
Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

1	

MAP/REDUCE	VERSUS	DBMS	
Data	Management	in	the	Cloud	Lecture	6	

1	

Map/Reduce	Cri6cism	
•  Release	of	Map/Reduce	caused	a	big	reacCon	from	the	
database	community	
–  The	database	community	was	iniCally	very	criCcal	of	Map	Reduce	
–  Now	most	DB	people	seem	to	believe	that	Map/Reduce	style	models	

and	Parallel	DBs	will	co-exist	

•  IniCal	arguments:	“Why	not	use	a	parallel	DBMS	instead?”	
–  map/reduce	is	a	“giant	step	backwards”	
–  no	schema,	no	indexes,	no	high-level	language	
–  not	novel	at	all	(NCR	Teradata)	
–  does	not	provide	features	of	tradiConal	DBMS	–	indices,	opCmizaCon,	

declaraCve	query	language	
–  incompaCble	with	DBMS	tools	

2	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

2	

MapReduce	-	Comments	
•  Basic	control	flow	for	MapReduce	has	
existed	in	parallel	DBMS	systems	for	
years	
•  Almost	any	parallel	processing	task	can	
be	wri[en	as	a	set	of	database	queries	
(UDFs/UDAs)	or	a	set	of	MapReduce	jobs	
•  SimilariCes	
–  MR	&	P-DBMS	both	use	“shared-nothing”	
–  MR	&	P-DBMS	both	divide	data	into	

parCCons	/	shards	

3	

MEMORY	

CPU	 CPU	

MEMORY	

DISK	 DISK	

Shared	Nothing	

Architectural	Elements	-	Schema	

DBMS	 MapReduce	

Schema	Defined	in	Database	 Schema	defined	in	MR	programs	

Must	define	schema	in	advance	
(schemas	are	difficult!)	
	

Easy	to	get	started…	

Schema	is	separate	from	applicaCon	
(re-use	/	sharing	is	easy)	
	

Each	MR	program	must	parse	the	data	
and	data	structures	in	the	MR	files	
(sharing	is	difficult);	programmers	need	
to	agree	on	structure	

4	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

3	

Architectural	Elements	–	Indexing	

PDBMS	 MapReduce	

Indices:		increase	load	Cme,	but	greatly	
improve	performance	
	

No	built-in	indices:	easy	to	get	started,	
but	performance	my	suffer	
	

Indices	maintained	by	database,	can	be	
used	by	any	user	
	

Programmer	implement	indices?	
Reuse?	
	

5	

Architectural	Elements	–	Programming	Model	
&	Flexibility	

DBMS	 MapReduce	

Programming	Model:	High-level	/	SQL	
	
	

Programming	Model:	Lower-level	
(procedural	specificaCon)		
	
Widespread	sharing	of	code	fragments	
	
High-level	languages	added	–	Pig/Hive	

Flexibility:	MR	proponents:	“SQL	does	
not	facilitate	the	desired	generality	that	
MR	provides,”	but	DBMSs	have	UDFs/
UDAs	
	

Flexibility:	High	flexibility	-	
programming	language…	

6	Quote	Credit:	“A	Comparison	of	Approaches	to	Large-Scale	Data	Analysis”	by	A.	Pavlo	et	al.,	2004	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

4	

Architectural	Elements	–	Execu6on	Strategy	&	
Fault	Tolerance	

DBMS	 MapReduce	

Disk	Access:	Database	has	coordinated,	
opCmized	disk	access.		
	
Sends	computaCon	to	disk.		
	

Disk	Access:	500,000	output	files	of	
Map,	each	Reducer	pulls	1000	files	–>	
poor	disk	performance.		
	
Sends	computaCon	to	disk	only	for	
iniCal	Map	reads.	

OpCmizaCon:	SophisCcated	query	
opCmizaCon	
	

OpCmizaCon:	No	automaCc	
opCmizaCon.	No	selecCon	push	down.	
	

Fault	Tolerance:	Avoid	saving/wriCng	
intermediate	work,	restart	larger	
granules	
	
	

MR	–	more	sophisCcated	fault-
tolerance;	be[er	at	handling	node	
failures	in	the	middle	of	computaCon	
(local	materializaCon	vs.	streaming/
push)	

7	

MapReduce	–	Performance	Comments	
•  Performance	experiments	show	tradeoffs	
–  Parallel	DBMSs	require	Cme	to	load	&	tune,	but	generally	have	shorter	

execuCon	Cmes		
–  MapReduce	generally	has	longer	execuCon	Cmes	

8	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

5	

MR	vs.	PDBMS	Performance	Analysis	
•  Systems	
–  parallel	DBMS	(VerCca	and	DBMS-X)	vs.	map/reduce	(Hadoop)	

•  Tasks	
–  original	map/reduce	task:	“grep”	from	Google	paper	
–  typical	database	tasks:	selecCon,	aggregaCon,	join,	UDF	

•  Cluster	
–  100-node	cluster	

•  Comments:	
–  MR	can	scale	to	1000’s	of	nodes,	but	may	not	be	necessary	with	

efficient	parallel	DBMSs	
–  Few	data	sets	are	really	petabyte	size	–	not	many	users	really	need	

1000	nodes	

9	

Performance	-	Setup	
•  5	tasks	(Grep,	4	AnalyCc)	
•  3	systems	(Hadoop,	DBMS-X,	VerCca)	
•  100-node	cluster,	2.4	GHz	Intel	Core	2	Duo,	Red	Hat	Linux,	4GB	
RAM,	two	250	GB	SATA-I	hard	disks	
•  Experiments	run	on	1,	10,	25,	50	and	100	nodes	
•  Two	Data	Sets:		
–  535	MB/node	:	fixes	amount	of	data	per	node	(amount	of	data	

increases	as	#	nodes	increase)	
–  1TB	total	:	fixes	total	amount	of	data	(data	per	node	decreases	as	#	

nodes	increase)	
–  Note:	original	MR	paper	had	1TB	on	1800	nodes,	535	MB/node	

10	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

6	

Grep	Task:	Load	
•  Hadoop	
–  Data	loaded	as	plain	text	using	command-line	uClity	
–  No	need	for	custom	data	loader	

•  DBMS-X	
–  Load	command	executed	in	parallel	
–  Redistribute	tuples	to	other	node	based	on	parCConing	a[ribute	
–  Reorganize	on	each	node	(compress,	indices,	housekeeping)	

•  VerCca	
–  Similar	to	DBMS-X	

•  SQL:	SELECT	*	FROM	Data	WHERE	field	like	‘%XYZ’;	

11	

Grep	Task:	Load	Times	

535	MB/node	 1	TB/cluster	

12	

AdministraCve	
command	to	

“reorganize”	data	
on	each	node	

Figure	Credit:	“A	Comparison	of	Approaches	to	Large-Scale	Data	Analysis”	by	A.	Pavlo	et	al.,	2004	

DBMS-X	loaded	data	
sequenCally	

Hadoop	much	faster	–	just	copies	
data;	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

7	

Grep	Task:	Execu6on	Times	

535	MB/node	 1	TB/cluster	

13	

Time	required	to	combine	all	
reduce	parCCons	into	one	result	

(start-up	overhead)	

Figure	Credit:	“A	Comparison	of	Approaches	to	Large-Scale	Data	Analysis”	by	A.	Pavlo	et	al.,	2004	

Hadoop	performance	limited	
by	start-up	overhead	(10-25	
sec	to	get	to	full	speed)	

All	systems	execute	
task	on	2x	number	
nodes	in	about	½	the	
Cme	(as	desired)	

VerCca’s	good	performance	
a[ributed	to	VerCca’s	aggressive	

use	of	compression	

Analy6cal	Tasks	
CREATE TABLE Documents (  CREATE TABLE UserVisits ( 
   url VARCHAR(100)     sourceIP VARCHAR(16), 
       PRIMARY KEY,     destURL VARCHAR(100), 
   contents TEXT );     visitDate DATE, 

    adRevenue FLOAT, 
CREATE TABLE Rankings (     userAgent VARCHAR(64), 
   pageURL VARCHAR(100)     countryCode VARCHAR(3), 
           PRIMARY KEY,     languageCode VARCHAR(3), 
   pageRank INT,     searchWord VARCHAR(32), 
   avgDuration INT );     duration INT ); 

•  Data	set	(generated)	
–  600K	unique	HTML	documents,	with	unique	URL	
–  Links	to	other	pages	randomly	generated	
–  155M	user	visit	records	(20	GB/node)	
–  18M	ranking	records	(1	GB/node)	

•  Loading	
–  DBMS-X	and	VerCca	use	a	UDF	to	process	documents	(temp	table)	à	no	

load	results	given	
–  Map-Reduce	–	load	Cme	decreased	by	3	due	to	custom	data	loader	(but	no	

custom	input	handler)	 14	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

8	

Selec6on	
•  SQL:	SELECT pageURL, pageRank FROM Rankings 
WHERE pageRank > X 

•  Map	FuncCon:	Splits	input	value	based	on	delimiter,	outputs	
pageURL	and	pageRank	if	pageRank	>	X	

•  Reduce	FuncCon:	none/idenCty	

15	

SELECT	

Rankings	

Database	Execu6on	-	Selec6on	

16	

	
SELECT	pageURL,	pageRank	
FROM	Rankings	
WHERE	pageRank	>	X	

This	is	the	SELECT	operator,	it	reads	the	
Ranking	relaCon	from	disk	and	“selects”	
all	tuples	with	PageRank	>	X	

The	SELECT	operator	corresponds	to	the	
WHERE	clause	in	the	SQL	query.	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

9	

Parallel	Database	Execu6on	-	Selec6on	

SELECT	

Rankings	

SELECT	

Rankings	

SELECT	

Rankings	

Case	1:	Tuples	from	Rankings	are	
randomly	or	hash	parCConed	
(sharded)	across	the	three	disks.	

Rankings	

SELECT	

Rankings	 Rankings	

Case	2:	Tuples	from	Ranking	are	
parCConed	(sharded)	based	on	
pageRank.	

All	pageRank	>	X	tuples	
happen	to	be	on	this	
disk.	

	
SELECT	pageURL,	pageRank	
FROM	Rankings	
WHERE	pageRank	>	X	

18	Rankings	 Rankings	

Selec6on	–	Map	Reduce	

(pageURL	pageRank)	
…	

(pageURL,	pageRank)	
…	

MAP1	 MAP2	

(pageURL,	pageRank)	
…	

REDUCE1	 REDUCE2	

(pageURL,	pageRank)	
…	

IdenCty	fcn	

Parse	&	select	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

10	

Selec6on	Task	

•  SQL	Query	
SELECT pageURL, pageRank 
FROM Rankings 
WHERE pageRank > X 

•  RelaConal	DBMS	use	index	on	pageRank	column	
•  RelaCve	performance	degrades	as	number	of	nodes	and	amount	of	
data	increases	

•  Hadoop	start-up	cost	increase	with	cluster	size	

19	Figure	Credit:	“A	Comparison	of	Approaches	to	Large-Scale	Data	Analysis”	by	A.	Pavlo	et	al.,	2004	

VerCca:	system	becomes	
flooded	with	control	

messages	

Aggrega6on	Task	
•  Calculate	the	total	ad	revenue	for	each	source	IP	using	the	
user	visits	table	
•  Task:	performance	of	parallel	analyCcs	on	a	single	read-only	
table	where	nodes	need	to	exchange	data	to	compute	result	
•  DBMS	execuCon:	local	group	by,	groups	merged	at	coordinator	
•  Variant	1:	2.5M	groups	

SELECT sourceIP, SUM(adRevenue) 
FROM UserVisits 
GROUP BY sourceIP 

•  Variant	2:	2,000	groups	
SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue) 
FROM UserVisits 
GROUP BY SUBSTR(sourceIP, 1, 7) 

20	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

11	

Aggrega6on	
•  SQL:	SELECT	sourceIP,	SUM(adRevenue)	FROM	UserVisits	
GROUP	BY	sourceIP;	

•  Map	FuncCon:	split	by	delimiter,	outputs	(sourceIP,	
adRevenue)	
•  Reduce	FuncCon:	adds	revenue	for	each	sourceIP	(uses	a	
combiner)	

21	

22	User	Visits	 User	Visits	

Aggrega6on	–	Map	Reduce	

(sourceIP,	adRevenue)	
…	

(sourceIP,	adRevenue)	
…	

MAP1	 MAP2	

(sourceIP,	totalAdRevenue)	
…	

REDUCE1	 REDUCE2	

(sourceIP,	totalAdRevenue)	
…	

Adds	together	revenue	
by	source	

Parse	&	output	ip	and	
revenue	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

12	

Parallel	Database	Execu6on	-	Sum	
SELECT	sourceIP,	SUM(adRevenue)		
FROM	UserVisits		
GROUP	BY	sourceIP	

UserVisits	 UserVisits	 UserVisits	 UserVisits	

SUM	 SUM	

SCAN	 SCAN	

ReParCCon	 ReParCCon	

SCAN	

ReParCCon	 ReParCCon	

SCAN	

Computer	1	
Computer	2	

SUM	produces	
sums	by	sourceIp…	

These	are	not	disk	
writes…no	IO	in	the	
middle	in	this	query	

Aggrega6on	Task	

2.5M	Groups	 2,000	Groups	

24	Figure	Credit:	“A	Comparison	of	Approaches	to	Large-Scale	Data	Analysis”	by	A.	Pavlo	et	al.,	2004	

DBMS	runCmes	
dominated	by	

communicaCon	costs	to	
transmit	groups	to	

coordinator	

MR	ExecuCon	Cme	improved	
by	use	of	“combine”	to	do	

local	group	by	 CommunicaCon	
costs	much	lower	in	
the	variant	plan	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

13	

Join	Task	

SQL	Query	
SELECT INTO Temp  
   UV.sourceIP, 
   AVG(R.pageRank) AS avgPageRank, 
   SUM(UV.adRevenue) AS totalRevenue 
FROM 
   Rankings AS R, UserVisits AS UV 
WHERE R.pageURL = UV.destURL 
  AND UV.visitDate BETWEEN 
         DATE(‘2000-01-15’) AND 
         DATE(‘2000-01-22’) 
GROUP BY UV.sourceIP 
 
SELECT sourceIP,  
       avgPageRank,  
       totalRevenue 
FROM Temp 
ORDER BY totalRevenue DESC LIMIT 1 

Map/reduce	program	

•  Uses	three	phases	
–  Phase	1:	filters	records	outside	

date	range	and	joins	with	
rankings	file	

–  Phase	2:	computes	total	ad	
revenue	and	average	page	
rank	based	on	source	IP	

–  Phase	3:	produces	the	record	
with	the	largest	total	ad	
revenue	

•  Phases	run	in	strict	
sequenCal	order	

25	
In	words:	Find	Url	with	highest	total	revenue	and	it’s	page	rank	

Join	in	MR	
•  Phase	1:	filters	records	outside	data	range	and	joins	with	
Rankings	file	
–  Input	is	all	UserVisits	and	Rankings	data	files	
–  Map:	determine	record	type	by	counCng	number	of	fields	
•  If	UserVisCs,	apply	date	range	predicate	
•  Output	–	composite	keys	(destUrl,	K1),	(pageUrl,	K2)	
•  Hash	funcCon	only	on	url	porCon	of	the	key	

–  Reduce	
•  Input	–	single	sorted	run	of	records	in	URL	order	–	divide	into	2	sets	and	do	
cross	product	

•  Phase	2:	compute	total	adRevenue	and	average	pageRank		
–  Map:	idenCty	map	fcn	
–  Reduce	gathers	all	records	for	a	parCcular	sourceIp	on	a	single	node	
–  Reduce:	computes	adRevenue,	pageRank	–	keep	one	with	max	total	

adRevenue	

26	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

14	

Join	in	MR	
•  Phase	3:	find	the	record	with	the	largest	total	adRevenue	
–  Map:	idenCty	
–  Reduce:	one	reduce	funcCon	to	keep	track	of	the	record	with	the	

largest	totalRevenue	field	

27	

Database	Execu6on	-	Join	

28	

Schema:	
shoes	(id	integer,	brand	text,	descripCon	text,	size	float,	color	text,	lastworn	date)	
shoestorage	(id	integer,	shelfnumber	integer,	shelfposiCon	integer)	
	
SELECT	brand,	descripCon,	size,	shelfnumber,	shelfposiCon	
FROM	shoes,	shoestorage	
WHERE	shoes.id	=	shoestorage.id	
															AND	color	=	‘Green’	
															AND	lastworn	<	‘1-25-2014’	
															

SELECT	

JOIN	

shoes	 shoestorage	

The	SELECT	operator	“selects”	all	tuples	
containing	green	shoes	that	were	last	
worn	before	1-25-2014.	

The	JOIN	operator	combines	the	selected	
tupes	from	the	shoes	relaCon	and	the	
shoestorage	to	produce	storage	locaCons	
for	the	green	shoes	last	worn	before	
1-25-2014.	

SCAN	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

15	

Parallel	Database	Execu6on	-	Join	
SELECT	brand,	descripCon,	size,	shelfnumber,	
shelfposiCon	
FROM	shoes,	shoestorage	
WHERE	shoes.id	=	shoestorage.id	
															AND	color	=	‘Green’	
															AND	lastworn	<	‘1-25-2014’	

shoes	 shoestorage	

Case	1:	Tuples	from	shoes	and	
shoestorage	are	randomly	
parCConed	(sharded)	across	the	
three	disks.	

shoes	 shoestorage	

JOIN	 JOIN	

SELECT	 SELECT	

ReParCCon	 ReParCCon	

SCAN	

ReParCCon	 ReParCCon	

SCAN	

Bold	lines	indicate	
transfer	across	
network	

Computer	1	
Computer	2	

Parallel	Database	Execu6on	-	Join	
SELECT	brand,	descripCon,	size,	shelfnumber,	
shelfposiCon	
FROM	shoes,	shoestorage	
WHERE	shoes.id	=	shoestorage.id	
															AND	color	=	‘Green’	
															AND	lastworn	<	‘1-25-2014’	

shoes	 shoestorage	

Case	2:	Tuples	from	shoes	and	
shoestorage	are	parCConed	
(sharded)	on	id.	

shoes	 shoestorage	

JOIN	 JOIN	

SELECT	 SELECT	 SCAN	SCAN	

Computer	1	
Computer	2	

Joins	are	local,	no	
transfer	across	
network.	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

16	

Join	Task	

31	Figure	Credit:	“A	Comparison	of	Approaches	to	Large-Scale	Data	Analysis”	by	A.	Pavlo	et	al.,	2004	

VerCca	
opCmizer	

bug	

Hadoop	
performance	

limited	by	speed	the	
UserVisits	table	can	
be	read	off	of	disk	

Parallel	
databases	take	
advantage	of	
clustered	
indices	on	

UserVisits.visit
Date	
	

And	both	
tables	are	

parCConed	on	
the	join	key	

Phase	1	-	~1400	
seconds	(600	sec	I/O,	
300	sec	to	parse	&	

deserialize)	

UDF	Aggrega6on	Task	
•  Compute	in-link	count	for	each	document	in	the	data	set	
•  SQL	Query	

SELECT INTO Temp UDF(contents) FROM Documents 
SELECT url, SUM(value) FROM Temp GROUP BY url 

•  Map/reduce	program	
–  documents	are	split	into	lines	
–  input	key/value	pairs:	<line	number,	line	contents>	
–  map:	uses	regex	to	find	URLs	and	emits	<URL,	1>	for	each	URL	
–  reduce:	counts	the	number	of	values	for	a	given	key	

•  DBMS	
–  Requires	UDF	to	parse	contents	of	records	in	Document	table	–	nearly	

idenCcal	to	Map	funcCon	(difficult	to	implement	in	DBMS)	
–  DBMS-X:	not	possible	to	run	UDF	over	contents	stored	as	BLOB	in	

database;	instead	UDF	has	to	access	local	file	system	
–  VerCca:	does	not	currently	support	UDF,	uses	a	special	pre-processor	–	

processed	file,	write	to	disk,	then	loads…	
32	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

17	

UDF	Aggrega6on	Task	

33	

Time	required	
to	combine	all	

reduce	
parCCons	into	
one	result	–	
note	increase	

Time	required	by	
pre-processor	&	

load	

Time	
required	by	
UDF	–	slow	

do	to	
interacCon	
with	file	
system	

Figure	Credit:	“A	Comparison	of	Approaches	to	Large-Scale	Data	Analysis”	by	A.	Pavlo	et	al.,	2004	

Map/Reduce	vs.	Parallel	DBMS	
•  No	schema,	no	index,	no	high-level	language	
–  faster	loading	vs.	faster	execuCon	
–  easier	prototyping	vs.	easier	maintenance	

•  Fault	tolerance	
–  restart	of	single	worker	vs.	restart	of	transacCon	

•  InstallaCon	and	tool	support	
–  easy	to	setup	map/reduce	vs.	challenging	to	configure	parallel	DBMS	
–  no	tools	for	tuning	vs.	tools	for	automaCc	performance	tuning	

•  Performance	per	node	
–  results	seem	to	indicate	that	parallel	DBMS	achieve	the	same	

performance	as	map/reduce	in	smaller	clusters	

34	



Cloud	&	Cluster	Databases,	Spring	2017	
Lecture	6	

4/24/17	

18	

Discussion	Ques6on	

1.	What	MapReduce	feature	would	be	useful	in	
a	DBMS?	
	
2.	What	DBMS	feature	would	be	useful	in	
MapReduce?	
	
	
	

35	

References	
•  A.	Pavlo,	E.	Paulson,	A.	Rasin,	D.	J.	Abadi,	D.	J.	DeWi[,	S.	
Madden,	and	M.	Stonebraker:	A	Comparison	of	Approaches	to	
Large-Scale	Data	Analysis.	Proc.	Intl.	Conf.	on	Management	of	
Data	(SIGMOD),	pp.	165-178,	2009.	

	

36	


