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Reading
• Chapter 14 (14.2,14.4,14.5) [Coulouris ’11] 
• Chapter 6 (6.1,6.2,6.3) [Tanenbaum ‘06]
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Outline
• Clocks 
• Logical Clocks 
• Global State 
• Mutual Exclusion 

3



CS432: Distributed SystemsSpring 2017

Time
• Time is an important and interesting issue in 

distributed systems 
• Measure accurately what time of day a particular event 

occurred at a particular computer 
• Many distributed systems algorithm rely on time / clock 

synchronization  

• Examples: 
• Mutual exclusion in a distributed system 
• Agree on the relative of ordering events  

• Our objective is to study: 
• Clocks, synchronizing them 
• Capture a global state of a system
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Clock — Centralized System
• In a centralized system, time is unambiguous 
• A process issues a system call to get the time 
• If process A gets time tA, then process B gets time tB. 

It is guaranteed that tB > tA 

• Why time is important?  
Take Unix Make as an example, a change to one 
source file only requires one file to be 
recompiled, not all the files  
• if time(input.c) > time(input.o) => re-compile 
• if time(input.c) <= time(input.o) => no compilation
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Clock — Distributed System

When each machine has its own clock, an event that 
occurred after another event may nevertheless be assigned 
an earlier time

6
Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002



CS432: Distributed SystemsSpring 2017

Physical Clocks
• All computers have a circuit for tracking time (timer) 

• Oscillates with a frequency to generate 60 interrupts a second 
(clock tick) 

• Counter register is updated each oscillation until it reaches 
zero, an interrupt is issued  

• The value is the counter register is reset by loading the value 
from another holding register 

• When the first first starts, user enters date and time, which is 
converted to number of ticks since another stored date in 
memory 

• Battery-backed CMOS RAM is used to store date and time 

• Challenge: it is impossible to guarantee that the crystals 
in different computers all run at exactly the same 
frequency (clock skew)
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Coordinating Universal Time
• Objective: clocks on different machines might not be 

exactly the same, but they should not deviate too much 
from real-time 

• Universal Coordinated Time UTC 
• Atomic clocks were invented 
• Various labs have multiple clocks and send it to BIH (Bureau 

International de l’Heure) in Paris  
• BIH averages them to produce the TAI (Temps Atomique 

International)  
•  Leap second is also introduced, it is inserted – or, more rarely, 

deleted – occasionally to keep it in step with astronomical time 

• Algorithms to synchronize clocks: Cristian’s method, 
Berkeley algorithm
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Outline
• Clocks 
• Logical Clocks 
• Global State 
• Mutual Exclusion 
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Logical Time and Logical Clocks
• Lamport [1978] 

• Since we cannot synchronize clocks perfectly across a 
distributed system, we cannot in general use physical time 
to find out the order of any arbitrary pair of events 
occurring within it 

• If two processes do not interact, it is not necessary that 
their clocks be synchronized because the lack of 
synchronization would not be observable and thus could not 
cause problems 

• Make example:  
• What counts is whether input.c is older or newer than 

input.o, not their absolute creation times 
• What matters is keeping track of each others events: 

input.o is updated
10
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Lamport’s Logical Clocks
• Happens-before relation: 
• If a and b are events in the same process, and a 

happens-before b, then a—>b is true  
• If a is the event of a message being sent by one 

process, and b is the event of the same message 
being received by another process, then a—>b is also 
true  

• If two events, a and b, happen in different processes 
that do not exchange messages , then a—>b is not 
true, but neither is b—>a. These events are said to 
be concurrent (a||b)  

• happens-before is transitive: a—>b and b—>c => a—>c  

11
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Lamport’s Algorithm
• Capturing happens-before relation  
• Each process pi has a local monotonically 

increasing counter, called its logical clock Li  
• Each event e that occurs at process pi is 

assigned a Lamport timestamp Li(e)  
• Rules:  
• Li is incremented before event e is issued at pi such 

that  Li := Li + 1  
• When pi sends message m, it adds t = Li: (m, t) [this 

is event send(m)]  
• On receiving (m, t), pj computes Lj := max(Lj, t); 

12
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Example 1

13

Events occurring at three processes

Lamport’s timestamps for the events
Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5   ©  Pearson Education 2012 
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Example 2

• Rules: 
• Between every two events, the clock must tick at least once  

• No two events occur at exactly the same time. If two events happen in 
processes 1 and 2, both with time 40, the former becomes 40.1 and the 
latter becomes 40.2 

14

Three processes, each with its own 
clock. Clocks run at different rates

Lamport's algorithm corrects the clocks
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Totally Ordered Multicast
• A database has been replicated across several sites 

• A query is always forwarded to the nearest copy 

• Updates must be carried out at each replica in the same order 
(consistent) 

• Solution: Totally ordered multicast: a multicast operation by 
which all messages are delivered in the same order to each 
receiver

15
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Lamport’s Solution for Totally 
Ordered Multicast

• When a process receives a message, it is put into a local 
queue, ordered according to its timestamp 

• The receiver multicasts an acknowledgment to the other 
processes 

• We follow Lamport's algorithm for adjusting local clocks, 
the timestamp of the received message is lower than 
the timestamp of the acknowledgment 

• All processes will eventually have the same copy of the 
local queue (provided no messages are removed)
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Vector Clocks
• Lamport’s clock guarantees: 
• If a —> b, then L(a) < L(b) 

• Shortcoming of Lamport's clock: 
• L(a) < L(b) does not imply a —> b 
• Does not capture causality 

• Solution: each process Pi maintains a vector VCi  
• VCi [i] is the number of events that have occurred so 

far at Pi (local logical clock) 

• If VCi [j] = k then Pi knows that k events have 
occurred at Pj (Pi's knowledge of the local time at Pj)
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Rules for Updating Vector 
Clocks

• VCi [j] = 0  for all i,j=1,2,…N 
• Before Pi executes an event it updates its vector 

clock VCi [i] := VCi [i]+1 
• When Pi sends a message to another process, it 

includes its entire vector clock VCi as t 
• When Pi receives a message with timestamp t, it 

updates its vector clock:  
VCi[j] := max(VCi[j],t[j]), for j = 1,2....,N 
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Revisiting Example 1

28

Events occurring at three processes

Vector clock timestamps for the events
Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5   ©  Pearson Education 2012 
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Comparing Vector Timestamps
• Equal time stamps (V = V‵) 
•  iff V[j] = V‵[j] for j = 1,2....,N  

• V ≤ V‵  
• iff V[j] ≤ V‵[j] for j = 1,2....,N  

• V < V‵  
• iff V ≤ V‵  and  V ≉ V‵ 

• Otherwise, V and V‵ are concurrent

29



CS432: Distributed SystemsSpring 2017

Outline
• Clocks 
• Logical Clocks 
• Global State 
• Mutual Exclusion 
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Distributed Garbage Collection

• An object is considered to be garbage if there are no 
longer any references to it in the distributed system 

• Example: note object in p2, we must include the state 
of communication channels
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Distributed Deadlock Detection

• Occurs when each of a collection of processes waits for 
another process to send it a message, and  

• a cycle in the graph of this ‘waits-for’ relationship
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Distributed Termination Detection

• Test whether each process has halted  
• A passive process is not engaged in any activity of its 

own but is prepared to respond with a value requested 
by the other ==> becomes active again
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Global State

• Global state =  
local states of each process + messages in transit
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Consistent Cuts
•    
• A finite prefix:  
• Global history: H = h0 ∪ h1 ∪ … ∪ hN –1 

• A cut of the system’s execution is a subset of its 
global history that is a union of prefixes of 
process histories: 

• A cut C is consistent if, for each event it 
contains, it also contains all the events that 
happened-before that event:  
• For all events e ∈ C , f → e ⇒ f ∈ C

35
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Example of Consistent Cut

36



CS432: Distributed SystemsSpring 2017

‘snapshot’ Algorithm of Chandy 
and Lamport

• Goal: record a set of process and channel states (a 
‘snapshot’) such that, even though the combination of 
recorded states may never have occurred at the same 
time, the recorded global state is consistent 

• Assumptions: 
• Neither channels nor processes fail 
• Channels are unidirectional and provide FIFO-ordered 

message delivery 
• The graph of processes and channels is strongly 

connected  
• Processes continue operation while snapshot

37
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Chandy and Lamport’s Algorithm
• Sender (Process p) 
• Record the state of (p) 
• For each outgoing channel (c) incident to (p), send a 

marker before sending ANY other messages 
• Receiver (Process q receives marker on channel c1) 
• If (q) has not yet recorded its state 

• Record the state of (q) 

• Record the state of (c1) as null 

• For each outgoing channel (c) incident to (q), send a marker 
before sending ANY other messages 

• If (q) has already recorded its state 
• Record the state of (c1) as all messages received since the 

last time the state of (q) was recorded
38
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Example

39

(a) Organization of a process and channels for any distributed snapshot

(b) Process Q receives a marker with regard to the first time as well as records 
it's local state 
(c) Q records all incoming information 
(d) Q receives a marker for its incoming channel as well as finishes recording 
the state from the incoming channel
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Outline
• Clocks 
• Logical Clocks 
• Global State 
• Mutual Exclusion 
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Distributed Mutual Exclusion
• In a distributed system with shared resources, 

mutual exclusion is required to prevent 
interference and ensure consistency when 
accessing the resources 

• Example: 
• Multiple processes (distributed) updating a file such 

as the case of NFS files (server stateless, locked is 
provided by Unix to handle requests from clients) 

• Ethernets and IEEE 802.11 wireless networks: only 
one node transmits at a time on the shared medium
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Requirements for Mutual 
Exclusion

• ME1 (Safety): At most one process may execute 
in the critical section (CS) at a time 

• ME2 (Liveness): Requests to enter and exit the 
critical section eventually succeed 

• ME3 (—> ordering): If one request to enter the 
CS happens-before another, then entry to the CS 
is granted in that order  

42
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Central Server Algorithm

• A server grants permission to enter the critical section 
• Server maintains queue of requests 
• To enter a critical section, a process sends a request 

message to server and waits for permission 
• After finishing, a process send a release lock to server

43

ME1 and ME2: guaranteed 
ME3: not guaranteed
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Ring-Based Algorithm

• Arrange processes in a logical ring 
• Requires only that each process pi has a communication 

channel to the next process in the ring, p(i+1)mod N 
• If a process does not require to enter the critical section 

when it receives the token —> forward the token to its 
next neighbour 

• A process requiring to enter critical section, wait until 
receive the token and retain it (1 - N messages) 

• To exit the critical section, the process sends the token 
on to its neighbour

44

ME1 and ME2: guaranteed 
ME3: not guaranteed
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Multicast and Logical Clocks 
Ricart and Agrawala

• Implement mutual exclusion between N peer 
processes using multicast 

• Idea:  
• Processes that require entry to a critical section 

multicast a request message, and  
• Can enter CS only when all the other processes have 

replied 

• Number of messages to enter CS: 2(N-1) 
• ME1, ME2, and ME3 are guaranteed
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Example

• P1 (t=41) and P2 (t=34) request entry to CS, 
concurrently. P3 does not want to enter CS 

• P3 replies to both P1 and P2 requests  
• When P2 receives P1 request, its own request has the 

lower timestamp and so does not reply — However, P1 
replies immediately 
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Thank You

47


