Data Management in the Cloud Lecture 6

MAP/REDUCE VERSUS DBMS

1

Map/Reduce Criticism

- Release of Map/Reduce caused a big reaction from the database community
 - The database community was initially very critical of Map Reduce
 - Now most DB people seem to believe that Map/Reduce style models and Parallel DBs will co-exist
- Initial arguments: "Why not use a parallel DBMS instead?"
 - map/reduce is a "giant step backwards"
 - no schema, no indexes, no high-level language
 - not novel at all (NCR Teradata)
 - does not provide features of traditional DBMS indices, optimization, declarative query language
 - incompatible with DBMS tools

MapReduce - Comments

- Basic control flow for MapReduce has existed in parallel DBMS systems for years
- Almost any parallel processing task can be written as a set of database queries (UDFs/UDAs) or a set of MapReduce jobs
- Similarities
 - MR & P-DBMS both use "shared-nothing"
 - MR & P-DBMS both divide data into partitions / shards

3

Architectural Elements - Schema

DBMS	MapReduce
Schema Defined in Database	Schema defined in MR programs
Must define schema in advance (schemas are difficult!)	Easy to get started
Schema is separate from application (re-use / sharing is easy)	Each MR program must parse the data and data structures in the MR files (sharing is difficult); programmers need to agree on structure

Architectural Elements – Indexing

PDBMS	MapReduce
Indices: increase load time, but greatly improve performance	No built-in indices: easy to get started, but performance my suffer
Indices maintained by database, can be used by any user	Programmer implement indices? Reuse?

5

Architectural Elements – Programming Model & Flexibility

DBMS	MapReduce
Programming Model: High-level / SQL	Programming Model: Lower-level (procedural specification) Widespread sharing of code fragments
	High-level languages added – Pig/Hive
Flexibility: MR proponents: "SQL does not facilitate the desired generality that MR provides," but DBMSs have UDFs/ UDAs	Flexibility: High flexibility - programming language

Architectural Elements – Execution Strategy & Fault Tolerance

DBMS	MapReduce
Disk Access: Database has coordinated, optimized disk access. Sends computation to disk.	Disk Access: 500,000 output files of Map, each Reducer pulls 1000 files -> poor disk performance. Sends computation to disk only for initial Map reads.
Optimization: Sophisticated query optimization	Optimization: No automatic optimization. No selection push down.
Fault Tolerance: Avoid saving/writing intermediate work, restart larger granules	MR – more sophisticated fault- tolerance; better at handling node failures in the middle of computation (local materialization vs. streaming/ push)

7

MapReduce – Performance Comments

- Performance experiments show tradeoffs
 - Parallel DBMSs require time to load & tune, but generally have shorter execution times
 - MapReduce generally has longer execution times

MR vs. PDBMS Performance Analysis

- Systems
 - parallel DBMS (Vertica and DBMS-X) vs. map/reduce (Hadoop)
- Tasks
 - original map/reduce task: "grep" from Google paper
 - typical database tasks: selection, aggregation, join, UDF
- Cluster
 - 100-node cluster
- Comments:
 - MR can scale to 1000's of nodes, but may not be necessary with efficient parallel DBMSs
 - Few data sets are really petabyte size not many users really need 1000 nodes

9

Performance - Setup

- 5 tasks (Grep, 4 Analytic)
- 3 systems (Hadoop, DBMS-X, Vertica)
- 100-node cluster, 2.4 GHz Intel Core 2 Duo, Red Hat Linux, 4GB RAM, two 250 GB SATA-I hard disks
- Experiments run on 1, 10, 25, 50 and 100 nodes
- Two Data Sets:
 - 535 MB/node: fixes amount of data per node (amount of data increases as # nodes increase)
 - 1TB total: fixes total amount of data (data per node decreases as # nodes increase)
 - Note: original MR paper had 1TB on 1800 nodes, 535 MB/node

Grep Task: Load

- Hadoop
 - Data loaded as plain text using command-line utility
 - No need for custom data loader
- DBMS-X
 - Load command executed in parallel
 - Redistribute tuples to other node based on partitioning attribute
 - Reorganize on each node (compress, indices, housekeeping)
- Vertica
 - Similar to DBMS-X
- SQL: SELECT * FROM Data WHERE field like '%XYZ';

11

Grep Task: Load Times

Figure Credit: "A Comparison of Approaches to Large-Scale Data Analysis" by A. Pavlo et al., 2004

Grep Task: Execution Times

Figure Credit: "A Comparison of Approaches to Large-Scale Data Analysis" by A. Pavlo et al., 2004

Analytical Tasks

```
CREATE TABLE Documents (
                                       CREATE TABLE UserVisits (
   url VARCHAR (100)
                                          sourceIP VARCHAR(16),
       PRIMARY KEY,
                                          destURL VARCHAR (100),
   contents TEXT );
                                          visitDate DATE,
                                          adRevenue FLOAT,
userAgent VARCHAR(64)
CREATE TABLE Rankings (
                                          countryCode VARCHAR(3)
   pageURL VARCHAR (100)
           PRIMARY KEY,
                                          languageCode VARCHAR(3),
   pageRank INT,
                                          searchWord VARCHAR(32),
   avgDuration INT );
                                          duration INT );
```

- Data set (generated)
 - 600K unique HTML documents, with unique URL
 - Links to other pages randomly generated
 - 155M user visit records (20 GB/node)
 - 18M ranking records (1 GB/node)
- Loading
 - DBMS-X and Vertica use a UDF to process documents (temp table) → no load results given
 - Map-Reduce load time decreased by 3 due to custom data loader (but no custom input handler)

Selection

- SQL: SELECT pageURL, pageRank FROM Rankings WHERE pageRank > X
- Map Function: Splits input value based on delimiter, outputs pageURL and pageRank if pageRank > X
- Reduce Function: none/identity

15

Database Execution - Selection

SELECT pageURL, pageRank FROM **Rankings** WHERE pageRank > X

Parallel Database Execution - Selection

SELECT pageURL, pageRank FROM **Rankings** WHERE pageRank > X

randomly or hash partitioned (sharded) across the three disks.

SELECT SELECT SELECT

Rankings Rankings

Case 1: Tuples from Rankings are

Case 2: Tuples from **Ranking** are partitioned (sharded) based on pageRank.

disk.

Selection – Map Reduce

- SQL Query SELECT pageURL, pageRank FROM Rankings WHERE pageRank > X
- Relational DBMS use index on pageRank column
- Relative performance degrades as number of nodes and amount of data increases
- Hadoop start-up cost increase with cluster size

Figure Credit: "A Comparison of Approaches to Large-Scale Data Analysis" by A. Pavlo et al., 2004

19

Aggregation Task

- Calculate the total ad revenue for each source IP using the user visits table
- Task: performance of parallel analytics on a single read-only table where nodes need to exchange data to compute result
- DBMS execution: local group by, groups merged at coordinator
- Variant 1: 2.5M groups

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits
GROUP BY sourceIP

• Variant 2: 2,000 groups

SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue)
FROM UserVisits
GROUP BY SUBSTR(sourceIP, 1, 7)

Aggregation

- SQL: SELECT sourceIP, SUM(adRevenue) FROM UserVisits GROUP BY sourceIP;
- Map Function: split by delimiter, outputs (sourceIP, adRevenue)
- Reduce Function: adds revenue for each sourceIP (uses a combiner)

21

Aggregation – Map Reduce

Parallel Database Execution - Sum

Figure Credit: "A Comparison of Approaches to Large-Scale Data Analysis" by A. Pavlo et al., 2004

Join Task

SQL Query

SELECT INTO Temp UV.sourceIP, AVG(R.pageRank) AS avgPageRank, SUM(UV.adRevenue) AS totalRevenue FROM Rankings AS R, UserVisits AS UV WHERE R.pageURL = UV.destURL AND UV.visitDate BETWEEN DATE('2000-01-15') AND DATE('2000-01-22') GROUP BY UV.sourceIP SELECT sourceIP, avgPageRank, totalRevenue FROM Temp

ORDER BY totalRevenue DESC LIMIT 1

Map/reduce program

- · Uses three phases
 - Phase 1: filters records outside date range and joins with rankings file
 - Phase 2: computes total ad revenue and average page rank based on source IP
 - Phase 3: produces the record with the largest total ad revenue
- Phases run in strict sequential order

In words: Find Url with highest total revenue and it's page rank

25

Join in MR

- Phase 1: filters records outside data range and joins with Rankings file
 - Input is all UserVisits and Rankings data files
 - Map: determine record type by counting number of fields
 - If UserVistis, apply date range predicate
 - Output composite keys (destUrl, K1), (pageUrl, K2)
 - · Hash function only on url portion of the key
 - Reduce
 - Input single sorted run of records in URL order divide into 2 sets and do cross product
- Phase 2: compute total adRevenue and average pageRank
 - Map: identity map fcn
 - Reduce gathers all records for a particular sourcelp on a single node
 - Reduce: computes adRevenue, pageRank keep one with max total adRevenue

Join in MR

- Phase 3: find the record with the largest total adRevenue
 - Map: identity
 - Reduce: one reduce function to keep track of the record with the largest totalRevenue field

27

Database Execution - Join

Schema:

shoes (id integer, brand text, description text, size float, color text, lastworn date) **shoestorage** (id integer, shelfnumber integer, shelfposition integer)

 ${\tt SELECT\ brand,\ description,\ size,\ shelfnumber,\ shelfposition}$

FROM shoes, shoestorage

WHERE shoes.id = shoestorage.id AND color = 'Green' AND lastworn < '1-25-2014'

The SELECT operator "selects" all tuples containing green shoes that were last worn before 1-25-2014.

The JOIN operator combines the selected tupes from the **shoes** relation and the **shoestorage** to produce storage locations for the green shoes last worn before 1-25-2014.

Parallel Database Execution - Join

Parallel Database Execution - Join

Figure Credit: "A Comparison of Approaches to Large-Scale Data Analysis" by A. Pavlo et al., 2004

UDF Aggregation Task

- Compute in-link count for each document in the data set
- SQL Query

SELECT INTO Temp UDF(contents) FROM Documents SELECT url, SUM(value) FROM Temp GROUP BY url

- Map/reduce program
 - documents are split into lines
 - input key/value pairs: line number, line contents>
 - map: uses regex to find URLs and emits <URL, 1> for each URL
 - reduce: counts the number of values for a given key
- DBMS
 - Requires UDF to parse contents of records in Document table nearly identical to Map function (difficult to implement in DBMS)
 - DBMS-X: not possible to run UDF over contents stored as BLOB in database; instead UDF has to access local file system
 - Vertica: does not currently support UDF, uses a special pre-processor processed file, write to disk, then loads...

Figure Credit: "A Comparison of Approaches to Large-Scale Data Analysis" by A. Pavlo et al., 2004

33

Map/Reduce vs. Parallel DBMS

- · No schema, no index, no high-level language
 - faster loading vs. faster execution
 - easier prototyping vs. easier maintenance
- · Fault tolerance
 - restart of single worker vs. restart of transaction
- Installation and tool support
 - easy to setup map/reduce vs. challenging to configure parallel DBMS
 - no tools for tuning vs. tools for automatic performance tuning
- Performance per node
 - results seem to indicate that parallel DBMS achieve the same performance as map/reduce in smaller clusters

Discussion Question

- 1. What MapReduce feature would be useful in a DBMS?
- 2. What DBMS feature would be useful in MapReduce?

35

References

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker: A Comparison of Approaches to Large-Scale Data Analysis. Proc. Intl. Conf. on Management of Data (SIGMOD), pp. 165-178, 2009.