Getting-Started-with-Sbt-for-Scala-2013-Shiti-Saxena(www.ebook-dl.com)

Installing sbt on Linux

sudo echo "deb https://dl.bintray.com/sbt/debian /" |sudo tee -a /etc/apt/sources.list.d/sbt.list
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 642AC823
sudo apt-get update
sudo apt-get install sbt

Creating a new project
[bookmark: id13][bookmark: id14]The following diagram shows the basic directory	 structure of a Scala SBT:
[image:]
-SBT recommends, and uses, the standard Maven project directory structure by default.
-The files generated by SBT are written in the target directory within the project folder by default.
-
1. mkdir new-proj-dir
2. cd new-proj-dir

3. mkdir -p src/{main,test}/{java,resources,scala}
mkdir lib project target
4. Run command tree to see directory structure
5. vim build.sbt
//type following lines in build.sbt
import BuildSettings._
lazy val root = (project in file(".")).
 settings(buildSettings: _*)
6. cd project
7. vim BuildSettings.scala
//add following lines
import sbt._
import sbt.Keys._

object BuildSettings {

 //project name
 val Name = "Learning-Scala"

 val Version = "1.0.0"

 // version of Scala

 val ScalaVersion = "2.11.8"

 lazy val buildSettings = Defaults.coreDefaultSettings ++ Seq (

 name := Name,

 version := Version,

 scalaVersion := ScalaVersion,

 organization := "BigDataAnalytics",

 description := "Learning Scala"
)

}
8. run following command to find sbt version
sbt sbtVersion
9. vim project/build.properties
//add version found in previous command
sbt.version=0.13.13
[bookmark: __DdeLink__22289_293774858]10.add eclipse plugin
vim project/plugins.sbt
//add following line
addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "5.1.0")

[bookmark: __DdeLink__22289_2937748581]11. cd src/main/scala
12. Write some testing program
 vim Hello.scala
package pieas.dcis.lsdc
object Hello extends App{
 println(“Hello from Scala!”)
}
13. Go to Project root directory
cd ../../..
14. run command sbt
15. now we can run sbt commands, e.g. compile, run, test
It is also possible to run sbt in batch mode, that is, multiple commands separated by spaces. Execution will happen in the given order. Commands that take arguments must be enclosed in quotes.
[bookmark: id21]The clean command is used to delete all the generated files in the target folder:
>clean compile test

To start scala REPL (no need for pre-installation of scala)
> console

using eclipse for scala project
1. cd project-base-dir
2. add eclipse plugin (if not done yet)
vim project/plugins.sbt
//add following line
addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "5.1.0")
3. run following command

sbt eclipse

Now open the eclipse and import this project.

Triggering SBT commands on saves
[bookmark: id24]Passing a ~ character before a command tells SBT to keep looking for changes and run the same command if there are any changes in any of the source files.
[bookmark: id25]This is possible in both interactive and batch modes.
> ~run

Chapter 2. .sbt Build Definitions
[bookmark: ch02lvl1sec14]The theory of .sbt
[bookmark: id26]In SBT, project-specific properties, such as library dependencies, Scala version, and so on, which are required for a successful build, are declared in the build definition.
The build definition can be a .sbt file or a .scala file or even a combination of the two. The .sbt file should be located in the base directory and is generally named build.sbt. The .scala file should be located in the project subdirectory of the base directory.
The build definition has keys and the transformation to be applied on the associated values. The type of value of a key is predefined and cannot be modified. In the following line of code, name is the key, := is the transformation, and Introductionis the value:
name := "Introduction"
[bookmark: id27]The value type for the key name is String. We will discuss keys in detail in the following sections.
Each key-value pair is a build property. So, we could say that a build definition is a list of properties.

The .sbt syntax
[bookmark: id28]The build definition is essentially a list of Scala expressions that are split and passed to the compiler individually. Blank lines act as a delimiter in a .sbt file. Removing the blank lines after each expression in the build.sbt file and compiling it will result in the following:
[info] Loading project definition from /home/introduction/project
/home/introduction/build.sbt:2: error: eof expected but ';' found.
version := "1.0"
^
[error] Error parsing expression. Ensure that settings are separated by blank lines.
This is because without a blank line, SBT is clueless about the beginning and end of an expression.
Each expression consists of a key (the left operand), an operator, and a value (the right operand). For example, in the following expression, version is the key, := is the operator, and 1.0 is the value:
version := "1.0"
[bookmark: id29]build.sbt imports sbt.Keys._ implicitly. Hence, we can directly refer to sbt.Keys.version with version.
Each operator is a method defined for the key. The previous expression is shorthand for this:
version.:=("1.0")
The different kinds of operators are listed next with examples. Add or replace the example snippet in your build.sbt file to see the changes.
· [bookmark: id30]:=: This is used to add a setting or replace the value of a setting with a new one. We used this in the build file for name,version, and scalaVersion.
· [bookmark: id31]++=: This works only for values with the type Seq[T]. It concatenates the specified sequence to the actual value. We used this in the build.sbt file for resolvers and libraryDependencies.
· [bookmark: id32]+=: This can be used when a single value is to be appended to the default value. So, modifying the name expression will append Introduction to the default value (the value of name became default-b65a81Introduction in my case).
Understanding keys
[bookmark: id40]In SBT, keys are defined for different purposes, ranging from simple ones, such as log-related, to complex ones, such as dependency-management-related. Each key has a rank associated with it which is used to prioritize the information to be displayed. A key can be categorized into one of the following categories:
· [bookmark: id41][bookmark: id42]Setting keys: This category contains keys whose values are computed on loading the project, and are stored for further use
· [bookmark: id43][bookmark: id44]Task keys: This category contains keys whose values are recomputed each time it is executed
· [bookmark: id45][bookmark: id46]Input keys: This category contains keys like the Task keys, but these keys have command-line arguments as input
Since a Task key is computed on each execution, a Setting key cannot depend on a Task key. Trying to do so will throw an error.
The value of a Setting key can be found by typing the key name in the interactive shell or the SBT key name in the command prompt. Typing Task Key or Input Key instead would result in execution of the associated task.
Setting keys
[bookmark: id49][bookmark: id50]The following is a list of setting keys mentioned:
· [bookmark: id51]name: This represents the project name. Its value type is String.
· [bookmark: id52]organization: This represents the organization/group ID. Its value type is String.
· [bookmark: id53]version: This represents the version/revision of the current module. Its value type is String.
· [bookmark: id54][bookmark: id55]scalaVersion: This represents the version of Scala to be used for the build. Its value type is String.
· [bookmark: id56][bookmark: id57]isSnapshot: This represents whether the version is a snapshot version. Its value type is Boolean. By default it is set tofalse.
· [bookmark: id58][bookmark: id59]offline: This is used to configure SBT to work without network connection where ever possible. Its value type is Boolean. By default it is set to false.
· [bookmark: id60][bookmark: id61]resolvers: This is used to provide additional resource URIs for automatically managed dependencies. Its value type is Seq[Resolver].
· [bookmark: id62][bookmark: id63]libraryDependencies: This is used to declare managed dependencies. Its value type is a sequence of Ivy module IDs. We will see more on this in the next chapter.
· [bookmark: id64][bookmark: id65]parallelExecution: This is used to configure whether tasks should be executed in parallel or not. Its value type isBoolean and the default value is true.
· [bookmark: id66][bookmark: id67]publishTo: This represents resolver to which the project should be published.
· [bookmark: id68][bookmark: id69]publishMavenStyle: This is used to configure whether to generate and publish a POM or not. Its value type is Boolean. If set to true, POM is published, otherwise an Ivy file is published.
· [bookmark: id70][bookmark: id71]PollInterval: This represents the interval between checks for modified sources when running in triggered execution mode. Its value type is Int and the default value is 500.
Task keys
[bookmark: id79][bookmark: id80]The following is a list of Task keys mentioned:
· [bookmark: id81][bookmark: id82]clean: When executed, this key deletes the files produced by the build, such as generated sources, compiled classes, and task caches
· [bookmark: id83][bookmark: id84]console: This starts the Scala interpreter with the project classes on the classpath
· [bookmark: id85][bookmark: id86]compile: This command compiles the sources
· [bookmark: id87][bookmark: id88]doc: This generates API documentation for the project
· [bookmark: id89][bookmark: id90]packageBin: This produces a main artifact (binary JAR)
· [bookmark: id91][bookmark: id92]packageSrc: This produces a source artifact (JAR containing sources and resources)
· [bookmark: id93][bookmark: id94]test: This runs all the tests
· [bookmark: id95][bookmark: id96]update: The execution of this command resolves and retrieves dependencies if required
· [bookmark: id97][bookmark: id98]publish: This publishes artifacts to a repository
· [bookmark: id99][bookmark: id100]publishLocal: This publishes artifacts to the local repository
We have already seen how tasks are executed, so let's skip ahead to see how Input keys work.
[bookmark: ch02lvl3sec04]Input keys
[bookmark: id101]There are only four Input keys. They are as follows:
· [bookmark: id102][bookmark: id103]run: This is used to run a main class with the command-line arguments. If no arguments are provided, a blank string is used.
· [bookmark: id104][bookmark: id105]runMain: This is used to run a specific main class. It expects the class name followed by arguments. Simply trying to execute runMain without any arguments will result in an error.
· [bookmark: id106][bookmark: id107][bookmark: id108]testOnly: This executes the test provided as arguments, or all tests if no argument is provided. It supports wildcards as well.
· [bookmark: id109][bookmark: id110]testQuick: This also uses the filter approach such as testOnly, but executes the test only if the test had failed earlier, or was not run earlier, or the transitive dependencies of the test changed.

Chapter 3. Dependency Management
[bookmark: id126]Dependencies in software development refer to the libraries or components required at various stages (compile, test, and runtime) of an application's development life cycle. The process of handling these dependencies, external or internal, for your application is called dependency management.
On the surface, it looks simple. All you have to do is take the JAR file and add it to your project. But when you actually have to handle it, problems arise. Some of the challenges are as follows:
· [bookmark: id127]Version management: This will track the version of various dependencies you are using. Download the latest ones when they become available and replace the old ones. Ensure someone else in the team doesn't simply change the JAR file to a newer/older version.
· [bookmark: id128]Transitive dependencies: This handles the chain of dependencies of the libraries you are dependent on, and also the dependencies of these dependencies.
· [bookmark: id129]Releasing your library: If your library is part of a larger project, making your library available to others to use in an easy way is a challenge, especially when it is updated frequently (think about nightly snapshots).
In many enterprises, there are central servers, FTP, shared drives, and so on, which store the approved libraries for use and also internally released libraries. But managing and tracking them manually is never easy. They end up relying on scripts and build files.
Maven came and standardized this process. Maven defines standards for the project format to define its dependencies, formats for repositories to store libraries, the automated process to fetch transitive dependencies, and much more.
Most of the systems today either back onto Maven's dependency management system or on Ivy's, which can function in the same way, and also provides its own standards, which is heavily inspired by Maven. SBT uses Ivy in the backend for dependency management, but uses a custom DSL to specify the dependency.
[bookmark: ch03lvl1sec19]Quick introduction to Maven or Ivy dependency management
[bookmark: id131]Maven is a project management and a comprehension tool. Maven is configured using a Project Object Model (POM), which is represented in an XML file. A POM has all the details related to the project right from the basic ones, such as groupId, artifactId, version, and so on, to environment settings such as prerequisites, and repositories.
[bookmark: id132][bookmark: id133]Apache Ivy is a dependency management tool and a subproject of Apache Ant. Ivy integrates publicly available artifact repositories automatically. The project dependencies are declared using XML in a file called ivy.xml. This is commonly known as the Ivy file.
[bookmark: id134]Ivy is configured using a settings file. The settings file (ivysettings.xml) defines a set of dependency resolvers. Each resolver points to an Ivy file and/or artifacts. So, the configuration essentially indicates which resource should be used to resolve a module

[image:]
[bookmark: id137]Resolve is the phase where Ivy resolves the dependencies of a module by accessing the Ivy file defined for that module.
[bookmark: id138]For each dependency in the Ivy file, Ivy finds the module using the configuration. A module could be an Ivy file or artifact. Once a module is found, its Ivy file is downloaded to the Ivy cache. Then, Ivy checks for the dependencies of that module. If the module has dependencies on other modules, Ivy recursively traverses the graph of dependencies, handling conflicts simultaneously.
After traversing the whole graph, Ivy downloads all the dependencies that are not already in the cache and have not been evicted by conflict management. Ivy uses a filesystem-based cache to avoid loading dependencies already available in the cache.
In the end, an XML report of the dependencies of the module is generated in the cache.
[bookmark: ch03lvl3sec06]Retrieve
[bookmark: id139][bookmark: id140]Retrieve is the act of copying artifacts from the cache to another directory structure. The destination for the files to be copied is specified using a pattern. Before copying, Ivy checks if the files are not already copied to maximize performance. After dependencies have been copied, the build becomes independent of Ivy.
[bookmark: ch03lvl3sec07]Publish
[bookmark: id141][bookmark: id142]Ivy can then be used to publish the module to a repository. This can be done by manually running a task or from a continuous integration server.
Dependency management in SBT
[bookmark: id143]In SBT, library dependencies can be managed in the following two ways:
· By specifying the libraries in the build definition
· By manually adding the JAR files of the library
[bookmark: id144]Manual addition of JAR files may seem simple in the beginning of a project. But as the project grows, it may depend on a lot of other projects, or the projects it depends on may have newer versions. These situations make handling dependencies manually a cumbersome task. Hence, most developers prefer to automate dependency management.
[bookmark: ch03lvl2sec12]Automatic dependency management
[bookmark: id145]SBT uses Apache Ivy to handle automatic dependency management. When dependencies are configured in this manner, SBT handles the retrieval and update of the dependencies. An update does not happen every time there is a change, since that slows down all the processes. To update the dependencies, you need to execute the update task. Other tasks depend on the output generated through the update. Whenever dependencies are modified, an update should be run for these changes to get reflected.
Specifying dependencies
· Declarations within the build definition
· Maven dependency files, that is, POM files
· Configuration and settings files used for Ivy
· Adding JAR files manually
[bookmark: ch03lvl3sec08]Declaring dependencies in the build definition
[bookmark: id146][bookmark: id147][bookmark: id148]The Setting key libraryDependencies is used to configure the dependencies of a project. The following are some of the possible syntaxes for libraryDependencies:
· libraryDependencies += groupID % artifactID % revision
· libraryDependencies += groupID %% artifactID % revision
· libraryDependencies += groupID % artifactID % revision % configuration
· libraryDependencies ++= Seq(
groupID %% artifactID % revision,
groupID %% otherID % otherRevision
)
Let's explain some of these examples in more detail:
· groupID: This is the organization/group's ID by whom it was published
· artifactID: This is the project's name on which there is a dependency
· revision: This is the revision of the project on which there is a dependency
· configuration: This is the Ivy configuration for which we want to specify the dependency

[bookmark: note05]Note
Notice that the first and second syntax are not the same. The second one has a %% symbol after groupID. This tells SBT to append the project's Scala version to artifactID.
So, in a project with Scala Version 2.9.1, libraryDependencies ++= Seq("mysql" %% "mysql-connector-java" % "5.1.18")is equivalent to libraryDependencies ++= Seq("mysql" % "mysql-connector-java_2.9.1" % "5.1.18").
The %% symbol is very helpful for cross-building a project. Cross-building is the process of building a project for multiple Scala versions. SBT uses the crossScalaVersion key's value to configure dependencies for multiple versions of Scala. Cross-building is possible only for Scala Version 2.8.0 or higher.
The %% symbol simply appends the current Scala version, so it should not be used when you know that there is no dependency for a given Scala version, although it is compatible with an older version. In such cases, you have to hardcode the version using the first syntax.
Using the third syntax, we could add a dependency only for a specific configuration. This is very useful as some dependencies are not required by all configurations. For example, the dependency on a testing library is only for the test configuration. We could declare this as follows:
libraryDependencies ++= Seq("org.specs2" % "specs2_2.9.1" % "1.12.3" % "test")
[bookmark: id149]We could also specify dependency for the provided scope (where the JDK or container provides the dependency at runtime).This scope is only available on compilation and test classpath, and is not transitive. Generally, servlet-apidependencies are declared in this scope:
libraryDependencies += "javax.servlet" % "javax.servlet-api" % "3.0.1" % "provided"
[bookmark: id150]The revision does not have to be a single-fixed version, that is, it can be set with some constraints, and Ivy will select the one that matches best. For example, it could be latest integration or 12.0 or higher, or even a range of versions.

A URL for the dependency JAR
[bookmark: id151][bookmark: id152]If the dependency is not published to a repository, you can also specify a direct URL to the JAR file:
libraryDependencies += groupID %% artifactID % revision from directURL
[bookmark: id153]directURL is used only if the dependency cannot be found in the specified repositories and is not included in published metadata. For example:
libraryDependencies += "slinky" % "slinky" % "2.1" from "http://slinky2.googlecode.com/svn/artifacts/2.1/slinky.jar"
Resolvers
[bookmark: id183]Resolvers are alternate resources provided for the projects on which there is a dependency. If the specified project's JAR is not found in the default repository, these are tried. The default repository used by SBT is Maven2 and the local Ivy repository.
[bookmark: id184]The simplest ways of adding a repository are as follows:
· resolvers += name at location.
For example:
resolvers += "releases" at "http://oss.sonatype.org/content/repositories/releases"
· resolvers ++= Seq (name1 at location1, name2 at location2).
For example:
resolvers ++= Seq("snapshots" at "http://oss.sonatype.org/content/repositories/snapshots",
 "releases" at "http://oss.sonatype.org/content/repositories/releases")
· resolvers := Seq (name1 at location1, name2 at location2).
For example:
resolvers := Seq("sgodbillon" at "https://bitbucket.org/sgodbillon/repository/raw/master/snapshots/", "Typesafe backup repo" at "http://repo.typesafe.com/typesafe/repo/",
 "Maven repo1" at "http://repo1.maven.org/")
)

Sbt-Reference Manual
.sbt build definition

-build definition contains .sbt and .scala files.
-Three Flavors of Build Definition
There are three flavors of build definition:
1. Multi-project .sbt build definition
2. Bare .sbt build definition
3. .scala build definition
This page discusses the newest multi-project .sbt build definition, which combines the strength of the two older flavors, and is suitable for all cases.
In addition, a build definition can contain files ending in .scala, located in the project/ subdirectory of the base directory to define commonly used functions and values.
What is a Build Definition?
After examining a set of directories and processing build definition files,sbt ends up with Project definitions.
Build.sbt
In build.sbt you might create a Project definition of the project located in the current directory like this:
lazy val root = (project in file("."))
def sbt.Project.project: Project
Creates a new Project. This is a macro that expects to be assigned directly to a val. The name of the val is used as the project ID and the name of the base directory of the project.

Def in(dir: File): Project
Sets the base directory for this project.

-Each project is associated with an immutable map (set of key-value pairs) describing the project.
For example, one key is name and it maps to a string value, the name of your project. Build definition files (build.sbt and *.scala) do not affect sbt’s map directly. Instead,the build definition creates a huge list of objects with type Setting[T] where T is the type of the value in the map. A Setting describes a transformation to the map,such as adding a new key-value pair or appending to an existing value. (In the spirit of functional programming with immutable data structures and values, a transformation returns a new map – it does not update the old
map in-place.)

Here is how you associate the Setting[String] for the name of the project located in the current directory:
lazy val root = (project in file(".")).
settings(
name := "hello"
)
This Setting[String] transforms the map by adding (or replacing) the name key,giving it the value "hello". The transformed map becomes sbt’s new map.

How build.sbt defines settings

lazy val commonSettings = Seq(
organization := "com.example",
version := "0.1.0",
scalaVersion := "2.11.8"
)
lazy val root = (project in file(".")).
settings(commonSettings: _*).
settings(
name := "hello"
)
The expressions in settings are independent of one another, and they are expressions, rather than complete Scala statements.

Def Project.settings(ss: Def.SettingsDefinition*): Project
Appends settings to the current settings sequence for this project.
ss can accept AnyRef type oject

build.sbt may also be interspersed with vals, lazy vals, and defs. Top-level
objects and classes are not allowed in build.sbt. Those should go in the
project/ directory as full Scala source files.
-Keys have a method called :=, which returns a Setting[T].
final def:=(v: T): Def.Setting[T]

-In this case (name := "hello"), the returned Setting[String] is a transformation to add or replace the name key in sbt’s map, giving it the value "hello

Built-in Keys
The built-inkeys arejust fields in an object called Keys. Abuild.sbt implicitly has an import sbt.Keys._, so sbt.Keys.name can be referred to as name.
Creating Custom Keys
Custom keys may be defined with their respective creation methods:
settingKey, taskKey, and inputKey. Each method expects the type of
the value associated with the key as well as a description. The name of the key is taken from the val the key is assigned to. For example, to define a key for a new task called hello,
lazy val hello = taskKey[Unit]("An example task")
hello is the name of the key with type taskKey[Unit] and a description "An example task"

Defining tasks and settings
Using :=, you can assign a value to a setting and a computation to a task. For
a setting, the value will be computed once at project load time. For a task, the computation will be re-run each time the task is executed. For example, to implement the hello task from the previous section:
lazy val hello = taskKey[Unit]("An example task")
lazy val root = (project in file(".")).
settings(
hello := { println("Hello!") }
)
We already saw an example of defining settings when we defined the project’s
name,
lazy val root = (project in file(".")).
settings(
name := "hello"
)

Imports in build.sbt
You can place import statements at the top of build.sbt; they need not be separated by blank lines.
There are some implied default imports, as follows:
import sbt._
import sbt.Process._
import sbt.keys._
We can also import .scala files here.

Adding library dependencies
The % method is used to construct an Ivy module ID from strings
val derby = "org.apache.derby" % "derby" % "10.4.1.3"
lazy val commonSettings = Seq(
organization := "com.example",
version := "0.1.0",
scalaVersion := "2.11.8"
)
lazy val root = (project in file(".")).
settings(commonSettings: _*).
settings(
name := "hello",
libraryDependencies += derby
)
+= appends to the key’s old value rather than replacing it,this is explained in more kinds of setting.

Resolvers
Not all packages live on the same server; sbt uses the standard Maven2 repos-
itory by default. If your dependency isn’t on one of the default repositories,
you’ll have to add a resolver to help Ivy find it.
To add an additional repository, use
resolvers += name at location
with the special at between two strings.
For example:
resolvers += "Sonatype OSS Snapshots" at "https://oss.sonatype.org/content/repositories/snapshots"
The resolvers key is defined in Keys like this:
val resolvers = settingKey[Seq[Resolver]]("The user-defined additional resolvers for automatically managed dependencies.")
The at method creates a Resolver object from two strings.
sbt can search your local Maven repository if you add it as a repository:
resolvers += "Local Maven Repository" at "file://"+Path.userHome.absolutePath+"/.m2/repository"
What is a plugin?
A plugin extends the build definition, most commonly by adding new settings. The new settings could be new tasks. For example, a plugin could add a codeCoverage task which would generate a test coverage report.
Declaring a plugin
If your project is in directory hello, and you’re adding sbt-site plugin to the build definition, createhello/project/site.sbt and declare the plugin dependency by passing the plugin’s Ivy module ID to addSbtPlugin:
addSbtPlugin("com.typesafe.sbt" % "sbt-site" % "0.7.0")
If you’re adding sbt-assembly, create hello/project/assembly.sbt with the following:
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.11.2")
Not every plugin is located on one of the default repositories and a plugin’s documentation may instruct you to also add the repository where it can be found:
resolvers += Resolver.sonatypeRepo("public")
Plugins usually provide settings that get added to a project to enable the plugin’s functionality. This is described in the next section.
Tracking dependencies in one place
One way of using the fact that .scala files under project becomes part of the build definition is to create project/Dependencies.scala to track dependencies in one place.
import sbt._
object Dependencies {
// Versions
lazy val akkaVersion = "2.3.8"
// Libraries
val akkaActor = "com.typesafe.akka" %% "akka-actor" % akkaVersion
val akkaCluster = "com.typesafe.akka" %% "akka-cluster" % akkaVersion
val specs2core = "org.specs2" %% "specs2-core" % "2.4.14"
// Projects
val backendDeps = Seq(akkaActor, specs2core % Test)
}
TheDependencies object will be available in build.sbt. To use the vals under it easier
import Dependencies._
lazy val commonSettings = Seq(
version := "0.1.0",
scalaVersion := "2.11.8"
)
lazy val backend = (project in file("backend")).
settings(commonSettings: _*).
settings(
	
)

///
Sbt commands
$sbt settings
$sbt sbtVersion
sbt behind proxy
[bookmark: __DdeLink__638_654217758]$sbt -Dhttp.proxyHost=172.30.10.11 -Dhttp.proxyPort=3128 -Dhttps.proxyHost=172.30.10.11 -Dhttps.proxyPort=3128 -Dhttp.proxyUser=mabidm -Dhttp.proxyPassword=MOnot -Dhttps.proxyUser=mabidm -Dhttps.proxyPassword=MOnot"

///////////////////////////////////////Some examples of Build definitions /////////////////
Directory structure
mkdir -p src/{main,test}/{java,resources,scala}
mkdir lib project target

All following files are located in root_proj_dir/project folder
File: build.properties
//which sbt version will be used to build project. If not specified, it uses latest version
sbt.version=0.13.9
File: Build.scala
//define all common project properties here
import sbt._
import sbt.Keys._

object BuildSettings {

 val Name = "activator-spark"
 val Version = "4.3.2"
 // You can use either version of Scala. We default to 2.11.7:
 val ScalaVersion = "2.11.7"
 val ScalaVersions = Seq("2.11.7", "2.10.6")

 lazy val buildSettings = Defaults.coreDefaultSettings ++ Seq (
 name := Name,
 version := Version,
 scalaVersion := ScalaVersion,
 crossScalaVersions := ScalaVersions,
 organization := "com.typesafe",
 description := "Activator Spark Template",
 scalacOptions := Seq("-deprecation", "-unchecked", "-encoding", "utf8", "-Xlint")
)
}

object Resolvers {
 val typesafe = "Typesafe Repository" at "http://repo.typesafe.com/typesafe/releases/"
 val sonatype = "Sonatype Release" at "https://oss.sonatype.org/content/repositories/releases"
 val mvnrepository = "MVN Repo" at "http://mvnrepository.com/artifact"

 val allResolvers = Seq(typesafe, sonatype, mvnrepository)

}

// We don't actually use all these dependencies, but they are shown for the
// examples that explicitly use Hadoop.
object Dependency {
 object Version {
 val Spark = "1.6.0"
 val ScalaTest = "2.2.4"
 val ScalaCheck = "1.12.2"
 }

 val sparkCore = "org.apache.spark" %% "spark-core" % Version.Spark
 val sparkStreaming = "org.apache.spark" %% "spark-streaming" % Version.Spark
 val sparkSQL = "org.apache.spark" %% "spark-sql" % Version.Spark
 val sparkHiveSQL = "org.apache.spark" %% "spark-hive" % Version.Spark
 val sparkRepl = "org.apache.spark" %% "spark-repl" % Version.Spark

 val scalaTest = "org.scalatest" %% "scalatest" % Version.ScalaTest % "test"
 val scalaCheck = "org.scalacheck" %% "scalacheck" % Version.ScalaCheck % "test"
}

object Dependencies {
 import Dependency._

 val activatorspark =
 Seq(sparkCore, sparkStreaming, sparkSQL, sparkHiveSQL, // sparkRepl,
 scalaTest, scalaCheck)
}

object ActivatorSparkBuild extends Build {
 import Resolvers._
 import Dependencies._
 import BuildSettings._

 val excludeSigFilesRE = """META-INF/.*\.(SF|DSA|RSA)""".r
 lazy val activatorspark = Project(
 id = "SparkWorkshop",
 base = file("."),
 settings = buildSettings ++ Seq(
 shellPrompt := { state => "(%s)> ".format(Project.extract(state).currentProject.id) },
 maxErrors := 5,
 triggeredMessage := Watched.clearWhenTriggered,
 // runScriptSetting,
 resolvers := allResolvers,
 exportJars := true,
 // For the Hadoop variants to work, we must rebuild the package before
 // running, so we make it a dependency of run.
 (run in Compile) <<= (run in Compile) dependsOn (packageBin in Compile),
 libraryDependencies ++= Dependencies.activatorspark,
 excludeFilter in unmanagedSources := (HiddenFileFilter || "*-script.scala"),
 unmanagedResourceDirectories in Compile += baseDirectory.value / "conf",
 unmanagedResourceDirectories in Test += baseDirectory.value / "conf",
 mainClass := Some("run"),
 //This is important for some programs to read input from stdin
 connectInput in run := true,
 // Works better to run the examples and tests in separate JVMs.
 fork := true,
 // Must run Spark tests sequentially because they compete for port 4040!
 parallelExecution in Test := false))
}

File: plugins.sbt
//define plugins here
addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "4.0.0")
addSbtPlugin("net.virtual-void" % "sbt-dependency-graph" % "0.8.0")

image7.png
build.sbt

E}ject
build.properties
src
main
L— scala
e Chapterl
L— Introduction.scala
test
L— scala

— Chapterl
IntroSpec.scala

image8.png
Public Repository

<ivy:install/>

<ivy:resolve/>,

Enterprise Repository

<ivy:publish/>"

Cache

<ivy:retrieve/>

Project Workspace

