
Transactions and Concurrency
Control

CS432: Distributed Systems
Spring 2017

CS432: Distributed SystemsSpring 2017

Reading
• Chapter 16, 17 (17.2,17.4,17.5) [Coulouris ’11]
• Chapter 12 [Ozsu ’10]

2

CS432: Distributed SystemsSpring 2017

Objectives
• Learn about the following:
• Transactions in distributed systems
• Techniques that guarantees concurrency control

3

CS432: Distributed SystemsSpring 2017

Outline
• Introduction
• Transactions
• Concurrency Control
• Two Phase Locking
• Timestamp Ordering

• Distributed Commit and Recovery and Termination

4

CS432: Distributed SystemsSpring 2017

Introduction
• Distributed machines cooperating / collaborating

together are required to synchronize with each other
• Synchronization using clocks:

• Physical clocks (actual time)
• Finding a relative order of events (logical time)

• Global states: finding out whether a particular property
is true of a distributed system as it executes. Example:
detecting deadlock

• Election algorithms to find a coordinator for the
distributed system

• Sharing in distributed systems and the necessity for
mutual exclusion

5

CS432: Distributed SystemsSpring 2017

Transactions and Concurrency Control

• In a system that has shared objects that are managed
by servers and accessed by multiple clients,
concurrency control is required

• Transaction: a sequence of server operations that is
guaranteed by the server to be atomic in the presence
of multiple clients and server crashes
(A: Atomicity, C: Consistency, I: Isolation, D: Durability)

• Concurrency control: it deals with the isolation and
consistency properties of transactions
• Isolation: each transaction sees a consistent view of the shared

data at all times
• Consistency of transactions (correctness): a transaction maps

from a consistent state to another consistent state

6

CS432: Distributed SystemsSpring 2017

Outline
• Introduction
• Transactions
• Centralized Transactions
• Principles of Transactions
• Flat and Nested Transactions
• Distributed Transactions

• Concurrency Control
• Two Phase Locking
• Timestamp Ordering

• Distributed Commit and Recovery and Termination

7

CS432: Distributed SystemsSpring 2017

Transactions
A transaction is a collection of actions that make
consistent transformations of system states while
preserving system consistency

• concurrency transparency
• failure transparency

8

Database in a
consistent
state

Database may be
temporarily in an
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

Database in a
consistent
state

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Example: Atomic Operations

9

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Centralized Transaction Execution

Begin_Transaction,
Read, Write, Abort, EOT

Results &
User Notifications

Scheduled
Operations Results

Results

…

Read, Write,
Abort, EOT

User
Application

User
Application

Transaction
Manager

(TM)

Scheduler
(SC)

Recovery
Manager

(RM)

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

responsible for coordinating the
execution of the database
operations on behalf of the apps

implements a specific
concurrency control algorithm
for synchronizing access to the
database

10

CS432: Distributed SystemsSpring 2017

Principles of Transactions
ATOMICITY
• All or nothing
• In case of failures, partial results are undone
• Transaction recovery and crash recovery

CONSISTENCY
• No violation of integrity constraints (correctness)

ISOLATION
• Concurrent changes invisible ⇒ serializable

DURABILITY
• Committed updates persist
• Database recovery

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010
11

CS432: Distributed SystemsSpring 2017

Example
• Transactions are created and managed by a

coordinator (TM)
• Operations in a coordinator interface:

12

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Lost Update Problem
• Accounts A, B, and C with initial balances equal $100,

$200, and $300, respectively

13

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Example Serial Order

14

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Inconsistent Retrieval Problem

15

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Example Serial Order

16

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Transaction Structure
• Flat transaction

• Consists of a sequence of primitive operations embraced
between a begin and end markers

Begin_transaction Reservation
…

end
• Nested transaction

• The operations of a transaction may themselves be transactions
Begin_transaction Reservation

Begin_transaction Airline
 …

end {Airline}
Begin_transaction Hotel

…
end {Hotel}

end {Reservation}
Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

17

CS432: Distributed SystemsSpring 2017

Nested Transactions
• Have the same properties as their parents and may

themselves have other nested transactions
• Introduces concurrency control and recovery concepts

to within the transaction
• Types

• Closed nesting
• Sub-transactions begin after their parents and finish before

them
• Committing of a sub-transaction is conditional upon the

committing of the parent

• Open nesting
• Sub-transactions can execute and commit independently

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010
18

CS432: Distributed SystemsSpring 2017

Nested Transactions Example

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5  
© Pearson Education 2012

Note: all transactions and sub-transactions are run on a single server

19

•Accessing common objects by sub-transactions is
serialized
•Aborting sub-transactions can reflect the top transactions

CS432: Distributed SystemsSpring 2017

Distributed Transactions
• A client transaction becomes distributed if it invokes

operations in several different servers
• Distributed transactions structure:

• Flat:
• A client makes requests to more than one server
• For example to access objects that are available on multiple

severs
• Requests are executed sequentially

• Nested:
• Top-level transaction can open sub-transactions, and each

sub-transaction can open further sub-transactions down to
any depth of nesting

• Transactions and sub-transactions can run concurrently on
different servers

20

CS432: Distributed SystemsSpring 2017
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

Distributed transactions Example
(a) Flat transaction (b) Nested transactions

Client

X

Y

Z

X

Y

M

NT1

T2

T11

Client

P

T
T
12

T
21

T
22

T

T

21

sequential concurrent

CS432: Distributed SystemsSpring 2017

Distributed Transaction Execution

Begin_transaction,
Read, Write, EOT,
Abort

User application

Results &
User notifications

Read, Write,
EOT, Abort

TM

SC

RM

SC

RM

TM

Local
Recovery
Protocol

Distributed
Concurrency Control

Protocol

Replica Control
Protocol

Distributed
Transaction Execution

Model

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

coordinator

22

CS432: Distributed SystemsSpring 2017

Outline
• Introduction
• Transactions
• Concurrency Control
• Two Phase Locking
• Timestamp Ordering

• Distributed Commit and Recovery and Termination

23

CS432: Distributed SystemsSpring 2017

Concurrency Control
• The problem of synchronizing concurrent transactions

such that the consistency of the database is maintained
while, at the same time, maximum degree of
concurrency is achieved

• Concurrency Control Algorithms:
• Two-Phase Locking-based (2PL)

• Centralized (primary site) 2PL
• Distributed 2PL

• Timestamp Ordering (TO)
• Basic TO
• Multiversion TO

• Optimistic Concurrency Control

24

Pessimistic
concurrency control

CS432: Distributed SystemsSpring 2017

Locking-Based Algorithms
• Transactions indicate their intentions by requesting

locks from the scheduler (called lock manager)
• Locks are either read lock (rl) [also called shared lock]

or write lock (wl) [also called exclusive lock]
• Read locks and write locks conflict (because Read and

Write operations are incompatible)
 rl wl
 rl yes no
 wl no no

• Locking works nicely to allow concurrent processing of
transactions

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010
25

CS432: Distributed SystemsSpring 2017

Two-Phase Locking (2PL)
1. A Transaction locks an object before using it
2. When an object is locked by another transaction, the

requesting transaction must wait
3. When a transaction releases a lock, it may not request

another lock

Obtain lock

Release lock

Lock point

Phase 1 Phase 2
BEGIN END

N
o.

 o
f l

oc
ks

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010
26

CS432: Distributed SystemsSpring 2017

Strict 2PL
Hold locks until the end

Obtain lock

Release lock

BEGIN END
Transaction
duration

period of
data item
use

N
o.

 o
f l

oc
ks

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

Note: Locking-based algorithms may cause deadlocks since they allow
exclusive access to resources

27

CS432: Distributed SystemsSpring 2017

Locking Rules for Nested Transactions
• First Objective: each set of nested transactions is a

single entity that must be prevented from observing the
partial effects of any other set of nested transactions

• Rules:
• Every lock that is acquired by a successful sub-transaction is

inherited by its parent when it completes
• Inherited locks are also inherited by ancestors (inheritance

passes from child to parent)

• Reasoning: ensures that the locks can be held until the
top-level transaction has committed or aborted, which
prevents members of different sets of nested
transactions observing one another’s partial effects

28

CS432: Distributed SystemsSpring 2017

Locking Rules for Nested Transactions
• Second objective: each transaction within a set of

nested transactions must be prevented from observing
the partial effects of the other transactions in the set

• Rules:
• Parent transactions are not allowed to run concurrently with

their child transactions. If a parent transaction has a lock on an
object, it retains the lock during the time that its child
transaction is executing. This means that the child transaction
temporarily acquires the lock from its parent for its duration

• Sub-transactions at the same level are allowed to run
concurrently, so when they access the same objects, the
locking scheme must serialize their access

29

CS432: Distributed SystemsSpring 2017

Rules: Lock Acquisition and Release
• For a sub-transaction to acquire a read lock on an

object, no other active transaction can have a write
lock on that object, and the only retainers of a write
lock are its ancestors

• For a sub-transaction to acquire a write lock on an
object, no other active transaction can have a read or
write lock on that object, and the only retainers of read
and write locks on that object are its ancestors

• When a sub-transaction commits, its locks are inherited
by its parent, allowing the parent to retain the locks in
the same mode as the child

• When a sub-transaction aborts, its locks are discarded.
If the parent already have the locks, it keeps them

30

CS432: Distributed SystemsSpring 2017

• T1, T2, and T11 access common object, which is not accessed by top
transaction T

• T1 acquire lock

• T11 gets the lock from T1 during each execution and returns it when
it completes

• When T1 completes, T inherits the lock and keeps it until all sub-
transactions complete

• T2 can acquire the lock from T during the period of its execution

31

Example

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Centralized 2PL
• There is only one 2PL scheduler in the distributed system
• Lock requests are issued to the central scheduler

Data Processors at
 participating sites Coordinating TM Central Site LM

Lock Request

Lock Granted

Operation

End of Operation

Release Locks
Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

32

CS432: Distributed SystemsSpring 2017

Distributed Transaction Execution

Begin_transaction,
Read, Write, EOT,
Abort

User application

Results &
User notifications

Read, Write,
EOT, Abort

TM

SC

RM

SC

RM

TM

Local
Recovery
Protocol

Distributed
Concurrency Control

Protocol

Replica Control
Protocol

Distributed
Transaction Execution

Model

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

coordinator

33

CS432: Distributed SystemsSpring 2017

Distributed 2PL
• 2PL schedulers are placed at each site. Each scheduler handles lock

requests for data at that site
• A transaction may read any of the replicated copies of item x

Writing x requires obtaining write locks for all copies of x

Coordinating TM Participating LMs Participating DPs

Lock Request
Operation

End of Operation

Release Locks

Instructor’s Guide for M.T. Ozsu and P.Valduriez,
Principles of Distributed Database Systems, Third

Edition. © Springer 2010

(all)

Note: coordinating
transaction manager
does not wait for a
“lock request
granted” message

34

CS432: Distributed SystemsSpring 2017

Deadlocks

• Deadlock is a state in which each member of a group of
transactions is waiting for some other member to
release a lock

• A wait-for graph can be used to represent the waiting
relationships between current transactions

35

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Wait-For Graph
• Nodes represent transactions and the edges represent

wait-for relationships between transactions
• There is an edge from node T to U when transaction T is

waiting for transaction U to release a lock
• All transactions in a cycle are blocked waiting for locks
• None of the locks are released until a transaction is

aborted and hence releases its locks
• A transaction can be involved in more than one cycle

36

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Solution for Deadlocks?
• Prevention:

• Lock all needed object at start ==> reduces concurrency,
sometimes hard to predict locks that will be needed at start

• Predefined order for acquiring locks ==> premature locking and
a reduction in concurrency

• Upgrade Locks: introduce an upgrade lock for the cases
of transactions that acquire a read lock and then
upgrade it to write lock (most cases of deadlock)

• Detection: for example using wait-for graph, when
detected, select a transaction to abort

• Timeout: a lock becomes vulnerable after a period of
time, if a transaction request it, abort the transaction
holding it and release it

37

CS432: Distributed SystemsSpring 2017

Distributed Deadlocks
• Need to build a global wait-for graph from local ones
• There can be a cycle in the global wait-for graph that is

not in any single local one ==> distributed deadlock
• Use a centralized global deadlock detectors: every

interval of time, the local deadlock detectors send their
wait-for graphs to it

• Edge chasing:
• global wait-for graph is not constructed, but each of

the servers has knowledge about some of its edges
• servers find cycles by forwarding messages called

probes, which follow the edges of the graph
throughout the distributed system

38

CS432: Distributed SystemsSpring 2017

Example: Transactions

• A managed by X, B managed by Y, C and D managed by Z

• server Y :U → V (added when U requests b.withdraw(30))

• server Z :V → W (added when V requests c.withdraw(20))

• server X :W → U (added when W requests a.withdraw(20))
39

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Example: Wait-For Graph

40

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Timestamp Ordering
• Goal: select a serialization order and execute

transactions accordingly
• Advantage: deadlock does not occur
• Trans (Ti) is assigned a globally unique timestamp ts(Ti)
• Transaction manager attaches the timestamp to all

operations issued by the transaction
• Each data item is assigned a write timestamp (wts) and

a read timestamp (rts):
• rts(x) = largest timestamp of any read on x
• wts(x) = largest timestamp of any write on x

• TO Rule. Given two conflicting operations Oij and Okl
belonging, respectively, to transactions Ti and Tk, Oij is
executed before Okl if and only if ts(Ti) < ts(Tk)

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010
41

CS432: Distributed SystemsSpring 2017 42

• Conflicting operations are resolved by timestamp order
 Basic T/O:
 for Ri(x) for Wi(x)
 if ts(Ti) < wts(x) if ts(Ti) < rts(x) or ts(Ti) < wts(x)
 then reject Ri(x) then reject Wi(x)
 else accept Ri(x) else accept Wi(x)
 rts(x) ← max{ts(Ti) , rts(x)} wts(x) ← ts(Ti)

Operation Conflicts for Timestamp
Ordering

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 © Pearson Education 2012

CS432: Distributed SystemsSpring 2017

Multiversion Timestamp Ordering
• An attempt to eliminate the restart overhead cost of

transactions

• Do not modify the values in the database, create new
values

• A Ri(x) is translated into a read on one version of x
• Find a version of x (say xv) such that ts(xv) is the

largest timestamp less than ts(Ti)

• A Wi(x) is translated into Wi(xw) and accepted if the
scheduler has not yet processed any Rj(xr) such that

ts(Ti) < ts(xr) < ts(Tj) (read has been done on older val)

43

CS432: Distributed SystemsSpring 2017

Optimistic Concurrency Control
Algorithms

Pessimistic execution

Optimistic execution

Validate Read Compute Write

ValidateRead Compute Write

44
Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Case Study: Dropbox
• Optimistic concurrency control
• Granularity: whole file
• If two users make concurrent updates to the

same file, the first write will be accepted and
the second rejected

• It provides version history. Users can manually
merge updates or restore previous versions

45

CS432: Distributed SystemsSpring 2017

Case Study: Google Apps
• Optimistic concurrency control
• Granularity: character for Google docs, cells for

spreadsheet
• A user is aware of others activities, therefore,

conflict resolution is left to users
• For multiple users accessing the same cell

simultaneously, last update wins

46

CS432: Distributed SystemsSpring 2017

Case Study: Wikipedia
• Optimistic concurrency control
• Users resolve conflicts
• Editors are allowed concurrent access to web

pages in which the first write is accepted and a
user making a subsequent write is shown an
‘edit conflict’ screen and asked to resolve the
conflicts

47

CS432: Distributed SystemsSpring 2017

Outline
• Introduction
• Transactions
• Concurrency Control
• Distributed Commit and Recovery and

Termination

48

CS432: Distributed SystemsSpring 2017

Commit Protocol
• Goal: A requirement by the atomicity property. When a distributed

transaction comes to an end, either all of its operations are carried
out or none of them

• One-Phase Commit: The coordinator communicates the commit or
abort request to all of the participants in the transaction and keeps
on repeating the request until all of them have acknowledged that
they have carried it out

• In Two-Phase commit any participating server can abort its part of
the transaction

49

CS432: Distributed SystemsSpring 2017

Distributed Reliability Protocols (1)
• Goal: maintain atomicity and durability of

distributed transactions
• Established through a coordinator

communicating requests to participants
• Commit protocols
• How to execute commit command for distributed

transactions?
• Issue: how to ensure atomicity and durability?

50

CS432: Distributed SystemsSpring 2017

Distributed Reliability Protocols (2)
• Termination protocols (unique to distributed systems)
• If a failure occurs, how can the remaining

operational sites deal with it
• Non-blocking: the occurrence of failures should not

force the sites to wait until the failure is repaired to
terminate the transaction

• Recovery protocols
• When a failure occurs, how do the sites where the

failure occurred deal with it
• Independent: a failed site can determine the

outcome of a transaction without having to obtain
remote information

51

CS432: Distributed SystemsSpring 2017

Termination vs. Recovery Protocols
• Both are implemented in case of site failures
• Termination protocols address how the operational sites

deal with the failure
• Recovery protocols deal with the procedure that the

process (coordinator or participant) at the failed site
has to go through to recover its state once the site is
restarted

• A non-blocking termination protocol permits a
transaction to terminate at the operational sites
without waiting for recovery of the failed site

• An independent recovery protocol determines how to
terminate a transaction that was executing at the time
of a failure without having to consult any other site

52

CS432: Distributed SystemsSpring 2017

One-Phase Commit
• The coordinator tells all other processes

(participants) whether or not to (locally)
perform the operation in question

• Disadvantages:
• If one of the participants cannot actually perform

the operation, the coordinator will not know

• Solution: Two-Phase commit
• All sites involved in the execution of a distributed

transaction agree to commit the transaction before
its effects are made permanent

53

CS432: Distributed SystemsSpring 2017

Two-Phase Commit (2PC)
• Phase 1: The coordinator gets the participants ready to

commit the transaction at their local sites
• Phase 2: Everybody commits

• Coordinator :The process at the site where the transaction
originates and which controls the execution

• Participant :The process at the other sites that participate in
executing the transaction

• Global Commit Rule:
• The coordinator aborts a transaction if and only if at least one

participant votes to abort it
• The coordinator commits a transaction if and only if all of the

participants vote to commit it

54

CS432: Distributed SystemsSpring 2017

2PC Protocol Actions

55
Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

Participant Coordinator

No

Yes

VOTE-COMMIT

Yes GLOBAL-ABORT

No

write abort
in log

Abort

Commit
ACK

ACK

INITIAL

write abort
in log

write ready
in log

write commit
in log

Type of
msg

WAIT

Ready to
Commit?

write commit
in log

Any No? write abort
in log

ABORTCOMMIT

COMMITABORT

write
begin_commit

in log

write
end_of_transaction

in log

READ
Y

INITIAL

U
ni

la
te

ra
l a

bo
rt

CS432: Distributed SystemsSpring 2017

2PC: Observations
• A participant can unilaterally abort a transaction
• Once a participant votes to commit or abort a

transaction, it cannot change its vote
• While a participant is in the READY state, it can move

either to abort the transaction or to commit it,
depending on the nature of the message from the
coordinator

• The global termination decision is taken by the
coordinator according to the global commit rule

• Coordinator and participants waiting in a state can
timeout and invoke a timeout protocol

56

CS432: Distributed SystemsSpring 2017

Centralized 2PC

57

ready? yes/no
global

commit/abort? committed/aborted

Phase 1 Phase 2

C C C

P

P

P

P

P

P

P

P

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Linear (Nested) 2PC

58

Prepare VC/VA

Phase 1

Phase 2

GC/GA

VC/VA VC/VA VC/VA

VC: Vote-Commit, VA: Vote-Abort, GC: Global-commit, GA: Global-abort

1 2 3 4 5 N

GC/GA GC/GA GC/GA GC/GA

≈
≈

coordinator Pros?	Cons?

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Distributed 2PC

59

prepare
vote-abort/
vote-commit

global-commit/
global-abort

decision made
independently

Coordinator Participants Participants

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

State Transition in 2PC

60

INITIAL

WAIT

Commit command
Prepare

Vote-commit (all)
Global-commit

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

Coordinator Participants

Vote-abort
Global-abort

ABORT COMMIT COMMITABORT

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Site Failure - 2PC Termination
Coordinator

• Timeout in INITIAL
• Who cares

• Timeout in WAIT
• Cannot unilaterally commit
• Can unilaterally abort

• Timeout in ABORT or COMMIT
• Stay blocked and wait for

the acks
• May resend Global Abort/

Commit commands

61

COORDINATOR

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Global-commit

ABORT COMMIT

Vote-abort
Global-abort

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Site Failure - 2PC Termination
Participants

• Timeout in INITIAL
• Coordinator must have

failed in INITIAL state
• Unilaterally abort

• Timeout in READY
• Stay blocked

62

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

ABORT COMMIT

PARTICIPANTS

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Site Failure - 2PC Recovery
Coordinator

• Failure in INITIAL
• Start the commit process

upon recovery
• Failure in WAIT
• Restart the commit

process upon recovery
• Failure in ABORT or COMMIT
• Nothing special if all the

acks have been received
• Otherwise the

termination protocol is
involved

63
Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

COORDINATOR

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Global-commit

ABORT COMMIT

Vote-abort
Global-abort

CS432: Distributed SystemsSpring 2017

Site Failure - 2PC Recovery
Participants

• Failure in INITIAL
• Unilaterally abort upon r

• Failure in READY
• The coordinator has

been informed about the
local decision

• Treat as timeout in
READY state and invoke
the termination protocol

• Failure in ABORT or COMMIT
• Nothing special needs to

be done

64

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

ABORT COMMIT

PARTICIPANTS

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

• Failure in INITIAL
• Unilaterally abort upon recovery

CS432: Distributed SystemsSpring 2017

2PC Recovery Protocols  
Additional Cases

Arise due to non-atomicity of log and message send actions
• Coordinator site fails after writing “begin_commit” log

and before sending “prepare” command
• treat it as a failure in WAIT state; send “prepare”

command
• Participant site fails after writing “ready” record in log

but before “vote-commit” is sent
• treat it as failure in READY state
• alternatively, can send “vote-commit” upon recovery

• Participant site fails after writing “abort” record in log
but before “vote-abort” is sent
• no need to do anything upon recovery

65
Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

2PC Recovery Protocols  
Additional Cases

• Coordinator site fails after logging its final decision
record but before sending its decision to the
participants
• coordinator treats it as a failure in COMMIT or ABORT

state
• participants treat it as timeout in the READY state

• Participant site fails after writing “abort” or “commit”
record in log but before acknowledgement is sent
• participant treats it as failure in COMMIT or ABORT

state
• coordinator will handle it by timeout in COMMIT or

ABORT state

66
Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Problems with 2PC
• Blocking
• Ready implies that the participant waits for the

coordinator
• If coordinator fails, site is blocked until recovery
• Blocking reduces availability

• Independent recovery is not possible
• However, it is known that:
• Independent recovery protocols exist only for single

site failures; no independent recovery protocol exists
which is resilient to multiple-site failures

• So we search for these protocols – 3PC

67
Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Three-Phase Commit
• 3PC is non-blocking
• A commit protocols is non-blocking iff
• it is synchronous within one state transition, and
• its state transition diagram contains

• no state which is “adjacent” to both a commit and an abort
state, and

• no non-committable state which is “adjacent” to a commit
state

• Adjacent: possible to go from one state to another with
a single state transition

• Committable: all sites have voted to commit a
transaction (e.g. COMMIT state)

68
Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

State Transitions in 3PC

69

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

INITIAL

READY

Prepare
Vote-commit

Prepared-to-commit
Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMIT

ABORT PRE-
COMMIT

Global commit
Ack

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Communication Structure

70

C

P

P

P

P

C

P

P

P

P

C

ready? yes/no
pre-commit/
pre-abort? commit/abort

Phase 1 Phase 2

P

P

P

P

C

yes/no ack

Phase 3

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Site Failures – 3PC Termination
• Timeout in INITIAL
• Who cares

• Timeout in WAIT
• Unilaterally abort

• Timeout in PRECOMMIT
• Participants may not be in

PRECOMMIT, but at least
in READY

• Move all the participants
to PRECOMMIT state

• Terminate by globally
committing

71

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Site Failures – 3PC Termination

• Timeout in ABORT or COMMIT
• Just ignore and treat the

transaction as completed
• participants are either in

PRECOMMIT or READY
state and can follow their
termination protocols

72

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Site Failures – 3PC Termination
• Timeout in INITIAL

• Coordinator must have failed in
INITIAL state

• Unilaterally abort

• Timeout in READY
• Voted to commit, but does not

know the coordinator's decision

• Elect a new coordinator and
terminate using a special
protocol

• Timeout in PRECOMMIT
• Handle it the same as timeout

in READY state

73

INITIAL

READY

Prepare
Vote-commit

Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMIT

ABORT PRE-
COMMIT

Global commit
Ack

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Termination Protocol Upon Coordinator
Election

New coordinator can be in one of four states: WAIT, PRECOMMIT,
COMMIT, ABORT

1. Coordinator sends its state to all of the participants asking
them to assume its state

2. Participants “back-up” and reply with appropriate messages,
except those in ABORT and COMMIT states. Those in these
states respond with “Ack” but stay in their states

3. Coordinator guides the participants towards termination:
• If the new coordinator is in the WAIT state, participants can be in INITIAL,

READY, ABORT or PRECOMMIT states. New coordinator globally aborts the
transaction

• If the new coordinator is in the PRECOMMIT state, the participants can be
in READY, PRECOMMIT or COMMIT states. The new coordinator will globally
commit the transaction

• If the new coordinator is in the ABORT or COMMIT states, at the end of the
first phase, the participants will have moved to that state as well

74
Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Site Failures – 3PC Recovery
• Failure in INITIAL
• start commit process upon

recovery
• Failure in WAIT
• the participants may have

elected a new coordinator and
terminated the transaction

• the new coordinator could be
in WAIT or ABORT states ==>
transaction aborted

• ask around for the fate of the
transaction

75

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Site Failures – 3PC Recovery
• Failure in PRECOMMIT
• ask around for the fate of

the transaction
• Failure in COMMIT or ABORT
• Nothing special if all the

acknowledgements have
been received

• otherwise, the
termination protocol is
involved

76

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

Instructor’s Guide for M.T. Ozsu and P.Valduriez, Principles of Distributed Database Systems, Third Edition. © Springer 2010

CS432: Distributed SystemsSpring 2017

Site Failures – 3PC Recovery
• Failure in INITIAL
• Unilaterally abort upon recovery

• Failure in READY
• the coordinator has been

informed about the local
decision

• upon recovery, ask around
• Failure in PRECOMMIT
• ask around to determine how

the other participants have
terminated the transaction

• Failure in COMMIT or ABORT
• no need to do anything

77

INITIAL

READY

Prepare
Vote-commit

Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMIT

ABORT PRE-
COMMIT

Global commit
Ack

Instructor’s Guide for M.T. Ozsu and
P.Valduriez, Principles of Distributed Database

Systems, Third Edition. © Springer 2010

 
Thank You

78

