
Synchronization

CS432: Distributed Systems
Spring 2017

CS432: Distributed SystemsSpring 2017

Reading
• Chapter 14 (14.2,14.4,14.5) [Coulouris ’11]
• Chapter 6 (6.1,6.2,6.3) [Tanenbaum ‘06]

2

CS432: Distributed SystemsSpring 2017

Outline
• Clocks
• Logical Clocks
• Global State
• Mutual Exclusion

3

CS432: Distributed SystemsSpring 2017

Time
• Time is an important and interesting issue in

distributed systems
• Measure accurately what time of day a particular event

occurred at a particular computer
• Many distributed systems algorithm rely on time / clock

synchronization

• Examples:
• Mutual exclusion in a distributed system
• Agree on the relative of ordering events

• Our objective is to study:
• Clocks, synchronizing them
• Capture a global state of a system

4

CS432: Distributed SystemsSpring 2017

Clock — Centralized System
• In a centralized system, time is unambiguous
• A process issues a system call to get the time
• If process A gets time tA, then process B gets time tB.

It is guaranteed that tB > tA

• Why time is important?
Take Unix Make as an example, a change to one
source file only requires one file to be
recompiled, not all the files
• if time(input.c) > time(input.o) => re-compile
• if time(input.c) <= time(input.o) => no compilation

5

CS432: Distributed SystemsSpring 2017

Clock — Distributed System

When each machine has its own clock, an event that
occurred after another event may nevertheless be assigned
an earlier time

6
Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms. Prentice-Hall, Inc. 2002

CS432: Distributed SystemsSpring 2017

Physical Clocks
• All computers have a circuit for tracking time (timer)

• Oscillates with a frequency to generate 60 interrupts a second
(clock tick)

• Counter register is updated each oscillation until it reaches
zero, an interrupt is issued

• The value is the counter register is reset by loading the value
from another holding register

• When the first first starts, user enters date and time, which is
converted to number of ticks since another stored date in
memory

• Battery-backed CMOS RAM is used to store date and time

• Challenge: it is impossible to guarantee that the crystals
in different computers all run at exactly the same
frequency (clock skew)

7

CS432: Distributed SystemsSpring 2017

Coordinating Universal Time
• Objective: clocks on different machines might not be

exactly the same, but they should not deviate too much
from real-time

• Universal Coordinated Time UTC
• Atomic clocks were invented
• Various labs have multiple clocks and send it to BIH (Bureau

International de l’Heure) in Paris
• BIH averages them to produce the TAI (Temps Atomique

International)
• Leap second is also introduced, it is inserted – or, more rarely,

deleted – occasionally to keep it in step with astronomical time

• Algorithms to synchronize clocks: Cristian’s method,
Berkeley algorithm

8

CS432: Distributed SystemsSpring 2017

Outline
• Clocks
• Logical Clocks
• Global State
• Mutual Exclusion

9

CS432: Distributed SystemsSpring 2017

Logical Time and Logical Clocks
• Lamport [1978]

• Since we cannot synchronize clocks perfectly across a
distributed system, we cannot in general use physical time
to find out the order of any arbitrary pair of events
occurring within it

• If two processes do not interact, it is not necessary that
their clocks be synchronized because the lack of
synchronization would not be observable and thus could not
cause problems

• Make example:
• What counts is whether input.c is older or newer than

input.o, not their absolute creation times
• What matters is keeping track of each others events:

input.o is updated
10

CS432: Distributed SystemsSpring 2017

Lamport’s Logical Clocks
• Happens-before relation:
• If a and b are events in the same process, and a

happens-before b, then a—>b is true
• If a is the event of a message being sent by one

process, and b is the event of the same message
being received by another process, then a—>b is also
true

• If two events, a and b, happen in different processes
that do not exchange messages , then a—>b is not
true, but neither is b—>a. These events are said to
be concurrent (a||b)

• happens-before is transitive: a—>b and b—>c => a—>c

11

Credit: UW Lecture Notes

CS432: Distributed SystemsSpring 2017

Lamport’s Algorithm
• Capturing happens-before relation
• Each process pi has a local monotonically

increasing counter, called its logical clock Li
• Each event e that occurs at process pi is

assigned a Lamport timestamp Li(e)
• Rules:
• Li is incremented before event e is issued at pi such

that Li := Li + 1
• When pi sends message m, it adds t = Li: (m, t) [this

is event send(m)]
• On receiving (m, t), pj computes Lj := max(Lj, t);

12

Credit: UW Lecture Notes

CS432: Distributed SystemsSpring 2017

Example 1

13

Events occurring at three processes

Lamport’s timestamps for the events
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Example 2

• Rules:
• Between every two events, the clock must tick at least once

• No two events occur at exactly the same time. If two events happen in
processes 1 and 2, both with time 40, the former becomes 40.1 and the
latter becomes 40.2

14

Three processes, each with its own
clock. Clocks run at different rates

Lamport's algorithm corrects the clocks

CS432: Distributed SystemsSpring 2017

Totally Ordered Multicast
• A database has been replicated across several sites

• A query is always forwarded to the nearest copy

• Updates must be carried out at each replica in the same order
(consistent)

• Solution: Totally ordered multicast: a multicast operation by
which all messages are delivered in the same order to each
receiver

15

CS432: Distributed SystemsSpring 2017

Lamport’s Solution for Totally
Ordered Multicast

• When a process receives a message, it is put into a local
queue, ordered according to its timestamp

• The receiver multicasts an acknowledgment to the other
processes

• We follow Lamport's algorithm for adjusting local clocks,
the timestamp of the received message is lower than
the timestamp of the acknowledgment

• All processes will eventually have the same copy of the
local queue (provided no messages are removed)

16

CS432: Distributed SystemsSpring 2017 17
Credit: UW Lecture Notes

CS432: Distributed SystemsSpring 2017 18
Credit: UW Lecture Notes

CS432: Distributed SystemsSpring 2017 19
Credit: UW Lecture Notes

CS432: Distributed SystemsSpring 2017 20
Credit: UW Lecture Notes

CS432: Distributed SystemsSpring 2017 21
Credit: UW Lecture Notes

CS432: Distributed SystemsSpring 2017 22
Credit: UW Lecture Notes

CS432: Distributed SystemsSpring 2017 23
Credit: UW Lecture Notes

CS432: Distributed SystemsSpring 2017 24
Credit: UW Lecture Notes

CS432: Distributed SystemsSpring 2017 25
Credit: UW Lecture Notes

CS432: Distributed SystemsSpring 2017

Vector Clocks
• Lamport’s clock guarantees:
• If a —> b, then L(a) < L(b)

• Shortcoming of Lamport's clock:
• L(a) < L(b) does not imply a —> b
• Does not capture causality

• Solution: each process Pi maintains a vector VCi
• VCi [i] is the number of events that have occurred so

far at Pi (local logical clock)

• If VCi [j] = k then Pi knows that k events have
occurred at Pj (Pi's knowledge of the local time at Pj)

26

CS432: Distributed SystemsSpring 2017

Rules for Updating Vector
Clocks

• VCi [j] = 0 for all i,j=1,2,…N
• Before Pi executes an event it updates its vector

clock VCi [i] := VCi [i]+1
• When Pi sends a message to another process, it

includes its entire vector clock VCi as t
• When Pi receives a message with timestamp t, it

updates its vector clock:
VCi[j] := max(VCi[j],t[j]), for j = 1,2....,N

27

CS432: Distributed SystemsSpring 2017

Revisiting Example 1

28

Events occurring at three processes

Vector clock timestamps for the events
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Comparing Vector Timestamps
• Equal time stamps (V = V‵)
• iff V[j] = V‵[j] for j = 1,2....,N

• V ≤ V‵
• iff V[j] ≤ V‵[j] for j = 1,2....,N

• V < V‵
• iff V ≤ V‵ and V ≉ V‵

• Otherwise, V and V‵ are concurrent

29

CS432: Distributed SystemsSpring 2017

Outline
• Clocks
• Logical Clocks
• Global State
• Mutual Exclusion

30

CS432: Distributed SystemsSpring 2017

Distributed Garbage Collection

• An object is considered to be garbage if there are no
longer any references to it in the distributed system

• Example: note object in p2, we must include the state
of communication channels

31

CS432: Distributed SystemsSpring 2017

Distributed Deadlock Detection

• Occurs when each of a collection of processes waits for
another process to send it a message, and

• a cycle in the graph of this ‘waits-for’ relationship

32

CS432: Distributed SystemsSpring 2017

Distributed Termination Detection

• Test whether each process has halted
• A passive process is not engaged in any activity of its

own but is prepared to respond with a value requested
by the other ==> becomes active again

33

CS432: Distributed SystemsSpring 2017

Global State

• Global state =
local states of each process + messages in transit

34

CS432: Distributed SystemsSpring 2017

Consistent Cuts
•
• A finite prefix:
• Global history: H = h0 ∪ h1 ∪ … ∪ hN –1

• A cut of the system’s execution is a subset of its
global history that is a union of prefixes of
process histories:

• A cut C is consistent if, for each event it
contains, it also contains all the events that
happened-before that event:
• For all events e ∈ C , f → e ⇒ f ∈ C

35

CS432: Distributed SystemsSpring 2017

Example of Consistent Cut

36

CS432: Distributed SystemsSpring 2017

‘snapshot’ Algorithm of Chandy
and Lamport

• Goal: record a set of process and channel states (a
‘snapshot’) such that, even though the combination of
recorded states may never have occurred at the same
time, the recorded global state is consistent

• Assumptions:
• Neither channels nor processes fail
• Channels are unidirectional and provide FIFO-ordered

message delivery
• The graph of processes and channels is strongly

connected
• Processes continue operation while snapshot

37

CS432: Distributed SystemsSpring 2017

Chandy and Lamport’s Algorithm
• Sender (Process p)
• Record the state of (p)
• For each outgoing channel (c) incident to (p), send a

marker before sending ANY other messages
• Receiver (Process q receives marker on channel c1)
• If (q) has not yet recorded its state

• Record the state of (q)

• Record the state of (c1) as null

• For each outgoing channel (c) incident to (q), send a marker
before sending ANY other messages

• If (q) has already recorded its state
• Record the state of (c1) as all messages received since the

last time the state of (q) was recorded
38

Credit: VT Lecture Notes

CS432: Distributed SystemsSpring 2017

Example

39

(a) Organization of a process and channels for any distributed snapshot

(b) Process Q receives a marker with regard to the first time as well as records
it's local state
(c) Q records all incoming information
(d) Q receives a marker for its incoming channel as well as finishes recording
the state from the incoming channel

CS432: Distributed SystemsSpring 2017

Outline
• Clocks
• Logical Clocks
• Global State
• Mutual Exclusion

40

CS432: Distributed SystemsSpring 2017

Distributed Mutual Exclusion
• In a distributed system with shared resources,

mutual exclusion is required to prevent
interference and ensure consistency when
accessing the resources

• Example:
• Multiple processes (distributed) updating a file such

as the case of NFS files (server stateless, locked is
provided by Unix to handle requests from clients)

• Ethernets and IEEE 802.11 wireless networks: only
one node transmits at a time on the shared medium

41

CS432: Distributed SystemsSpring 2017

Requirements for Mutual
Exclusion

• ME1 (Safety): At most one process may execute
in the critical section (CS) at a time

• ME2 (Liveness): Requests to enter and exit the
critical section eventually succeed

• ME3 (—> ordering): If one request to enter the
CS happens-before another, then entry to the CS
is granted in that order

42

CS432: Distributed SystemsSpring 2017

Central Server Algorithm

• A server grants permission to enter the critical section
• Server maintains queue of requests
• To enter a critical section, a process sends a request

message to server and waits for permission
• After finishing, a process send a release lock to server

43

ME1 and ME2: guaranteed
ME3: not guaranteed

CS432: Distributed SystemsSpring 2017

Ring-Based Algorithm

• Arrange processes in a logical ring
• Requires only that each process pi has a communication

channel to the next process in the ring, p(i+1)mod N
• If a process does not require to enter the critical section

when it receives the token —> forward the token to its
next neighbour

• A process requiring to enter critical section, wait until
receive the token and retain it (1 - N messages)

• To exit the critical section, the process sends the token
on to its neighbour

44

ME1 and ME2: guaranteed
ME3: not guaranteed

CS432: Distributed SystemsSpring 2017

Multicast and Logical Clocks
Ricart and Agrawala

• Implement mutual exclusion between N peer
processes using multicast

• Idea:
• Processes that require entry to a critical section

multicast a request message, and
• Can enter CS only when all the other processes have

replied

• Number of messages to enter CS: 2(N-1)
• ME1, ME2, and ME3 are guaranteed

45

CS432: Distributed SystemsSpring 2017

Example

• P1 (t=41) and P2 (t=34) request entry to CS,
concurrently. P3 does not want to enter CS

• P3 replies to both P1 and P2 requests
• When P2 receives P1 request, its own request has the

lower timestamp and so does not reply — However, P1
replies immediately

46

CS432: Distributed SystemsSpring 2017

 
Thank You

47

