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Some typical queries [Muthukrishnan, 2005a]

How many distinct IP addresses use a given link currently
or anytime during the day?

What are the top k voluminous flows currently in
progress in a link?

How many distinct flows were observed?

Are traffic patterns in two routers correlated? What are
(un)usual trends?

Network monitoring just one possible application

On-line statistics on search engines’ query logs

On-line statistics on server logs

Finding near-duplicate Web pages
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Informally...

Streaming involves ([Muthukrishnan, 2005a]):

Small number of passes over data. (Typically 1?)

Sublinear space (sublinear in the universe or number of
stream items?)

A model of computation...

Similar to dynamic, online, approximation or randomized
algorithms, but with more constraints

Constraints impose limitations that make many “easy”
problems hard (further in this lecture)

Being poly-time/poly-space no longer sufficient
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The streaming model [Muthukrishnan, 2005b]

Processing
unit

U
j

U
j+1

U
j+2

U
j+3

Streaming model

Data flow

Data item arrive over time

Uj processed before Uj+1 arrives

Only one pass (or few passes, at most O(log))



Streaming

L. Becchetti

What is
streaming?

Tools and
ingredients

Count-Min
sketch

Heavy hitters

The streaming model [Muthukrishnan, 2005b]

Underlying data (signal): an n-dimensional array A, n
typically large (e.g., the size of the IP address space)

Update arrive over time. The j-th update is a pair
Uj = (i , x), where i is an item (index):

Ai = Ai + x

In general, x can be any

Initially: Ai = 0,∀i = 1, . . . n

A(t): the state of the array after the first t updates

Goal

Compute and maintain functions over A in small space,
with fast updates and computation

typically, space << n
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Caveats about updates, items and values

j-th update Uj = (i , x)

item i is from a discrete universe of finite size

value x

Example

i = (Source IP, Dest. IP, Protocol)
x = packet size (in bytes)

Wlog, i can be considered an integer

Hash to an integer otherwise. Example:

i = (“151.100.12.3”, “210.15.0.2”, “TCP”)

i → h(i), where h(·) maps strings to integers

For example, the integer corresponding to the
concatenation of the strings
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Special cases of the model
[Muthukrishnan, 2005b]

j-th update changes A(j) (Time series model)

Cash register: x ≥ 0

Turnstile model: most general model

In this lecture

Compact summaries of data streams (Count-Min
sketches [Cormode and Muthukrishnan, 2005])

Statistics: point queries, heavy hitters, join-size, No.
distinct items

Only a drop in a sea of results...
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Statistics and aggregates

Point query Q(i): estimate Ai

basic building block for more complex queries

φ-heavy hitters of A: return all {i : Ai > φ‖A‖1}

Other aggregates (see further)

Join size of two DB relations observed in a streaming
fashion

Scalar product of two streams (viewed as two vectors of
same size)

Number of distinct items observed in A
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Markov’s and Chebyshev’s inequalities

Theorem (Markov’s inequality)

Let X denote a random variable that assumes only
non-negative values. Then, for every a > 0:

P[X ≥ a] ≤ E[X ]

a
.

Theorem (Chebyshev’s inequality)

Let X denote a random variable. Then, for every a > 0:

P[|X − E[X ] | ≥ a] ≤ var [X ]

a2
.
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Families of universal hash functions

We assume we have a suitably defined family F of hash
functions, such that every member of h ∈ F is a function
h : U → [n].

Definition

F is a 2-universal hash family if, for any h(·) chosen uniformly
at random from F and for every x , y ∈ U we have:

P[h(x) = h(y)] ≤ 1

n
.

Definitions generalizes to k-universality
[Mitzenmacher and Upfal, 2005, Section 13.3]

Problem: define “compact” universal hash families
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A 2-universal family

Assume U = [m] and assume the range of the hash functions
we use is [n], where m ≥ n (typically, m >> n). We consider
the family F defined by hab(x) = ((ax + b) mod p) mod n,
where a ∈ {1, . . . , p − 1}, b ∈ {0, . . . , p} and p is a prime
p ≥ m.

How to choose u.a.r. from F
For a given p: Simply choose a u.a.r. from {1, . . . , p − 1} and
b u.a.r. from {0, . . . , p}
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A 2-universal family/cont.

Theorem ([Carter and Wegman, 1979,
Mitzenmacher and Upfal, 2005])

F is a 2-universal hash family. In particular, if a, b are chosen
uniformly at random:

P[hab(x) = i ] =
1

n
,∀x ∈ U, i ∈ [n].

P[hab(x) = hab(y)] ≤ 1

n
,∀x , y ∈ U.
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The CM sketch
[Cormode and Muthukrishnan, 2005]

In the remainder: cash-register model

2-Dimensional array whose size is determined by design
parameters ε and δ (their meaning explained further)

Array is C [j , l ], where j = 1, . . . , d and l = 1, . . . ,w

d =
⌈
ln 1

δ

⌉
(depth)

w =
⌈
e
ε

⌉
(width)

Every entry initially 0

d hash functions h1, . . . , hd chosen uniformly at random
from a 2-universal (pairwise-independent) family (see
first lecture)

hr : {1, . . . , n} → {1, . . . ,w}

Update

Pair (i , c) is observed, meaning that, ideally, Ai = Ai + c
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CM sketch: Update procedure

w

d

h
d

h
1

i

+c

+c

+c

+c

CM sketch update

update(i, c)

Require: i: array index, c: value

1: for j : 1 . . . d do
2: C[j, hj(i)] = C[j, hj(i)] + c

3: end for
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Point query

Basic query, building block for the others

Q(i): estimate Ai

Point query estimate

PQ(i)

Require: i: array index

1: return Âi = minj C[j, hj(i)]

Theorem ([Cormode and Muthukrishnan, 2005])

Âi ≥ Ai . Furthermore, P
[
Âi > Ai + ε‖A‖1

]
≤ δ, where

‖A‖1 =
∑n

i=1 |Ai | is the 1-norm of A.
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Proof of theorem

Define Iijk = 1 if (i 6= k)
⋂

(hj(i) = hj(k)), 0 otherwise

P[hj(i) = hj(k)] ≤ 1
w ≤

ε
e by pairwise independence

Define Xij =
∑n

k=1 IijkAk

Xij ≥ 0 and C [j , hj(i)] = Ai + Xij → Âi ≥ Ai

Xij is the error introduced by collisions

E[Xij ] = E[
∑n

k=1 IijkAk ] =
∑n

k=1 AkE[Iijk ] ≤ ε
e ‖A‖1

Notice that the only random variables are the Iijk ’s and
the Xij ’s

Furthermore,

P
[
Âi > Ai + ε‖A‖1

]
= P[∀j : C [j , hj(i)] > Ai + ε‖A‖1]

= P[∀j : Ai + Xij > Ai + ε‖A‖1] = P[∀j : Xij > eE[Xij ]]

= Πd
j=1P[Xij > eE[Xij ]] < e−d ≤ δ,

where the fifth inequality follows from Markov’s inequality.
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Heavy hitters
[Cormode and Muthukrishnan, 2005]

φ-heavy hitters of A: {i : Ai > φ‖A‖1}
Fact: No. φ-heavy hitters between 0 and 1/φ

Approximate heavy hitters: accept i such that
Ai ≥ (φ− ε)‖A‖1 for some specified ε < φ

We consider the cash-register model

Heavy hitters algorithm: ingredients

CM sketch and point query basic building blocks

Return items whose estimate exceeds φ‖A‖1

Assume cs is the s-th update → ‖A‖1 =
∑t

s=1 cs →
‖A‖1 can be easily maintained and updated in small
space
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Heavy hitters: update and query

update(i, c, S, H)

Require: i: array index, c ≥ 0, S: CM sketch, H: heap

1: update(i, c, S) {Update CM sketch}
2: Âi = PQ(i)

3: if Âi > φ‖A‖1 then
4: HeapUpdate(i, Âi, H) {Insert if i 6∈ H}
5: end if
6: s = HeapMin(H)

7: while PQ(s) ≤ φ‖A‖1 do

8: HeapDelete(s)

9: s = HeapMin(H)

10: end while

Heap and query

Generic heap element: pair (i , Âi ) ordered by Âi

Heavy hitters: return all elements i in H such that
Âi > φ‖A‖1
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Heavy hitters: performance

Theorem ([Cormode and Muthukrishnan, 2005])

Assume Inserts only (cash register model). With CM sketches

using space O
(

1
ε log ‖A‖1

δ

)
and update time O

(
log ‖A‖1

δ

)
per

item:

Every heavy hitter is output

With probability at least 1− δ : i) no item whose real
count is ≤ (φ− ε)‖A‖1 is output and ii) the number of

items in the heap is O
(

1
φ−ε

)
Question

Assume d =
⌈
e
ε

⌉
and w =

⌈
ln n

δ

⌉
and let T be the estimated

set of heavy hitters. Recall that Âi ≥ Ai . After any number t
of insertions, define Sε = {i : Ai < (φ− ε)‖A‖1}. Prove that

P[Sε ∩ T 6= ∅] ≤ δ.
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Solution

Consider i ∈ Sε. If i ∈ T ,
Âi > φ‖A‖1 → ∀j : C [j , hj(i)] > φ‖A‖1. Hence:

Ai < (φ− ε)‖A‖1 → C [j , hj(i)]− Ai > ε‖A‖1,∀j .

This implies:

P[i ∈ T ] = P
[
Âi > Ai + ε‖A‖1

]
= P[∀j : C [j , hj(i)] > Ai + ε‖A‖1] < e−d =

δ

n
,

where the third inequality follows from the general result seen
for PQ(i). Finally, since |Sε| ≤ n:

P[Sε ∩ T 6= ∅] = P[∪i∈Sε(i ∈ T )] ≤ δ

n
· |Sε| ≤ δ.
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