
Distributed File Systems

CS432: Distributed Systems
Spring 2017

CS432: Distributed SystemsSpring 2017 CS432: Distributed Systems

Reading

• Chapter 12 (12.1-12.4) [Coulouris ’11]
• Chapter 11 [Tanenbaum ‘06]

• Section 4.3, “Modern Operating Systems, Fourth
Ed.”, Andrew S. Tanenbaum

• Section 11.4, “Operating Systems Concept,
Ninth Ed.”, Abraham Silberschatz, et al.

2

CS432: Distributed SystemsSpring 2017

Objectives

• Learn about the following:
• Review file systems and the main requirements for

designing a distributed file system
• Famous architecture models of distributed file

systems
• Study the design of three file systems NFS, AFS,

and GFS (done!)

3

CS432: Distributed SystemsSpring 2017

Outline

• Introduction
• Non-Distributed File System (Review)
• File System Mounting

• Distributed File System Requirements
• Architecture of Distributed File Service
• Case Studies:
• Sun Network File System (NFS)
• Andrew File System (AFS)
• Google File System (GFS)

4

CS432: Distributed SystemsSpring 2017

File Systems

• File systems, in centralized computer systems, provide
a convenient programming interface to disk storage
• blocks of disks ➔ files, directories, ..
• storage allocation and layout

• Components:
• Disk management: gathering disk blocks into files
• Naming: help users find files by their name instead of block

identifiers
• Security: layers of permissions to access and modify files
• Durability: data written to files should not be tampered

with in case of failures

5

CS432: Distributed SystemsSpring 2017

File Components

• A file contains:
• Data: sequence of data items that are accessible through read

and write operations

• Attributes: a single record containing information about the file
File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

Managed by the file
system
Users do not typically
update them

6

CS432: Distributed SystemsSpring 2017

Reading and Writing

• Reading from the file system (e.g. getc()):
• Fetch a block containing the required character
• Return the requested character from the block

• Writing to the file system (e.g. putc()):
• Modify existing data: fetch block, modify, and write.
• Append data: buffer data until a block size is

completed, then write

7

CS432: Distributed SystemsSpring 2017

Non-distributed File System Modules

• Each module depends only on the layers below it
• Note: the implementation of a distributed file service

also requires additional components to deal with:
client-server communication, distributed naming, and
location of files
Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering

8

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Unix File System Operations

9

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

File System Layout

• File systems are stored on disk.
• Disks are divided into one or more partitions,

independent file system on each partition.
• Master Boot Record (MBR)
• Sector 0 of the disk.
• Used to boot the computer.
• The end of the MBR contains the partition table.

10

CS432: Distributed SystemsSpring 2017

System Booting

• The partition table gives the starting and ending
addresses of each partition.

• One of the partitions in the table is marked as
active.

• When the computer is booted, the BIOS reads it
and executes the MBR.

• The MBR program locates the active partition,
read in its first block (boot block) and executes it.

• The program in the boot block loads the operating
system contained in that partition.

• Note: each partition starts with a boot block, even
if it does not contain a bootable operating system.

11

CS432: Distributed SystemsSpring 2017

Example: File System Layout

• Super block contains all the key parameters about the file system
• Read into memory when the computer is booted or the file system is

first touched.
• Typical information: magic number to identify the file system type,

the number of blocks in the file system, and other key administrative
information.

12

CS432: Distributed SystemsSpring 2017

Example: File System Layout

• Information about the free blocks in the file system.
• Example: bitmap, file pointers.

13

CS432: Distributed SystemsSpring 2017

Example: File System Layout

• I-node: a data structure used to represent information
about a file system object (file, directory)

14

CS432: Distributed SystemsSpring 2017 CS432: Distributed Systems

Example: File System Layout

• The top of the file-system tree

15

CS432: Distributed SystemsSpring 2017 CS432: Distributed Systems

Example: File System Layout

• Directories and files contained in this partition

16

CS432: Distributed SystemsSpring 2017 CS432: Distributed Systems

Implementing Files 
I-nodes

• Associate with each file a data
structure called an i-node
(index-node), which lists the
attributes and disk addresses
of the file’s blocks

• The i-node need to be in
memory only when the
corresponding file is open

17

CS432: Distributed SystemsSpring 2017

Implementing Directories

• The main function of the directory system is to
map the ASCII name of the file onto the
information needed to locate the data

• The directory entry provides the information
needed to find the disk blocks
• Number of the I-node

• Storing files attributes:
• Directly in the directory entry
• Store the attributes in the i-node. The directory

entry can be a file name and i-node number

18

CS432: Distributed SystemsSpring 2017

Implementing Directories: 
File Names

In-line In a heap
19

CS432: Distributed SystemsSpring 2017

File System Mounting

• Just as a file must be opened before it is used, a
file system must be mounted before it can be
available to processes on the system

• Mount point: the location within the file
structure where the file system is to be
attached
• Usually and empty directory

• Mounting procedure: OS is given the name of
the device and the mount point, once mounted,
it will be able to traverse its directory structure

• Example, mounting home directories in unix

20

CS432: Distributed SystemsSpring 2017

Mount Point Example

Existing file
system

Unmounted volume After mounting

21

CS432: Distributed SystemsSpring 2017

Outline

• Introduction.
• Distributed File System Requirements

• Transparency
• Concurrent File Updates
• File Replication
• Hardware and Operating System Heterogeneity
• Fault Tolerance
• Consistency
• Security
• Efficiency

• File Service Architecture
• Case Studies

22

CS432: Distributed SystemsSpring 2017

Distributed File Systems

• Distributed file systems allow multiple processes to share
data over long periods of time in a secure and reliable
way

• A well designed file service provides access to files
stored at a server with performance and reliability
similar to, and in some cases better than, files stored on
local disks

• A file service enables programs to store and access
remote files exactly as they do local ones, allowing users
to access their files from any computer (in an intranet)

• A client-server architecture is typically used

23

CS432: Distributed SystemsSpring 2017

File System vs. Distributed File System

File System Distributed File
System

Sharing ✗ ✓
Persistence ✓ ✓
Distributed cache/
replicas

✗ ✓

Consistency Strict-one-copy Weak guarantees

24

CS432: Distributed SystemsSpring 2017

Transparency

• Access transparency: Client programs should be unaware of
the distribution of files

• Location transparency: Client programs should see a uniform
file name space

• Mobility transparency: Neither client programs nor system
administration tables in client nodes need to be changed when
files are moved

• Performance transparency: Client programs should continue
to perform satisfactorily while the load on the service varies
within a specified range

• Scaling transparency: The service can be expanded by
incremental growth to deal with a wide range of loads and
network sizes

25

CS432: Distributed SystemsSpring 2017

Concurrent File Updates

• Concurrency Control
• Changes to a file by one client should not

interfere with the operation of other clients
simultaneously accessing or changing the same
file

• Levels of locking are required
• Techniques that provide concurrency control

have high costs

26

CS432: Distributed SystemsSpring 2017

Fault Tolerance

• The file service continues to operate in the face of
communication and server failures

• Coping with communication failures:
• At-most-once invocation semantics
• At-least-once invocation semantics with a server protocol

designed in terms of idempotent operations. This semantic
ensures that duplicated requests do not result in invalid
updates to files

• Stateless servers: servers can be restarted and the
service restored after a failure without needing to
recover previous state

• File replication is required

27

CS432: Distributed SystemsSpring 2017

File Replication

• Several copies of the same file at different
locations

• Advantages:
• Scalability of a service: multiple servers share the

load of providing a service to clients accessing the
same set of files

• Fault tolerance: clients are able to locate another
server that holds a copy of the file when one has failed

• Caching files (fully or partially) at clients can be
considered as a limited form of replication

28

CS432: Distributed SystemsSpring 2017

Hardware and Operating System
Heterogeneity

• Services allowing file access are accessible from
different operating systems and computers

• File system server can be deployed on any
operating systems or hardware

29

CS432: Distributed SystemsSpring 2017

Consistency

• One-copy update semantics (e.g. Unix):
• All of the processes accessing or updating a given file

see identical contents as if only a single copy of the
file existed

• When files are replicated or cached at different sites:
• Modifications are propagated to all of the other sites

that hold copies
• This causes inevitable delay ==> deviates from the

one-copy semantics

30

CS432: Distributed SystemsSpring 2017

Security

• Access control mechanism:
• Uses access control lists

• Authentication:
• Access control at the server is based on correct user

identities
• Encryption can be used to protect the contents

of request and reply messages

31

CS432: Distributed SystemsSpring 2017

Efficiency

• A distributed file service:
• Offers facilities that are of at least the same power

and generality as those found in conventional file
systems

• Achieve a comparable level of performance
• Trade-off:
• Scalability, reliability, availability, …
• Latency because of accessing remote files

32

CS432: Distributed SystemsSpring 2017

Outline

• Introduction
• Distributed File System Requirements
• File Service Architecture
• Case Studies:
• Sun Network File System (NFS)
• Andrew File System (AFS)
• Google File System (GFS)

33

CS432: Distributed SystemsSpring 2017 CS432: Distributed Systems

Distributed File System Access Models

Spring 2015 34

Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

The remote access model The upload/download model

CS432: Distributed SystemsSpring 2017

File Service Architecture

35

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Flat File Service

• Implements operations on files
• Unique file identifiers (UFIDs) are used to refer

to files. A UFID uniquely identifies a file in a
distributed file system

• RPC interface provides a comprehensive set of
operations for access to files

36

CS432: Distributed SystemsSpring 2017

Directory Service

• Provides a mapping between text names for
files and their UFIDs

• Provide the following services:
• Generate directories
• Add new file names to directories
• Obtain UFIDs from directories

• Can be considered as a client to the flat file
service

37

CS432: Distributed SystemsSpring 2017

Client Module

• A client module runs at each client
• Extends the operations of the flat file service and

the directory service under a single application
programming interface that is available to user-
level programs in client computers

• Holds information about the network locations of
the flat file server and directory server processes

• Can manage a cache of recently used file blocks
at the client

38

CS432: Distributed SystemsSpring 2017

Outline

• Introduction
• Distributed File System Requirements
• File Service Architecture
• Case Studies:
• Sun Network File System (NFS)
• Andrew File System (AFS)
• Google File System (GFS)

39

CS432: Distributed SystemsSpring 2017

Sun Network File System

40

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

NFS V3 Architecture

• NFS protocol: a set of remote procedure calls that
provide the means for clients to perform operations
on a remote file store

• NFS server module: resides in the kernel on each
computer that acts as an NFS server

• NFS client module: resides in the kernel on each
client computer

• NFS client module translates client requests
referring to remote files to NFS protocol operations
and then passes them to the NFS server module

41

Sun’s	RPC

CS432: Distributed SystemsSpring 2017

Access Transparency in NFS

• Virtual file system (VFS) is used at the client:
• Users can access local or remote files without

distinction
• VFS is part of the UNIX kernel

• Function of VFS:
• Keeps track of the file systems that are currently

available both locally and remotely
• Distinguishes between local and remote files
• Translates between the UNIX-independent file

identifiers used by NFS and the internal file identifiers
normally used in UNIX and other file systems

42

CS432: Distributed SystemsSpring 2017

File Identifiers (File Handles)
• A file handle is opaque to clients and contains whatever information

the server needs to distinguish an individual file
• Fields of the file handles:

• File system identifier: a unique number that is allocated to each file
system when it is created

• i-node: a number that identifies and locates the file within the file system

• i-node generation number: needed because i-node numbers are reused
after a file is removed

• VFS structure: for each mounted file system
• v-node: for each opened file

• Indicates whether the file is local or remote

• local —> reference to i-node
• remote —> the file handle of the remote file

43

CS432: Distributed SystemsSpring 2017

Client Integration

• The NFS client module is integrated into the
kernel:
• Files are accessed via UNIX system calls

• A shared cache of recently used blocks
• Same buffer cache is shared with local file system
• Consistency problem because of copies cached at

clients

• Encryption key used to authenticate user IDs
passed to the server is retained in the kernel

44

CS432: Distributed SystemsSpring 2017

Access Control and Authentication

• NFS server is stateless:
• it does not keep files open on behalf of its clients
• user’s identity is checked on each request

• Sun RPC calls are used to send requests to the NFS server
• User authentication information (user ID, group ID)
• Checked against the access permission in the file attributes

• Security loophole:
• Conventional RPC interface at a well-known port on each host
• Client can modify the RPC calls to include the user ID of any user
• Solution:

• DES encryption of the user’s authentication information

• Integration of Kerberos authentication protocol

45

CS432: Distributed SystemsSpring 2017

Communication via RPC

(a) Reading data from a file in NFS version 3.

(b) Reading data using a compound procedure in version 4. (RPCs can
be grouped into a single request)

46

CS432: Distributed SystemsSpring 2017

File System Mounting

• A mount service process at each NFS server
• The file /etc/exports provides names of local file systems that

can be remotely mounted
• Access list: hosts that are permitted to mount the file system
• Clients use a modified mount command: remote host’s name,

the pathname of a directory in the remote file system, and the
local name with which it is to be mounted

• Mount Protocol (RPC-based):
• Given a directory pathname, the file handle of the specified directory

is returned (permissions are checked)
• Location (IP address and port number) of the server and the file

handle for the remote directory are passed on to the VFS layer and
the NFS client

47

CS432: Distributed SystemsSpring 2017

Example of File System Mounting

Note: The file system mounted at /usr/students in the
client is actually the sub-tree located at /export/people in
Server 1; the file system mounted at /usr/staff in the
client is actually the sub-tree located at /nfs/users in
Server 2

48

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Example of File System Mounting

• Client mounts remote file system in its local file system
• Mount part of the remote file system

49

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Hard-Mounted vs. Soft-Mounted File
System

• Hard-Mounted:
• A user-level process accessing a file is suspended

until the request can be completed
• If server fails, user-level processes are suspended

until the server restarts (requests are retried)
• Programs are unable to recover gracefully when an

NFS server is unavailable for a significant period

• Soft-Mounted:
• NFS client module returns a failure indication to

user-level processes after a small number of retries

50

More	commonly	used

CS432: Distributed SystemsSpring 2017

Mounting Same Directory by Multiple
Clients

• Users do not share namespace
• Example: /remote/mbox at A is the same as /work/mbox at B
• Sol: standardization

51
Tanenbaum and	van	Steen,	Distributed	Systems:	Principles	 and	Paradigms.	Prentice-Hall,	Inc.	2002

CS432: Distributed SystemsSpring 2017

Mounting nested directories from multiple
servers in NFS

52
Tanenbaum and	van	Steen,	Distributed	Systems:	Principles	 and	Paradigms.	Prentice-Hall,	Inc.	2002

CS432: Distributed SystemsSpring 2017

Pathname Translation

• Unix use a step-by-step process to translate multi-
part file pathnames to i-node

• Directory name cannot be translated at server
• File name may cross a mounting point (directories

holding multiple mounted file systems)

• Translation process at the client:
• Pathnames are parsed
• Translation is done iteratively
• Each part of a name that refers to a remote-mounted

directory is translated to a file handle using a separate
lookup request to the remote server

53

CS432: Distributed SystemsSpring 2017

Automounting

Mount a remote directory dynamically whenever an ‘empty’
mount point is referenced by a client

54
Tanenbaum and	van	Steen,	Distributed	Systems:	Principles	 and	Paradigms.	Prentice-Hall,	Inc.	2002

CS432: Distributed SystemsSpring 2017

Automounting Procedure

• The automounter maintains a table of mount points
(pathnames) with a reference to one or more NFS
servers

• NFS client module attempting to resolve a pathname:
• NFS client passes to the local automounter a lookup()

request that locates the required file system in its table
and sends a ‘probe’ request to each server listed

• The file system on the first server to respond is then
mounted

• The mounted file system is linked to the mount point using
a symbolic link, so that accesses to it will not result in
further requests to the automounter

55

CS432: Distributed SystemsSpring 2017

Using Symbolic Links with Automounting

56

Tanenbaum and	van	Steen,	Distributed	Systems:	Principles	 and	Paradigms.	Prentice-Hall,	Inc.	2002

CS432: Distributed SystemsSpring 2017

Server Caching in NFS

• Caching in server and client is essential to achieve
performance

• Disk caching as in non-networked file systems
• Read operations: simple, no problems introduced
• Write operations: consistency problems
• Write- through caching:

• Store updated data in cache and written on disk before sending
reply to client

• Relatively inefficient if frequent write operations occur

• Write is persistent when commit operation is performed:
• Stored only in cache memory
• Write back to disk only when commit operation for file received

57

More	commonly	used

CS432: Distributed SystemsSpring 2017

Client Caching
• read , write, getattr, lookup and readdir operations are cached.
• Potential inconsistency: the data cached in client may not be

identical to the same data stored on the server.
• Timestamp-based scheme used in polling server about freshness

of a data object:
• Tc: time cache entry was last validated .
• Tmclient/server : time when block was last modified at the server as

recorded by client/ server .
• t: freshness interval.
• Freshness condition: at time T

[(T - Tc) < t] v [Tmclient= Tmserver] (validity condition)
• if (T - Tc) < t (can be determined without server access), then entry presumed

to be valid .
• if not (T - Tc) < t, then Tmserver needs to be obtained by a getattr call.
• if Tmclient = Tmserver , then entry presumed valid; update its Tc to current time,

else obtain data from server and update Tmclient
58

CS432: Distributed SystemsSpring 2017

Write Operation of Cached Data

• When a cached page is modified it is marked as ‘dirty’ and is
scheduled to be flushed to the server asynchronously

• Modified pages are flushed when the file is closed or a sync
occurs at the client

• Bio-daemons: perform read-ahead and delayed-write operations.
• Notified after each read request, and it requests the transfer of the

following file block from the server to the client cache
• In the case of writing, the bio-daemon sends a block to the server

whenever a block has been filled by a client operation
• Directory blocks are sent whenever a modification has occurred

• Bio-daemon processes improve performance:
• Client module does not block waiting for reads to return or writes to

commit at the server

59

CS432: Distributed SystemsSpring 2017

Outline

• Introduction
• Distributed File System Requirements
• File Service Architecture
• Case Studies:
• Sun Network File System (NFS)
• Andrew File System (AFS)
• Google File System (GFS)

60

CS432: Distributed SystemsSpring 2017

Andrew File System (AFS)

• Developed at Carnegie Mellon University (CMU) as
a joint work with IBM

• Compatible with NFS
• AFS servers hold ‘local’ UNIX files
• Local Files are referenced by NFS-style file

handles (rather than i-node numbers)
• Differences between AFS and NFS:

• Most important design goal of AFS is scalability
• Key strategy for scalability: caching of whole files at

client nodes

61

CS432: Distributed SystemsSpring 2017

AFS Design Characteristics

• Whole-file serving: The entire contents of
directories and files are transmitted to client
computers by AFS servers
• AFS-3: files larger than 64 kbytes are transferred in 64-

kbyte chunks

• Whole-file caching: file/chunk transferred to a
client is cached on local disk
• Most recent files are cached (even after the user close

them)
• The cache is permanent (survive reboots)
• Local copies are used whenever possible

62

CS432: Distributed SystemsSpring 2017

Observed Performance of AFS

• Locally cached copies of shared files that are
infrequently updated and files accessed by only a single
user remain valid for long periods of time

• Disk space is allocated for the cache (e.g., 100MB)
• Assumptions based on UNIX workloads:

• Files are small, less than 10 KB
• Read are more common than write operations (x 6)
• Sequential access is more common
• Most files are read and written by only one user. Shared files

are updated by one user
• Files are referenced in bursts. Recently referenced files have

high probability of being referenced again

63

CS432: Distributed SystemsSpring 2017

AFS Architecture

64

Note: Vice and Venus are Unix processes
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

File Name Space in AFS

65

System calls referring to shared name space are intercepted and passed
to Venus
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

Location transparency ??

CS432: Distributed SystemsSpring 2017

Callback Mechanism
• Callback promise: a token issued by the Vice server that is the

custodian of the file, guaranteeing that it will notify the Venus
process when any other client modifies the file

• States of callback promise: valid, cancelled
• Callback promise is assigned the “cancelled” state when a file

is changed at a workstation, and the vice issues a callback
• Callback promises in the cancelled state are fetched from the

Vice server
• Callback promises of cached files are checked after a restart

or recovery from a failure (timestamps are compared)
• Callback tokens are renewed when opening a file that was not

accessed for a time interval greater than T

66

CS432: Distributed SystemsSpring 2017

Implementation of File System Calls in
AFS

67

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

 
Thank You

68

