
Middleware and Interprocess
Communication

CS432: Distributed Systems
Spring 2017

Distributed SystemsSpring 2017

Reading

• Coulouris (5th Edition): 4.1, 4.2, 4.6
• Tanenbaum (2nd Edition): 4.3

2

Distributed SystemsSpring 2017

Outline
• Introduction to Middleware
• Introduction to Interprocess Communication
• External Data Representation
• Case Study: MPI

3

Distributed SystemsSpring 2017

Middleware

• It mostly, refers to the distributed system layer
that enables communication between
distributed systems

• Masks the heterogeneity of the operating
system, hardware, and network layers

• Provides a uniform computational model for use
by the programmers of servers and distributed
applications

4

Distributed SystemsSpring 2017

Middleware Layer

5

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

Distributed
applications,
services,..
Hides lower layers and
provides a
communication
platform
Communications and
other hardware
infrastructure

Distributed SystemsSpring 2017

Categories of Middleware

6
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

Distributed SystemsSpring 2017

Middleware Layers

7

This
Lecture

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

Distributed SystemsSpring 2017

Communication between Processes

• Shared storage:
• Shared memory
• Shared files

• Message passing:
• Sockets
• Pipes
• MPI
•

• Others
• Overlay networks
• Multicasting
•

8

Distributed SystemsSpring 2017

Outline
• Introduction to Middleware
• Introduction to Interprocess Communication
• External Data Representation
• Case Study: MPI

9

Distributed SystemsSpring 2017

Interprocess Communication

• The ways that processes on different machines
can exchange information

• Communication in distributed systems is always
based on low-level message passing as offered
by the underlying network

• Message passing between a pair of processes can
be supported by two message communication
operations: send and receive
• Communicate data (sequence of bytes) from sending

process to receiving process
• Synchronization of the two processes

10

Distributed SystemsSpring 2017

Characteristics of Interprocess
Communication

• Synchronous and asynchronous
• Destination of a message
• Reliability
• Ordering

11

Distributed SystemsSpring 2017

Synchronous and Asynchronous
Communication

• A queue is associated with each message destination
• Sending a message = adding message to remote queue
• Receiving message = removing message from local queue

• Synchronous: the sending and receiving processes
synchronize at every message (blocking send and receive)
• A sending process (thread) blocks until the message is received
• A receiving process (thread) blocks until a message arrive

• Asynchronous:
• The sending operation is non-blocking. Sender proceeds while

the message is being transmitted
• The receiving process (thread) can be either blocking or non-

blocking

12

Distributed SystemsSpring 2017

Message Destinations

• Messages are sent to (Internet address, local port)
pairs

• A port has exactly one receiver but can have many
senders (multicast ports are exception)

• Fixed location: client uses a fixed Internet address
to refer to a service, then the service has to always
run on the same computer

• Location transparency: Client programs refer to
services by name and use a name server to translate
their names into server locations at runtime

13

Distributed SystemsSpring 2017

Reliability

• Defines reliable communication in terms of
validity and integrity

• Validity: messages are guaranteed to be
delivered despite a ‘reasonable’ number of
packets being dropped or lost
• An unreliable if messages are not guaranteed

to be delivered in the face of even a single
packet dropped or lost

• Integrity: messages must arrive uncorrupted
and without duplication

14

Distributed SystemsSpring 2017

Ordering

• Some applications require that messages be
delivered in sender order

• These applications will consider it as a failure if
a sender messages are received out of order

15

Distributed SystemsSpring 2017

Outline
• Introduction to Middleware
• Introduction to Interprocess Communication
• External Data Representation
• Case Study: MPI

16

Distributed SystemsSpring 2017

External Data Representation

• Information is represented in a program as data
structures (e.g set of interconnected objects)

• Information in messages consists of sequence of
bytes

• Objective: data structures must be flattened before
transmission and rebuilt at arrival

• Challenges: representation of basic types:
• floating points
• big-endian vs little-endian
• character encoding

17

Distributed SystemsSpring 2017

Marshalling/Unmarshalling

• Possible solutions:
• Convert values to an external format before

transmission, then convert it to local format when
arrive at destination

• Values are transmitted in the sender’s format
• Marshalling is the process of taking a collection of data

items and assembling them into a form suitable for
transmission in a message

• Unmarshalling is the process of disassembling messages
on arrival to produce an equivalent collection of data
items at the destination

18

Distributed SystemsSpring 2017

Examples of External Data
Representation

• CORBA’s common data representation: external
representation for the structured and primitive
types. Uses and IDL (Interface Definition
Language)

• Java’s object serialization: flattening and
external data representation of any single
object or tree of objects (No IDL)

• XML or JSON (lightweight): defines a textual
format for representing structured data

• Google protocol buffers (lightweight)

19

Distributed SystemsSpring 2017

Outline
• Introduction to Middleware
• Introduction to Interprocess Communication
• External Data Representation
• Case Study: MPI

20

Distributed SystemsSpring 2017

Message Passing Interface (MPI)

• Used when performance is paramount, for
instance in high performance computing (HPC)

• Objective: portability through presenting a
standardized interface independent of the
operating system or programming language-
specific socket interface

• MPI is flexible
• Interface is available as a message-passing library

available for a variety of operating systems and
programming languages, including C++ and Fortran

21

Distributed SystemsSpring 2017

MPI vs. Sockets

Sockets MPI
Support only simple send and
receive primitives

Provide more variations of
send and receive operations
that handle advanced
features such as buffering
and synchronization

Designed for TCP/IP Suitable for other protocols
that are typically used for
HPC clusters. Example:
infiniband

22

Distributed SystemsSpring 2017

Point-to-Point Communication in MPI

• An MPI library buffer in both the sender and the
receiver is used to hold data in transit

23

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

Distributed SystemsSpring 2017

Blocking in MPI

• Blocking = ‘blocked until it is safe to return’
• application data has been copied into the MPI system

and hence is in transit or delivered
• application buffer can be reused (for example, for the

next send operation)
• Various interpretation of ‘safe to return’ are used:

• MPI_Ssend is the synchronous blocking send. Safety is
interpreted as delivered

• MPI_Bsend interprets safety as allocating and copying
data to the library buffer (in transit)

• MPI_Rsend interprets safety as the receiver is ready to
accept the message and hence can be removed from
library buffer (no handshake)

24

Distributed SystemsSpring 2017

Send Operations in MPI

25

Distributed SystemsSpring 2017

 
Thank You

26

