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Using tools in practice ...

Data intensive graph mining

We have a data collection in the form of a large graph
We have a mining task

Document ranking

Cyber-community detection

Web spam detection

Profiling of users accessing a search engine/on line store

Finding “typical” queries/items
Suggesting topics/items of potential interest to users who
submitted/purchased a given query/item

Detecting hot spots in epidemic spreading

Topic distillation over hyperlinked document collections

Detection of network bottlenecks
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Mapping IR applications to indices

Many data collections in the form of large scale graphs
(e.g., Web crawls, query graphs)

Many IR applications entail the computation of local
indices on a per vertex basis

Example: Pagerank ranking index

Requires a massive graph/matrix computation
Result is an index vector (Pagerank) with one component
per Web page

Different IR applications require computation of different
indices
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Automatic classifiers (e.g.: Web spam)
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Automatic classifiers (cont.)
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Challenges

Machine Learning Challenges:

Learning with inter dependent variables (graph)

Learning with few examples

Scalability

Information Retrieval Challenges:

Feature extraction: which features?

Feature aggregation: e.g., page/host/domain for the Web

Recall/precision tradeoffs

Scalability



Efficient mining
of complex
networks

L. Becchetti

Using what we
learnt for graph
mining

Web spam and
Clustering

Web spam

Web spam Indices

Clustering

Computational
challenges

Computational
model

Supporters

Clustering: take 1

Set intersection

Algorithms

Clustering: take 2

Looking at the
adjacency matrix

Challenges

Machine Learning Challenges:

Learning with inter dependent variables (graph)

Learning with few examples

Scalability

Information Retrieval Challenges:

Feature extraction: which features?

Feature aggregation: e.g., page/host/domain for the Web

Recall/precision tradeoffs

Scalability



Efficient mining
of complex
networks

L. Becchetti

Using what we
learnt for graph
mining

Web spam and
Clustering

Web spam

Web spam Indices

Clustering

Computational
challenges

Computational
model

Supporters

Clustering: take 1

Set intersection

Algorithms

Clustering: take 2

Looking at the
adjacency matrix

Challenges

Machine Learning Challenges:

Learning with inter dependent variables (graph)

Learning with few examples

Scalability

Information Retrieval Challenges:

Feature extraction: which features?

Feature aggregation: e.g., page/host/domain for the Web

Recall/precision tradeoffs

Scalability



Efficient mining
of complex
networks

L. Becchetti

Using what we
learnt for graph
mining

Web spam and
Clustering

Web spam

Web spam Indices

Clustering

Computational
challenges

Computational
model

Supporters

Clustering: take 1

Set intersection

Algorithms

Clustering: take 2

Looking at the
adjacency matrix

Challenges

Machine Learning Challenges:

Learning with inter dependent variables (graph)

Learning with few examples

Scalability

Information Retrieval Challenges:

Feature extraction: which features?

Feature aggregation: e.g., page/host/domain for the Web

Recall/precision tradeoffs

Scalability



Efficient mining
of complex
networks

L. Becchetti

Using what we
learnt for graph
mining

Web spam and
Clustering

Web spam

Web spam Indices

Clustering

Computational
challenges

Computational
model

Supporters

Clustering: take 1

Set intersection

Algorithms

Clustering: take 2

Looking at the
adjacency matrix

Challenges

Machine Learning Challenges:

Learning with inter dependent variables (graph)

Learning with few examples

Scalability

Information Retrieval Challenges:

Feature extraction: which features?

Feature aggregation: e.g., page/host/domain for the Web

Recall/precision tradeoffs

Scalability



Efficient mining
of complex
networks

L. Becchetti

Using what we
learnt for graph
mining

Web spam and
Clustering

Web spam

Web spam Indices

Clustering

Computational
challenges

Computational
model

Supporters

Clustering: take 1

Set intersection

Algorithms

Clustering: take 2

Looking at the
adjacency matrix

Challenges

Machine Learning Challenges:

Learning with inter dependent variables (graph)

Learning with few examples

Scalability

Information Retrieval Challenges:

Feature extraction: which features?

Feature aggregation: e.g., page/host/domain for the Web

Recall/precision tradeoffs

Scalability



Efficient mining
of complex
networks

L. Becchetti

Using what we
learnt for graph
mining

Web spam and
Clustering

Web spam

Web spam Indices

Clustering

Computational
challenges

Computational
model

Supporters

Clustering: take 1

Set intersection

Algorithms

Clustering: take 2

Looking at the
adjacency matrix

Challenges

Machine Learning Challenges:

Learning with inter dependent variables (graph)

Learning with few examples

Scalability

Information Retrieval Challenges:

Feature extraction: which features?

Feature aggregation: e.g., page/host/domain for the Web

Recall/precision tradeoffs

Scalability



Efficient mining
of complex
networks

L. Becchetti

Using what we
learnt for graph
mining

Web spam and
Clustering

Web spam

Web spam Indices

Clustering

Computational
challenges

Computational
model

Supporters

Clustering: take 1

Set intersection

Algorithms

Clustering: take 2

Looking at the
adjacency matrix

Data size

Indexable Web estimated to have more than 11.5 billion
pages [Gulli and Signorini, 2005]

As of now: roughly 100 times more (?)

Facebook has about 1.5 billion users

Amazon’s unique monthly visitors: about 183 millions
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General problem

We are given a (typically large or huge) graph
G = (V ,E )

Vertices may represent Web pages, people etc.

Arcs (or edges) represent relationships. E.g., hyperlinks,
email exchanges, social ties, interaction etc.

Goal: compute, for every vertex, some index depending
on the application and whose value depends on graph
topology

Challenges

Polynomial solutions may not suffice ...

Graphs may be too large to fit in main memory

Solutions must be scalable, both in memory and
computational costs
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This lecture

Consider two exemplar applications

See how techniques can be applied to these cases

Partial view, but gives flavour of techniques involved

Our motivating examples

Web spam detection

Boost the Pagerank score of target Web pages
Uses content and/or link based techniques
We focus on link based spam

Local clustering in massive graphs

Can unveil important aspects of the network’s social
structure (e.g., identify dense regions, communities etc.)
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What is on the Web?

Information

+ Porn + On-line casinos + Free movies +
Cheap software + Buy a MBA diploma + Prescription -free
drugs + V!-4-gra + Get rich now now now!!!
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Information + Porn

+ On-line casinos + Free movies +
Cheap software + Buy a MBA diploma + Prescription -free
drugs + V!-4-gra + Get rich now now now!!!
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Information + Porn + On-line casinos + Free movies +
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Forms of Web spamming

Typical Web Spam Hidden text

Many others...

Adversarial relationship

Every undeserved gain in ranking for a spammer, is a loss of
precision for the search engine.
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Typical Web Spam Hidden text
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Adversarial relationship
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Topological spam: link farms

Single-level farms can be detected by searching groups of
nodes sharing their out-links [Gibson et al., 2005]
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Topological spam: link farms

Single-level farms can be detected by searching groups of
nodes sharing their out-links [Gibson et al., 2005]
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Motivation

[Fetterly et al., 2004] hypothesized that studying the
distribution of statistics about pages could be a good way of
detecting spam pages:

“in a number of these distributions, outlier values are
associated with web spam”

Research goal

Statistical analysis of link-based spam
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[Fetterly et al., 2004] hypothesized that studying the
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detecting spam pages:
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Spam indices [Becchetti et al., 2007]

U.K. collection

18.5 million pages downloaded from the .UK domain in 2002

5,344 hosts manually classified (6% of the hosts)

Classified entire hosts:

V A few hosts are mixed: spam and non-spam pages

X More coverage: sample covers 32% of the pages



Efficient mining
of complex
networks

L. Becchetti

Using what we
learnt for graph
mining

Web spam and
Clustering

Web spam

Web spam Indices

Clustering

Computational
challenges

Computational
model

Supporters

Clustering: take 1

Set intersection

Algorithms

Clustering: take 2

Looking at the
adjacency matrix

Spam indices [Becchetti et al., 2007]
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(δ = max. difference in C.D.F. plot)
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PageRank

Let PN×N be the normalized adjacency matrix of a graph

Row-normalized

No “sinks”

Definition (PageRank)

Stationary state of:

αP +
(1− α)

N
1N×N

Follow links with probability α

Every link chosen with prob. 1/deg .

Random jump with probability 1− α
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TrustRank

TrustRank [Gyöngyi et al., 2004]

A node with high PageRank, but far away from a core set of
“trusted nodes” is suspicious

Start from a set of trusted nodes, then do a random walk,
returning to the set of trusted nodes with probability 1− α at
each step

i Trusted nodes: data from http://www.dmoz.org/

http://www.dmoz.org/
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TrustRank Idea
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TrustRank score
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Truncated PageRank
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Clustering coefficient

Compute triangle count for all vertices

Local clustering coefficient and related statistics

Motivation

Analysis of social or biological networks [Newman, 2003]

Thematic relationships in the Web
[Eckmann and Moses, 2002]

Common interests [Buchsbaum et al., 2003]

Web spam: [Fetterly et al., 2004] hypothesized that studying
the distribution of statistics about pages could be a good way
of detecting spam pages:

“in a number of these distributions, outlier values are
associated with web spam”
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Local Clustering Coefficient

S(u) : {v : (u, v) ∈ E}, d(u) = |S(u)|
T (u): No. triangles to which u belongs

Clustering Coefficient

CC1 =
2
∑

u T (u)∑
u d(u)(d(u)−1) (Alternative definition)

CC2 = 1
|V|
∑

u∈V
2T(u)

d(u)(d(u)−1)
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Distribution of triangles/clustering coefficient

Distribution of number of triangles follows power law
[Eckmann and Moses, 2002]

Distributions of number of triangles/clustering coefficient
in normal/spam pages

Allows also to discriminate content quality in Yahoo!
Answers [Becchetti et al., 2008]
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Semi-streaming [Feigenbaum et al., 2004]

Graph stored in secondary memory as adjacency or edge
list

No random access possible

O(N logN) bits available in main memory

Limited amount of information per vertex
X Not enough to store links in main memory

Limited (constant or O(logN)) number of passes

V No previous knowledge about graph

Compute index for all vertices concurrently

More specifically:

We can store in main memory a (small) constant number of
size N vectors with components of size O(logN) bits
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Some previous work

Computation of approximate matchings and distances
[Feigenbaum et al., 2004, Feigenbaum et al., 2005]

Lower bounds for neighbourhoods problems
[Buchsbaum et al., 2003]

Tradeoffs between number of passes and space for
shortest path problems [Demetrescu et al., 2006]

Related: Streaming [Muthukrishnan, 2005]

Stream of items accessed sequentially

Maintain statistics (e.g., most frequent elements,
histograms etc.)

O(log Space) overall, O(logTime)/item
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General algorithm we consider

Require: N: number of nodes, d: distance, k: bits
1: for node : 1 . . . N, bit: 1 . . . k do
2: INIT(node,bit)
3: end for

4: for distance : 1 . . . d do {Iteration step}
5: INIT(Aux)
6: for src : 1 . . . N do {Follow links in the graph}
7: for all links from src to dest do
8: Aux[src] ← Combine(Aux[dest], V[src,·])
9: end for

10: end for
11: V ← Aux
12: end for
13: for node: 1 . . .N do {Estimation}
14: Index[node] ← ESTIMATE( V[node,·] )
15: end for
16: return Index
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Counting the number of supporters

For every node v , count the number of nodes within h
hops

Do this for different values of h

Count each supporter only once

Let N(x , h) = # nodes within h hops of x

Can we directly apply the general algorithm seen before?
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A detour: back to distinct counting

Composing two sketches

Assume two sets S1 and S2

Assume sk(S1) = (R1(S1), . . . ,Rk(S1)) and
sk(S2) = (R1(S2), . . . ,Rk(S2)) are corresponding
sketches

What is sk(S1 ∪ S2)?

Composability ...

sk(S1∪S2) = (max{R1(S1),R1(S2)}, . . . ,max{Rk(S1),Rk(S2)})

Let Combine(sk(S1), sk(S2)) =
(max{R1(S1),R1(S2)}, . . . ,max{Rk(S1),Rk(S2)})
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Supporters: Probabilistic counting

Want to estimate N(Target, 2)

View N(Target, 2) as set

Use distinct counting algorithm of [Alon et al., 1999]
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Variant of ANF algorithm [Palmer et al., 2002] based on
probabilistic counting [Flajolet and Martin, 1985]

Can be computed together with PageRank
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ANF-like algorithm

Require: N: number of nodes, d: distance, k: bits
1: for node : 1 . . . N, bit: 1 . . . k do
2: INIT(node,bit) {Initialize node sketches}
3: end for

4: for distance : 1 . . . d do {Iteration step}
5: Aux ← 0k
6: for src : 1 . . . N do {Follow links in the graph}
7: for all links from src to dest do
8: Aux[src] ← Combine(Aux[dest], V[src,·])
9: end for

10: end for
11: V ← Aux
12: end for
13: for node: 1 . . .N do {Estimate supporters}
14: Supporters[node] ← ESTIMATE( V[node,·] )
15: end for
16: return Supporters
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Our estimator

The estimator proposed in [Alon et al., 1999]

For example, let k = s · t for suitable s and t

Let (R1, . . . ,Rt , . . . ,R(s−1)t+1, . . . ,Rst) be a generic
node x neighbourhood’s sketch

For i = 1, . . . , s: R̂i =
∑t

j=1 R(i−1)t+j

t

R(x) = median(R̂1, . . . , R̂s)

supporters(x) = 2R(x)

Tuning

For a given value of k , s and t allow to trade off between
accuracy and probability
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Local Clustering Coefficient

S(u) : {v : (u, v) ∈ E}, d(u) = |S(u)|

Number of Triangles and Clustering Coefficient

Estimate local clustering coefficient concurrently for all
vertices

Semi-streaming model

Need to pass over the graph as few times as possible

Key step: estimate size of neighbourhood intersection
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Estimating Set Intersection: intuition

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A B

Assume items of the universe initially numbered

Any of the possible n! permutations chosen u.a.r.

Items reordered accordingly

P[minπ(A) = minπ(B)] = J(A,B) = |A∩B|
|A∪B|
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Estimating Set Intersection: basic technique

Approach assumes family of minwise independent
permutations
[Broder, 1998, Broder, 2000, Broder et al., 1997]

In practice...

Exponential space (Ω(n) bits) needed to represent
minwise families [Broder et al., 1998]

π(x) = ((ax + b) mod p) mod n, with a and b chosen
u.a.r., p a large prime [Bohman et al., 2000]
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Triangles: Ideal algorithm

If we new J(S(u),S(v)):

Tuv = |S(u) ∩ S(v)| =
J

J + 1
(|S(u)|+ |S(v)|)

m independent trials
Zuv : # times that minπ(S(u)) = minπ(S(v))

Our estimator:

T uv =
Zuv

Zuv + m
(|S(u)|+ |S(v)|)

We use a more efficient modified alg in practice

High probability bound

P
[
|T uv − Tuv | > εTuv

]
≤

≤ Ce−
ε2

3 mJ(S(u),S(v)).

for a suitable constant C
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General Algorithm

1: Z = 0
2: for i: 1 . . . m do {Independent trials}
3: for u : 1 . . . |V | do {Assign labels}
4: li (u) = hashi (u) {Minwise linear permutation}
5: end for

6: for u : 1 . . . |V | do {Compute fingerprints}
7: Fi (u) = minv∈S(u) li (u)
8: end for{1 scan of G}
9: for u : 1 . . . |V | do {Update counters}

10: for v ∈ S(u) do
11: if Fi (u) == Fi (v) then {Minima are equal}
12: Zuv = Zuv + 1 {Zuv ’s stored on disk}
13: end if
14: end for
15: end for
16: end for
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Estimating Triangles/cont.

T uv = Zuv
Zuv+m (d(u) + d(v)) is our estimate of

|S(u) ∩ S(v)|
T (u) = 1

2

∑
v∈S(v) T uv is our estimate of T (u)

In practice, m = O(logN)

Implementation

- The Zuv ’s must be stored on disk (size of Z same order as
adjacency list)

For every i, updating Zuv requires access to disk

Computing counters most expensive operation
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Using the adjacency matrix ([Tsourakakis, 2008])

Let A denote the adjacency matrix of an undirected graph

Consider A3

A3
ii = 2 (# triangles incident in i)

Each triangle counted twice

As a consequence...

Trace(A3) = 6 (# triangles)
Reason: triangle (i , j , k) contributes twice to A3

ii , A
3
jj and A3

kk
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Spectra and triangles

Recall that A is symmetric ...
hence it can be diagonalized:

A =
n∑

i=1

λiuiui
T ,

where (λi ,ui) is the i-th eigenpair

As a consequence...

A3 =
n∑

i=1

λ3
i uiui

T
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Theorem ([Tsourakakis, 2008])

Let ∆(G ) = # triangles and A the adjacency matrix of G .
Let ∆i (G ) = # triangles in which i is involved. We have:

∆(G ) =
1

6

n∑
i=1

λ3
i

∆i (G ) =
1

2

n∑
j=1

λ3
i uj(i)

2,

with ui(j) the j-th component of ui

Proof sketch

First claim follows since trace of a matrix =
∑

eigenvalues

Second claim follows from expression of A3
ii in spectral

decomposition
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In practice ...

Graphs we are interested in normally obey power laws
Same applies to distribution of triangles

Implications

Most triangles incident to relatively small fraction of
nodes

Enough to sum over the first k entries of A3’s diagonal -
k relatively small

Corresponds to computing the first k eigenvectors of A
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