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Reading

• Coulouris (5th Edition): 5.1, 5.3, 5.4, 5.5 
• Tanenbaum (2nd Edition): 4.2
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Middleware Layers
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Outline
• Introduction  
• Request-Reply Protocols 
• Remote Procedure Call 
• Remote Method Invocation 
• Case Study: Java RMI
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Communication Paradigms

• Interprocess Communication: refers to the relatively 
low-level support for communication between processes 
in distributed systems (e.g., message-passing primitives, 
direct access to the API offered by Internet protocols)  

• Remote invocation: represents the most common 
communication paradigm in distributed systems, 
covering a range of techniques based on a two-way 
exchange between communicating entities in a 
distributed system and resulting in the calling of a 
remote operation, procedure or method 

• Indirect communication: such as group communication, 
publish-subscribe, distributed shared memory
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Remote Invocation

• Request-reply protocols: a pattern imposed on an 
underlying message-passing service to support client-server 
computing 

• Remote procedure call:  
• Procedures in processes on remote computers can be called as if 

they are procedures in the local address space 
• RPC system hides aspects of distribution, including the encoding 

and decoding of parameters and results, and passing of messages 
• Supports client-server computing: servers offering a set of 

operations through a service interface and clients calling these 
operations 

• Offer access and location transparency 

• Remote method invocation: resembles remote procedure 
calls but in a world of distributed objects
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Request-Reply Protocols

• It is designed to support the roles and message 
exchanges in typical client-server interactions 

• Synchronous: because the client process blocks 
until the reply arrives from the server 

• Reliable: because the reply from the server is 
effectively an acknowledgement to the client 

• Asynchronous communication is optional
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Request-Reply Communications

• Communication primitives: doOperation, 
getRequest, and sendReply
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Communication Primitives: doOperation

• public byte[] doOperation (RemoteRef s, int 
operationId, byte[] arguments) 
• Sends a request message to the remote server and returns 

the reply 
• Arguments: remote server, ID of the operation to be 

invoked, and the arguments of that operation 
• RemoteRef: represents references for remote servers 

including its IP address and port number 
• doOperation invokes receive to get a reply message, from 

which it extracts the result and returns it to the caller 
• doOperation is blocked until the server performs the 

requested operation and transmits a reply message to the 
client process
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Communication Primitives: getRequest 
and sendReply

• public byte[] getRequest () 
• Used by a server process to acquire service requests 

via server port 

• public void sendReply (byte[] reply, InetAddress 
clientHost, int clientPort) 
• Sends the reply message reply to the client at its 

Internet address and port 
• When the reply message is received by the client the 

original doOperation is unblocked and execution of 
the client program continues

11



Distributed SystemsSpring 2017

Failure Modes

• Timeout:  
• Return immediately indicating that request failed 
• Retry by sending the request repeatedly 

• Duplicate request messages: 
• The server recognizes successive messages (from the 

same client) with the same request identifier and 
filters out duplicates 

• If the reply was not sent before, the server sends it 
when it finishes 

• If reply was already sent: recompute the reply or 
return a duplicate reply from history
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Remote Procedure Call

• Allowing programs to call procedures located on other 
machines.  
• When a process on machine A calls a procedure on machine 

B, the calling process on A is suspended, and execution of the 
called procedure takes place on B 

• Information can be transported from the caller to the callee 
in the parameters and can come back in the procedure result 

• The underlying RPC system hides important aspects of 
distribution:  
• The encoding and decoding of parameters and results 
• The passing of messages  
• The preserving of the required semantics for the procedure 

call
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Design Issues for RPC

• The style of programming promoted by RPC – 
programming with interfaces 

• The call semantics associated with RPC  
• The key issue of transparency and how it relates 

to remote procedure calls
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Programming with Interfaces

• Service interface refers to the specification of 
the procedures offered by a server, defining the 
types of the arguments of each of the procedures 

• Benefits to programming with interfaces 
• Focus on abstraction offered by the service and hide 

the implementation details 
• Managing heterogeneity in distributed systems. The 

programmer does not need to know programming 
language or underlying platform 

• Support for software evolution as long as interface 
does not change
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CORBA IDL Example
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RPC Call Semantics

• Options: 
• Retry request messages: retransmit the message until a 

reply is received or assume server failed? 
• Filtering duplicates: whether the server filters 

duplicates or not 
• Retransmission of results: keep a history of results at 

the server to avoid recomputing? 
• RPC supported invocation semantics: 

• Maybe semantics 
• At-least-once semantics 
• At-most-once semantics
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Maybe Semantics

• The remote procedure call may be executed 
once or not at all 

• No fault tolerance measures are applied and 
suffers from these failures: 
• Omission failures if the request or result message is 

lost: uncertain if the request or reply message is lots; 
uncertain if execution was performed at server  

• Crash failures when the server containing the remote 
operation fails (before or after execution) 

• Useful only for applications in which occasional failed 
calls are acceptable
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At-Least-Once Semantics

• The invoker receives either a result (the procedure 
was executed at least once) or an exception (no 
result was received) 

• Achieved by retransmission of request messages 
(masks omission failure) 

• Suffers from these failures: 
• Crash failures when the server containing the remote 

operation fails (before or after execution) 
• Arbitrary failures: re-execution at the server can cause 

wrong values to be stored or returned   
• Suitable for idempotent operations at the server
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At-Most-Once Semantics

• The caller receives either a result (procedure 
was executed exactly once) or an exception (no 
result was received — procedure was executed 
exactly once or not at all)  

• Omission, crash, and arbitrary failures are 
avoided 
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Summary of Fault Tolerance Measures
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Transparency

• Objective: remote procedure calls look like local procedure calls 
• Features: 

• Calls to marshalling and message-passing procedures are hidden from 
the caller 

• Retransmission of requests after timeout is transparent from the caller 

• Location and access transparency achieved 
• Differences: 

• Remote procedure calls are more vulnerable to failure than 
local ones 

• Latency of a remote procedure call is several orders of 
magnitude greater than that of a local one 

• Different style of parameter passing (no call by reference — 
no addresses as parameters)
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Remote Method Invocation

• Similar to RPC, but extends to distributed objects 
• A calling object can invoke a method in a 

potentially remote object 
• Similarities 

• Support programming with interfaces 
• Offers range of call semantics: at-least-once, at-most-

once 
• Similar level of transparency 

• Differences 
• Object oriented programming 
• Object identity concept: all objects in an RMI-based 

system have unique object references, which can be 
passed as parameters
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Design Issues for RMI

• Object model:  
• Set of data and set of methods 
• Communication by invoking methods (passing 

arguments and receiving results)  
• Distributed objects 
• Distributed object model 
• Actions in a distributed object system
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Object Model

• Object references 
• To invoke a method in an object —>  object reference + method 

name + arguments 

• Interfaces 
• Example: Java interface (signatures of methods, no 

implementation) 

• Actions 
• The state of the receiver may be changed 
• A new object may be instantiated (e.g., constructor) 
• Further invocations on methods in other objects 

• Exceptions  
• Garbage collection (Java vs C++)
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Distributed Objects

• State of object: values of its instance variables 
• State of program: partitioned into parts, each 

represents an object 
• Architecture models: client/server, replicated 

objects, migration of objects 
• Possibility: copy object locally and directly access 

it if implementation available 
• Concurrent remote invocations to an object 

methods is possible —> responsibility of the object 
to protect its state (e.g. using synchronization)
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Distributed Object Models
• Each process has two types of objects: 
• Objects that can receive both local and remote 

invocations 
• Objects that can only receive local invocations 

• Note: method invocation between objects from 
different processes is considered remote 
invocation
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Distributed Object Models: Remote 
Object References

• Other objects can invoke the methods of a remote 
object if they have access to its remote object 
reference 

• A remote object reference is an identifier that can be 
used throughout a distributed system to refer to a 
particular unique remote object 

• Representation: 

• Remote object reference (1) used when invoking a 
remote object; (2) used as arguments and results of 
methods
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Distributed Object Models: Remote 
Interfaces

• Remote interfaces: Every remote object has a 
remote interface that specifies which of its 
methods can be invoked remotely 

• Objects in other processes can invoke only the 
methods that belong to its remote interface
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Actions in Distributed Object System

• Challenge: an action may result in further 
invocations on methods in other objects, which 
may be located in different processes or 
different computers  
• —> remote reference of the object must be 

available to the invoker 
• Methods that instantiate objects to be 

accessed by RMI
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Actions in Distributed Object System: 
Garbage Collection and Exceptions

• Garbage collection: 
• Goal: garbage collection of remote objects 
• Module that performs distributed garbage collection 

• Exceptions: 
• New issues to handle: Failures due to the invoked object 

being in a different process or computer from the invoker 
• Examples: remote object crashed or busy to reply, invocation or 

result message is lost  

• Remote method invocation should be able to raise 
exceptions such as timeouts that are due to distribution as 
well as those raised during the execution of the method 
invoked
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Implementation of RMI

• Object A invokes remote object B
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Implementation of RMI

• Communication Module
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Communication Module

• Two cooperating communication modules carry 
out the request-reply protocol 

• Contents of request and reply messages: 
message type, requestId, and the remote 
reference of the object to be invoked
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Implementation of RMI

• Remote Reference Module

37



Distributed SystemsSpring 2017

Remote Reference Module

• Responsible for translating between local and remote object 
references and for creating remote object references 

• Maintains a remote object table: 
• An entry for all the remote objects held by the process 
• An entry for each local proxy (discussed later) 

• Actions by the remote reference module: 
• When a remote object is to be passed as an argument or a 

result for the first time, create a remote object reference 
and add it to the table 

• When a remote object reference arrives in a request or reply 
message, it is inquired about the object. If not in the table, 
RMI software creates new proxy and is added to the table
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Implementation of RMI

• Servants: an instance of a class that provides 
the body of a remote object, handles remote 
requests, created when object is instantiated, 
garbage collected
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Implementation of RMI

• RMI Software
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RMI Software

• A layer of software between the application-level objects and 
the communication and remote reference modules 

• Proxy (at client): its role is to make remote method invocation 
transparent to clients by behaving like a local object to the 
invoker 

• Dispatcher (at server): receives request messages from the 
communication module and passes it to the correct method 
using the operationid 

• Skeleton: implements the methods in the remote interface 
• unmarshals the arguments in the request message 
• invokes the corresponding method in the servant 
• waits for the invocation to complete and then marshals the result 

(with any exceptions) to the sending proxy
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Distributed Garbage Collection
• Goal:  

• ensure that if a local or remote reference to an object is still held anywhere in 
a set of distributed objects, the object itself will continue to exist,  

• as soon as no object any longer holds a reference to it, the object will be 
collected and the memory it uses recovered 

• Steps: 
• Each server process maintains a set of the names of the processes that hold 

remote object references for each of its remote objects 
• When a client C first receives a remote reference to a particular remote 

object, B, it makes an addRef(B) invocation to the server of that remote object 
and then creates a proxy; the server adds C to B.holders 

• When a client C’s garbage collector notices that a proxy for remote object B is 
no longer reachable, it makes a removeRef(B) invocation to the corresponding 
server and then deletes the proxy; the server removes C from B.holders 

• When B.holders is empty, the server’s local garbage collector will reclaim the 
space occupied by B unless there are any local holders.
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Thank You
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