Background for assignment 4 Cloud & Cluster Data Management, Spring 2017 Cuong Nguyen #### Overview of this talk - 1. Quick introduction to Google Cloud Platform solutions for Big Data - 2. Walkthrough example: MapReduce word count using Hadoop (We suggest you set up your account and try going through this example before Assignment 4 is given on 18 May) # Google Cloud Platform (GCP) #### GCP: redeem coupon Faculty will share the URL and instructions with students (remember to use your @pdx.edu email when redeeming) After signing up, you'll get \$50 credit © #### GCP: basic workflow - 1. go to the GCP console at https://console.cloud.google.com - 2. create a new project OR select an existing one - 3. set billing for this project ***SUPER IMPORTANT*** - 4. enable relevant APIs that you want to use - 5. use APIs to manage and process data #### GCP: console ### GCP: create a new project 1. Click on the project link in GCP console Make sure organization is set to "pdx.edu", then click on the "plus" button 3. Give it a name, then click on "Create". Write down the Project ID, you will need it all the time # GCP: billing Go to Main Menu → Billing Enable billing: if a project's billing has not been enabled, set it to the billing account that you redeemed <u>Disable billing</u>: if you are worried about overspending, it's easiest to just disable billing from any project that you don't use #### GCP: enable APIs Go to Main Menu \rightarrow API Manager, then click on Enable API Type the name of the API you want to enable in the search box, and click Enable #### GCP: learn more check out the codelabs for GCP https://codelabs.developers.google.com/?cat=Cloud #### useful codelabs: query the Wikipedia dataset in BigQuery introduction to Cloud Dataproc Instructions for monitoring billing https://docs.google.com/document/d/1pkMx12gc3uSOdp4nKtTx DJjY5Slnok wVeN8-D1gTHA/edit # MapReduce word count example #### Word count We will count the frequency of all words in the Shakespeare dataset The data set is publicly available on Big Query https://bigquery.cloud.google.com/table/bigquery-public-data:samples.shakespeare #### **APIs** For our word count example, we'll need these APIs enabled: - BigQuery: query data and store results using SQL - Google Cloud Dataproc: use Hadoop to run the MapReduce job - Google Cloud Storage: upload and manage your own data BigQuery and Cloud Storage are enabled by default. To enable Dataproc, you need to enable the **Google Compute Engine API** first #### Basic workflow #### 1. Big Query - 1. quick start - 2. create a table for the output #### 2. Dataproc - 1. create clusters to run the MapReduce job using Hadoop - 2. write WordCount.java to perform the MapReduce job - 3. compile into a .jar file and upload it to Cloud Storage - 4. submit a job to the clusters and wait - 5. check the results in Big Query # Big Query # Big Query: quick start Go to Main Menu → BigQuery, or https://bigquery.cloud.google.com/ # Big Query: compose query A table can be queried with the format: [project id]:[dataset name].[table name] # Big Query: create a new table We will create a new table to store the results of the word count job In your project, create a new dataset and a new table if you haven't had one # Big Query: create a new table Create an empty table with two fields: Word (type string) and Count (type Integer). Our MapReduce job will write the results into this table # Dataproc #### Dataproc: create a new cluster Go to Main Menu → Dataproc, or https://console.cloud.google.com/dataproc/, then click on "Clusters" Click on "Create Cluster" Settings on next slide... #### Dataproc: create a new cluster We will create one master node and three worker nodes #### Dataproc: important Dataproc is billed <u>by the minute</u> https://cloud.google.com/dataproc/docs/resources/pricing It'll be fine for our example, but if you don't use it: delete the cluster #### MapReduce word count in Java #### Source code is on github https://github.com/cuong3/GoogleCloudPlatformExamples/blob/master/dataproc-mapreduce/WordCount.java #### Input arguments - arg0 projectId = your project id (example: mine is codelab-mapreduce) - arg1 fullyQualifiedInputTableId = bigquery-public-data:samples.shakespeare - arg2 fieldName = word - arg3 fullyQualifiedOutputTableId = output table (example: mine is codelab-mapreduce:mroutput.output1) #### How do we run it? Go to Main Menu → Dataproc → Jobs, click on Submit a job To run the code on our clusters, we will need to compile it into a .jar file first Go to Main Menu \rightarrow Dataproc \rightarrow Clusters Click on your cluster name Choose "VM Instances" Click on SSH. This will open a command line interface that lets you access your cluster. Setup environment variables (needs to be done every time you open SSH) Create a home directory hadoop fs -mkdir -p /user/your user name To find your user name, run whoami #### Setup paths ``` export PATH=${JAVA_HOME}/bin:${PATH} export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar ``` Upload your .java file to the cluster: click on the gear icon in the top right corner and selects "Upload file" #### Compile ``` hadoop com.sun.tools.javac.Main ./WordCount.java jar cf wordcount.jar WordCount*.class Check if wordcount.jar has been created ls ``` We now have the wordcount.jar in the cluster, we need to move it to a Google Cloud Storage folder so we can submit a MapReduce job with it later # Why store the .jar file in Cloud Storage? You still have access to the files when you shut down the cluster You can transfer/access files in Cloud Storage in almost all of GCP's APIs # Cloud Storage Go to Main Menu → Dataproc → Clusters, click on "Cloud Storage staging bucket" In the Browser tab, Click on "Create Folder", give it a name. Example: if a create a folder called "testMapReduce", then my Cloud Storage link would be gs://dataproc-9b19685e-1912-48fa-afab-651b8f92355b-us/testMapReduce/ # Transfer wordcount.jar to Cloud Storage Back to the SSH interface of our cluster, run these commands: Copy wordcount.jar to Hadoop file system hadoop fs -copyFromLocal ./wordcount.jar Copy wordcount.jar to folder testMapReduce in Cloud Storage hadoop fs -cp ./wordcount.jar gs://dataproc-9b19685e-1912-48fa-afab-651b8f92355b-us/testMapReduce/ | Buckets / dataproc-9b19685e-1912-48fa-afab-651b8f92355b-us / testMapReduce | | | |--|---------|--------------------------| | Name | Size | Туре | | □ wordcount.jar | 4.73 KB | application/octet-stream | ### Submit the MapReduce job Go to Main Menu \rightarrow Dataproc \rightarrow Jobs Click on Submit Job Set Job type to: Hadoop Set <u>Jar files</u> to your Cloud Storage link (example: my link is gs://dataproc-9b19685e-1912-48fa-afab-651b8f92355b- us/testMapReduce/wordcount.jar) Set Main class of jar to: WordCount Set <u>arguments</u> (see slide 24) Click Submit It should take about 2~10 minutes to finish the job # Check the results in BigQuery Note: if you run the MapReduce job one more time, the results will be appended to this table #### Important Don't forget to delete your clusters when you're done