
Remote Invocation

CS432: Distributed Systems 
Spring 2017



Distributed SystemsSpring 2017

Reading

• Coulouris (5th Edition): 5.1, 5.3, 5.4, 5.5 
• Tanenbaum (2nd Edition): 4.2

2



Distributed SystemsSpring 2017

Middleware Layers

3

This 
Lecture 

Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design  Edn. 5   ©  Pearson Education 2012 



Distributed SystemsSpring 2017

Outline
• Introduction  
• Request-Reply Protocols 
• Remote Procedure Call 
• Remote Method Invocation 
• Case Study: Java RMI

4



Distributed SystemsSpring 2017

Communication Paradigms

• Interprocess Communication: refers to the relatively 
low-level support for communication between processes 
in distributed systems (e.g., message-passing primitives, 
direct access to the API offered by Internet protocols)  

• Remote invocation: represents the most common 
communication paradigm in distributed systems, 
covering a range of techniques based on a two-way 
exchange between communicating entities in a 
distributed system and resulting in the calling of a 
remote operation, procedure or method 

• Indirect communication: such as group communication, 
publish-subscribe, distributed shared memory

5



Distributed SystemsSpring 2017

Remote Invocation

• Request-reply protocols: a pattern imposed on an 
underlying message-passing service to support client-server 
computing 

• Remote procedure call:  
• Procedures in processes on remote computers can be called as if 

they are procedures in the local address space 
• RPC system hides aspects of distribution, including the encoding 

and decoding of parameters and results, and passing of messages 
• Supports client-server computing: servers offering a set of 

operations through a service interface and clients calling these 
operations 

• Offer access and location transparency 

• Remote method invocation: resembles remote procedure 
calls but in a world of distributed objects

6



Distributed SystemsSpring 2017

Outline
• Introduction  
• Request-Reply Protocols 
• Remote Procedure Call 
• Remote Method Invocation 
• Case Study: Java RMI

7



Distributed SystemsSpring 2017

Request-Reply Protocols

• It is designed to support the roles and message 
exchanges in typical client-server interactions 

• Synchronous: because the client process blocks 
until the reply arrives from the server 

• Reliable: because the reply from the server is 
effectively an acknowledgement to the client 

• Asynchronous communication is optional

8



Distributed SystemsSpring 2017

Request-Reply Communications

• Communication primitives: doOperation, 
getRequest, and sendReply

9



Distributed SystemsSpring 2017

Communication Primitives: doOperation

• public byte[] doOperation (RemoteRef s, int 
operationId, byte[] arguments) 
• Sends a request message to the remote server and returns 

the reply 
• Arguments: remote server, ID of the operation to be 

invoked, and the arguments of that operation 
• RemoteRef: represents references for remote servers 

including its IP address and port number 
• doOperation invokes receive to get a reply message, from 

which it extracts the result and returns it to the caller 
• doOperation is blocked until the server performs the 

requested operation and transmits a reply message to the 
client process

10



Distributed SystemsSpring 2017

Communication Primitives: getRequest 
and sendReply

• public byte[] getRequest () 
• Used by a server process to acquire service requests 

via server port 

• public void sendReply (byte[] reply, InetAddress 
clientHost, int clientPort) 
• Sends the reply message reply to the client at its 

Internet address and port 
• When the reply message is received by the client the 

original doOperation is unblocked and execution of 
the client program continues

11



Distributed SystemsSpring 2017

Failure Modes

• Timeout:  
• Return immediately indicating that request failed 
• Retry by sending the request repeatedly 

• Duplicate request messages: 
• The server recognizes successive messages (from the 

same client) with the same request identifier and 
filters out duplicates 

• If the reply was not sent before, the server sends it 
when it finishes 

• If reply was already sent: recompute the reply or 
return a duplicate reply from history

12



Distributed SystemsSpring 2017

Outline
• Introduction  
• Request-Reply Protocols 
• Remote Procedure Call 
• Remote Method Invocation 
• Case Study: Java RMI

13



Distributed SystemsSpring 2017

Remote Procedure Call

• Allowing programs to call procedures located on other 
machines.  
• When a process on machine A calls a procedure on machine 

B, the calling process on A is suspended, and execution of the 
called procedure takes place on B 

• Information can be transported from the caller to the callee 
in the parameters and can come back in the procedure result 

• The underlying RPC system hides important aspects of 
distribution:  
• The encoding and decoding of parameters and results 
• The passing of messages  
• The preserving of the required semantics for the procedure 

call
14



Distributed SystemsSpring 2017

Design Issues for RPC

• The style of programming promoted by RPC – 
programming with interfaces 

• The call semantics associated with RPC  
• The key issue of transparency and how it relates 

to remote procedure calls

15



Distributed SystemsSpring 2017

Programming with Interfaces

• Service interface refers to the specification of 
the procedures offered by a server, defining the 
types of the arguments of each of the procedures 

• Benefits to programming with interfaces 
• Focus on abstraction offered by the service and hide 

the implementation details 
• Managing heterogeneity in distributed systems. The 

programmer does not need to know programming 
language or underlying platform 

• Support for software evolution as long as interface 
does not change

16



Distributed SystemsSpring 2017

CORBA IDL Example

17



Distributed SystemsSpring 2017

RPC Call Semantics

• Options: 
• Retry request messages: retransmit the message until a 

reply is received or assume server failed? 
• Filtering duplicates: whether the server filters 

duplicates or not 
• Retransmission of results: keep a history of results at 

the server to avoid recomputing? 
• RPC supported invocation semantics: 

• Maybe semantics 
• At-least-once semantics 
• At-most-once semantics

18



Distributed SystemsSpring 2017

Maybe Semantics

• The remote procedure call may be executed 
once or not at all 

• No fault tolerance measures are applied and 
suffers from these failures: 
• Omission failures if the request or result message is 

lost: uncertain if the request or reply message is lots; 
uncertain if execution was performed at server  

• Crash failures when the server containing the remote 
operation fails (before or after execution) 

• Useful only for applications in which occasional failed 
calls are acceptable

19



Distributed SystemsSpring 2017

At-Least-Once Semantics

• The invoker receives either a result (the procedure 
was executed at least once) or an exception (no 
result was received) 

• Achieved by retransmission of request messages 
(masks omission failure) 

• Suffers from these failures: 
• Crash failures when the server containing the remote 

operation fails (before or after execution) 
• Arbitrary failures: re-execution at the server can cause 

wrong values to be stored or returned   
• Suitable for idempotent operations at the server

20



Distributed SystemsSpring 2017

At-Most-Once Semantics

• The caller receives either a result (procedure 
was executed exactly once) or an exception (no 
result was received — procedure was executed 
exactly once or not at all)  

• Omission, crash, and arbitrary failures are 
avoided 

21



Distributed SystemsSpring 2017

Summary of Fault Tolerance Measures

22



Distributed SystemsSpring 2017

Transparency

• Objective: remote procedure calls look like local procedure calls 
• Features: 

• Calls to marshalling and message-passing procedures are hidden from 
the caller 

• Retransmission of requests after timeout is transparent from the caller 

• Location and access transparency achieved 
• Differences: 

• Remote procedure calls are more vulnerable to failure than 
local ones 

• Latency of a remote procedure call is several orders of 
magnitude greater than that of a local one 

• Different style of parameter passing (no call by reference — 
no addresses as parameters)

23



Distributed SystemsSpring 2017

Outline
• Introduction  
• Request-Reply Protocols 
• Remote Procedure Call 
• Remote Method Invocation 
• Case Study: Java RMI

24



Distributed SystemsSpring 2017

Remote Method Invocation

• Similar to RPC, but extends to distributed objects 
• A calling object can invoke a method in a 

potentially remote object 
• Similarities 

• Support programming with interfaces 
• Offers range of call semantics: at-least-once, at-most-

once 
• Similar level of transparency 

• Differences 
• Object oriented programming 
• Object identity concept: all objects in an RMI-based 

system have unique object references, which can be 
passed as parameters

25



Distributed SystemsSpring 2017

Design Issues for RMI

• Object model:  
• Set of data and set of methods 
• Communication by invoking methods (passing 

arguments and receiving results)  
• Distributed objects 
• Distributed object model 
• Actions in a distributed object system

26



Distributed SystemsSpring 2017

Object Model

• Object references 
• To invoke a method in an object —>  object reference + method 

name + arguments 

• Interfaces 
• Example: Java interface (signatures of methods, no 

implementation) 

• Actions 
• The state of the receiver may be changed 
• A new object may be instantiated (e.g., constructor) 
• Further invocations on methods in other objects 

• Exceptions  
• Garbage collection (Java vs C++)

27



Distributed SystemsSpring 2017

Distributed Objects

• State of object: values of its instance variables 
• State of program: partitioned into parts, each 

represents an object 
• Architecture models: client/server, replicated 

objects, migration of objects 
• Possibility: copy object locally and directly access 

it if implementation available 
• Concurrent remote invocations to an object 

methods is possible —> responsibility of the object 
to protect its state (e.g. using synchronization)

28



Distributed SystemsSpring 2017

Distributed Object Models
• Each process has two types of objects: 
• Objects that can receive both local and remote 

invocations 
• Objects that can only receive local invocations 

• Note: method invocation between objects from 
different processes is considered remote 
invocation

29



Distributed SystemsSpring 2017

Distributed Object Models: Remote 
Object References

• Other objects can invoke the methods of a remote 
object if they have access to its remote object 
reference 

• A remote object reference is an identifier that can be 
used throughout a distributed system to refer to a 
particular unique remote object 

• Representation: 

• Remote object reference (1) used when invoking a 
remote object; (2) used as arguments and results of 
methods

30



Distributed SystemsSpring 2017

Distributed Object Models: Remote 
Interfaces

• Remote interfaces: Every remote object has a 
remote interface that specifies which of its 
methods can be invoked remotely 

• Objects in other processes can invoke only the 
methods that belong to its remote interface

31



Distributed SystemsSpring 2017

Actions in Distributed Object System

• Challenge: an action may result in further 
invocations on methods in other objects, which 
may be located in different processes or 
different computers  
• —> remote reference of the object must be 

available to the invoker 
• Methods that instantiate objects to be 

accessed by RMI

32



Distributed SystemsSpring 2017

Actions in Distributed Object System: 
Garbage Collection and Exceptions

• Garbage collection: 
• Goal: garbage collection of remote objects 
• Module that performs distributed garbage collection 

• Exceptions: 
• New issues to handle: Failures due to the invoked object 

being in a different process or computer from the invoker 
• Examples: remote object crashed or busy to reply, invocation or 

result message is lost  

• Remote method invocation should be able to raise 
exceptions such as timeouts that are due to distribution as 
well as those raised during the execution of the method 
invoked

33



Distributed SystemsSpring 2017

Implementation of RMI

• Object A invokes remote object B

34



Distributed SystemsSpring 2017

Implementation of RMI

• Communication Module

35



Distributed SystemsSpring 2017

Communication Module

• Two cooperating communication modules carry 
out the request-reply protocol 

• Contents of request and reply messages: 
message type, requestId, and the remote 
reference of the object to be invoked

36



Distributed SystemsSpring 2017

Implementation of RMI

• Remote Reference Module

37



Distributed SystemsSpring 2017

Remote Reference Module

• Responsible for translating between local and remote object 
references and for creating remote object references 

• Maintains a remote object table: 
• An entry for all the remote objects held by the process 
• An entry for each local proxy (discussed later) 

• Actions by the remote reference module: 
• When a remote object is to be passed as an argument or a 

result for the first time, create a remote object reference 
and add it to the table 

• When a remote object reference arrives in a request or reply 
message, it is inquired about the object. If not in the table, 
RMI software creates new proxy and is added to the table

38



Distributed SystemsSpring 2017

Implementation of RMI

• Servants: an instance of a class that provides 
the body of a remote object, handles remote 
requests, created when object is instantiated, 
garbage collected

39



Distributed SystemsSpring 2017

Implementation of RMI

• RMI Software

40



Distributed SystemsSpring 2017

RMI Software

• A layer of software between the application-level objects and 
the communication and remote reference modules 

• Proxy (at client): its role is to make remote method invocation 
transparent to clients by behaving like a local object to the 
invoker 

• Dispatcher (at server): receives request messages from the 
communication module and passes it to the correct method 
using the operationid 

• Skeleton: implements the methods in the remote interface 
• unmarshals the arguments in the request message 
• invokes the corresponding method in the servant 
• waits for the invocation to complete and then marshals the result 

(with any exceptions) to the sending proxy

41



Distributed SystemsSpring 2017

Distributed Garbage Collection
• Goal:  

• ensure that if a local or remote reference to an object is still held anywhere in 
a set of distributed objects, the object itself will continue to exist,  

• as soon as no object any longer holds a reference to it, the object will be 
collected and the memory it uses recovered 

• Steps: 
• Each server process maintains a set of the names of the processes that hold 

remote object references for each of its remote objects 
• When a client C first receives a remote reference to a particular remote 

object, B, it makes an addRef(B) invocation to the server of that remote object 
and then creates a proxy; the server adds C to B.holders 

• When a client C’s garbage collector notices that a proxy for remote object B is 
no longer reachable, it makes a removeRef(B) invocation to the corresponding 
server and then deletes the proxy; the server removes C from B.holders 

• When B.holders is empty, the server’s local garbage collector will reclaim the 
space occupied by B unless there are any local holders.

42



Distributed SystemsSpring 2017

 
Thank You

43


