.K.A. shared data spaces

* Decoupled in space and time

 Processes do not need to be active when
communication takes place

Component Component

Data delivery x L l Publish
e L~ - --\v"- T ¥ ot
\‘u

7
Shared (persistent) data space

.\.’ -}_ —
TN ™ -~ f/. ™~ i — '/

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002
Spring 2017 Distributed Systems 14

Outline

« System Architectures

* Centralized Architecture

Client-Server

Multiple-clients / multiple-servers

Mobile computing

Thin client

Application Layering

* Decentralized Architecture: peer-to-peer
« Hybrid Architecture

System Architectures

Defines the structure of the system by identifying:
« the components of the system
* roles of each component

* interrelationships and interactions between these
components

* how they map to the distributed infrastructure

Goals: the architecture meets current and future
demands

Concerns: reliability, adaptability, manageability,
cost-efficiency

Types: Centralized, Decentralized, Hybrid

Client-Server Model

* Processes are divided into two groups:
» Servers: processes offering services
* Clients: processes requesting services

» Client-server interaction A.K.A. request-reply

* A connectionless protocol can be used (e.g.
HTTP), however, mostly connection-oriented
such as TCP/IP is used

Wait for result

C“ent — ___________ P
Request Reply
Server ~------------- ‘-—— ________________
Provide service Time —

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Client-Server Mechanism

* Client:

 Clients is usually invoked by end users when
they require service

A client usually blocks until server responds

* Server:
* A process that provides service and usually
with special privileges
* A server waits for incoming requests

* A server can have many clients making
concurrent requests

Client-Server Communication

invocation

Key:
Process: O Computer:

 Client processes interact with individual server
processes in order to access shared resources
« Servers may be clients of other servers

- Example: a web browser is a client of a web server,
which can be a client of file server

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design
Edn. 5 © Pearson Education 2012

An Example Client and Server

* The header.h file used by the client and server

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms.

Spring 2017

* Definiions needed by clients and servers L

#define TRUE 1

gdofine MAX _PATH 255 * maximum length of file name
sdofine BUF _SIZE 1024 /~ how much data to transfer at once
sdefine FILE _SERVER 243 * Ne server's notwork address

" Definitions of the allowed operabons *
pe

#define CREATE
#define READ
#delne WRITE
#define DELETE

H WK -

* Emror codes. ©

#define OK

sdofine E_BAD _OPCODE
sdefine E_BAD _PARAM

-

sdefine E_IO

o

|
LN -

* Definition of the message format

struct message
ONg SouUrce;
ong dest;
ong opcode
O

count;

nQ Offset

O C

n
£l
Bl
NG réesuit

char name(MAX _PATH);
r data[BUF _SIZE]

&

o

-

create a new file

™ read data from a file and retum
™ write data to a file

* delete an existing file

operation performed correctly
unknown operalion requesied
error in a parameler

* gisk aror or other VO error

sender's idenbty

recesver's identity

requested operation

number of bytes 10 transher
position in file to start VO
result of the operation

name of file being opérated on
data 10 be read or writien

Distributed Systems

14

Prentice-Hall, Inc. 2002

20

An Example Client and Server (2)

« Asample server

#include <header.h>
void main(void) {

struct message mi, m2; /* incoming and outgoing messages */
intr; /* result code */
while(TRUE) { /* server runs forever
receive(FILE _SERVER, &mi); /* block waiting for 2 message
switch(ml.opcode) { /* dispatch on type of request
case CREATE: r =do_create(&ml, &m2); break;
case READ: r = do_read(&ml, &m2); break;
case WRITE: r = do_write(&ml, &m2); break;
case DELETE: r = do_delete(&ml, &m2); break;
default: r= E_BAD_OPCODE;
}
m2.result = r; /* return result to client */
send(ml.source, &m2); [* send reply

}

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Spring 2017 Distributed Systems 21

An Example Client and Server (3

* Aclient using the server to copy a file

#include <heacer.h>

int copy(char *src, char “dst){

[procedure to copy file using the server

struct message mi, /* message buffer
long position; [* current file position
long client = 110; [* client’'s address
initialize(); I* prepare for execution
position = 0;
do {
mil.opcode = READ,; /* operation is a read
ml.offset = position; /* current position in the file
ml.count = BUF_SIZE;
strcpy(&ml.name, src), I* copy name of file to be read to message
send(FILESERVER, &mi); /* send the message to the file server
receive(client, &ml); /* block waiting for the reply
/* Write the data just received to the destination file.
mi.opcode = WRITE; /[* operation is a write
mi.offset = position; /* current position in the file
mi.count = ml.result; ™ how many bytes to wnte
strepy(&mi.name, dst), /* copy name of file to be written to buf
send(FILE_SERVER, &ml); [* send the message 10 the file server
receive(client, &ml); /* block waiting for the reply
position += ml.result; /* mi.result is number of bytes written
} while(ml.result > 0); /* iterate until done

return{mi.resuit >= 0 ? OK : ml result); /* return OK or error code

D)

/* how many bytes to read"/

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Spring 2017

Distributed Systems

22

Advantages of the Client-Server
Architecture

Efficient division of labor

Horizontal and vertical scaling of resources
Better price/performance on client machines
Ability to use familiar tools on client machines
Client access to remote data (via standards)

Full DBMS functionality provided to client
workstations

Overall better system price/performance

Problems with the Multiple Client /
Single Server Architecture

« Server forms a bottleneck
« Server forms a single point of failure
« System scaling is difficult

Multiple Clients / Multlple Servers

« Same service provided by multlple Servers

« Data is partitioned (and/or replicated), each web server
manages its own set of resources

* Auser can employ a browser to access resources at any of
the servers

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design
Edn. 5 © Pearson Education 2012

Multiple Clients / Multiple Servers
Using Proxy Server

server
v
»(Web
server

* A cache is a store of recently used data objects that is

closer to one client or a particular set of clients than
the objects themselves

* Web proxy servers provide a shared cache of web
resources

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design
Edn. 5 © Pearson Education 2012

0

Outline

 Centralized Architecture

* Mobile computing

» Thin client

« Application Layering
* Decentralized Architecture: peer-to-peer
* Hybrid Architecture

Mobile Computing

Internet

/A —— | \

I
Host intranet I Home intranet
Wireless LAN |
I

Mobile 4—% GPS satellite signal
phone | “= 3G phone network
Printer — Laptop
Camera | Host site

|
|
|
|
|
|
|
L

Mobile computing is the performance of computing tasks

while the user is on the move, or visiting places other than

their usual environment

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

Spring 2017 Distributed Systems 28

Characteristics of Mobile Computing

« Users who are away from their ‘home’ intranet
can still access their ‘home’ intranet resources
via the devices they carry with them

» Users can also access their ‘hosting’ intranet
resources.

(location-aware, context-aware computing)

Applets as an Example of Mobile Code

a) client request results in the downloading of applet code

Applet code server

b) client interacts with the applet

Web
—yApplet server

« Advantages: does not suffer from the delays or variability
of the network bandwidth = good interactive response

. Disadvanta?es: Mobile code is a potential security threat
to the local resources in the destination computer

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design
Edn. 5 © Pearson Education 2012

Mobile Agents

A mobile agent is a running program (code and
data) that travels from one computer to another in
a network carrying out a task on someone’s behalf,
such as collecting information, and eventually
returning with the results

Remote invocations vs. mobile agents (data vs code)
Advantages:

* Reduction in communication cost and time
Disadvantages:

« Potential security threat to the resources in computers
that they visit

* Unable to complete their task if they are refused access
to the information they need

Application Layering / Multitier systems

» Tiered architectures are complementary to layering:

« Layering deals with the vertical organization of services into
layers of abstraction

* Tiering organizes functionality of a given layer and place
this functionality into appropriate servers and on to physical
nodes

« Layers of a three-tier architecture

* User interface (presentation logic): user interaction and
updating the view of the application as presented to the user

« Application/ processing logic: application-specific processing
« Data logic: the persistent storage of the application, e.g.,
DBMS

Two-tier and Three-tier Architectures

3)

b)

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

Spring 2017

Personal computers

or mobile devices

User view,
controls and
data manipulation

User view,
controls and
data manipulation

Tier 1

Personal computers
or mobile devices

_User
view and

controls

User

viewand ——

controls

Tier 1

Server

Application
and data management

Application
- and data management

Tier 2

Application server

Database server

Application
logic _/~~—_|
T Database
manager
. Application ,/)
logic
Tier 2 Tier 3

Distributed Systems

33

Example of Multitier Systems: Internet
Search Engines

: _ User-interface
User interface f

[level
___________ ",’___.__._._.__..__. _....__.__..__._.__._.__.._.__.__.___-__j."
/ ~ HTML page "l
Keyword expression / _containing list l
HTML |
y generator \ Processing
Query % Ranked list [level
| generator of page titles
Ranking
Database queries \ component |
I N £ —
\ /" Web page titles |
—4 7~ with meta-information

|
Database ~ Data level
with Web pages ‘

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002
Spring 2017 Distributed Systems 34

Alternatives of Multitier Systems

Thin client: easier to
o fl |

‘ User interch_:g ‘

User interface

User interface

Application Application
Database Database
(a) (b)

Client machine

Hard to Amanage

User interface

User interface

! .-Application

Applicatio_n_ ‘

Application

User interface

Application

‘ Database Database
Server machine
(c) (d)

Database)

(e)

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Spring 2017

Distributed Systems

35

Thin Clients

Compute server
Network computer or PC

network Application
Process

* Moving complexity away from the end-user device
towards services in the Internet

« Advantage: the user does not need high end
computing machines

» Disadvantage: delays due to accessing remote
data, graphics, ..

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design
Edn. 5 © Pearson Education 2012

Communication in Multitier Systems

User interface Wait for result
(presentation) _K""""""‘“""""""-—-;‘_
R /
eques t / Return
operation / { racuk
Applicaton ________] Wait for data S
server

Return data

Database Al [
server

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002
Spring 2017 Distributed Systems 37

Advantages of Multitier Systems

Frees clients from dependencies on the exact
implementation of the database

It allows “business logic” to be concentrated in
one place

Software updates are restricted to the middle
layer

Performance improvements are possible by

batc
data

Data

ning requests from many clients to the
Dase

pbase and business logic tiers could be

implemented by multiple servers for scalability

Q)

Elasticity in a Multitenant DB
NN

Load Balancer

«]

‘ Application/
Web/Caching
tier

E ' Database
—_—— tier

Sudipto Das, Shoji Nishimura, Divyakant Agrawal, Amr El Abbadi: Albatross: Lightweight Elasticity in Shared Storage Databases for the Cloud
using Live Data Migration. VLDB 2011.
Spring 2017 Distributed Systems 39

Outline

* Decentralized Architecture: peer-to-peer
* Hybrid Architecture

Decentralized Architectures

Vertical distribution (multitier systems) vs
horizontal distribution (peer-to-peer)

The processes that constitute a peer-to-peer
system are all equal

The interaction between processes is symmetric:
each process will act as a client and a server at

the same time
Peer-to-peer systems can be divided into:

 Structured P2P: nodes are organized through a
distributed data structure (e.g., DHT)

* Unstructured P2P: nodes have randomly selected
neighbors

* Hybrid P2P: some nodes are appointed special
functions

Decentralized Architectures

* Vertical distribution (multitier systems) vs
horizontal distribution (peer-to-peer)

* The processes that constitute a peer-to-peer
system are all equal.

* The interaction between processes is symmetric:

each process will act as a client and a server at
the same time.

* Peer-to-peer systems can be divided into:

Organize the processes in an overlay network, that is, a
network in which the nodes are formed by the processes
and the links represent the possible communication
channels (e.g., TCP connections = application-level
multicasting).

Peer-to-Peer Systems

Peer 1

Sharable —_)
arable —~ 5
objects 86 %

BN

Peers4...N [¢ .

Spring 2017

Peer 2 Peer i

Application

Coordination
Code

Objects

Distributed Systems 43

Structured Peer-to-Peer

* Chord System: nodes are Actual node
logically organized in a ring /@/ \(

t (13,14,15} {0,1)
* Mapping between nodes and.. /

the data they own is s

reqmred 6% (8,9,10,11,12} (2,3,4} %4)
» Function lookup(k) returns ;. ke 2

the network address of the ™\ . e

{5.6,7}

node owning k. Lookups can "X, 8.
be done in O(log(N)), where 9‘\8
N is the number of nodes

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Unstructured Peer-to-Peer

» Rely on randomized algorithms for constructing
overlay networks that resembles a random
graph

* Main idea:

* Each node maintains a list of neighbors, but that this
list is constructed in a more or less random way.

» Data items are assumed to be randomly placed on
nodes.

» Goal is that each node constructs a partial view of
the graph.

Examples of Peer-to-Peer Applications

 File sharing

* Napster, Gnutella, KaZaa

* Second generation projects

* Oceanstore, PAST, Freehaven, FreeNet

 Distributed Computation

« SETI@home, Entropia, Parabon, United Devices,

Popular Power

« Other Applications

« Content Distribution (BitTorrent)

* Instant Messaging (Jabber), Anonymous Email

* Groupware (Groove)

« P2P Databases

Outline

Introduction
Hardware Architectures

Architecture Styles

System Architectures

* Centralized Architecture

Client-Server

Multiple-clients / multiple-servers

Mobile computing

Thin client

Application Layering

« Decentralized Architecture: peer-to-peer

* Hybrid Architecture

Spring 2017 Distributed Systems

47

Hybrid Architecture

* Solution with client-server architectures are combined with
decentralized architectures

Client node
K out of N nodes
Node 1
Lookup(F)
|

A BitTorrent torrent file ,| List of nodes Node 2

Webpage | Ref.to for F Ref. to storing F

file tracker

Tracker

Web server server File server Node N

 BitTorrent :

* A centralized server is needed to let the client know about
the nodes from which chunks of the file can be downloaded

* Once the client joins the system as a node, a decentralized

architecture will be used
Spring 2017 Distributed Systems

Summary

« Hardware architectures: shared noting, shared
memory, and shared disk architectures

« Software architectures: layered, object-based,
data centred, and event-based architectures

« System architectures: centralized,
decentralized, and hybrid architectures

Spring 2017

Thank You

CS432: Distributed Systems

50

