Background for assignment 4

Cloud & Cluster Data Management, Spring 2017

Cuong Nguyen

Overview of this talk

- 1. Quick introduction to Google Cloud Platform solutions for Big Data
- 2. Walkthrough example: MapReduce word count using Hadoop

(We suggest you set up your account and try going through this example before Assignment 4 is given on 18 May)

Google Cloud Platform (GCP)

GCP: redeem coupon

Faculty will share the URL and instructions with students (remember to use your @pdx.edu email when redeeming)

After signing up, you'll get \$50 credit ©

GCP: basic workflow

- 1. go to the GCP console at https://console.cloud.google.com
- 2. create a new project OR select an existing one
- 3. set billing for this project ***SUPER IMPORTANT***
- 4. enable relevant APIs that you want to use
- 5. use APIs to manage and process data

GCP: console

GCP: create a new project

1. Click on the project link in GCP console

Make sure organization is set to "pdx.edu", then click on the "plus" button

3. Give it a name, then click on "Create". Write down the Project ID, you will need it all the time

GCP: billing

Go to Main Menu → Billing

Enable billing: if a project's billing has not been enabled, set it to the billing account that you redeemed

<u>Disable billing</u>: if you are worried about overspending, it's easiest to just disable billing from any project that you don't use

GCP: enable APIs

Go to Main Menu \rightarrow API Manager, then click on Enable API

Type the name of the API you want to enable in the search box, and click Enable

GCP: learn more

check out the codelabs for GCP https://codelabs.developers.google.com/?cat=Cloud

useful codelabs:

query the Wikipedia dataset in BigQuery introduction to Cloud Dataproc

Instructions for monitoring billing https://docs.google.com/document/d/1pkMx12gc3uSOdp4nKtTx DJjY5Slnok wVeN8-D1gTHA/edit

MapReduce word count example

Word count

We will count the frequency of all words in the Shakespeare dataset

The data set is publicly available on Big Query https://bigquery.cloud.google.com/table/bigquery-public-data:samples.shakespeare

APIs

For our word count example, we'll need these APIs enabled:

- BigQuery: query data and store results using SQL
- Google Cloud Dataproc: use Hadoop to run the MapReduce job
- Google Cloud Storage: upload and manage your own data

BigQuery and Cloud Storage are enabled by default. To enable Dataproc, you need to enable the **Google Compute Engine API** first

Basic workflow

1. Big Query

- 1. quick start
- 2. create a table for the output

2. Dataproc

- 1. create clusters to run the MapReduce job using Hadoop
- 2. write WordCount.java to perform the MapReduce job
- 3. compile into a .jar file and upload it to Cloud Storage
- 4. submit a job to the clusters and wait
- 5. check the results in Big Query

Big Query

Big Query: quick start

Go to Main Menu → BigQuery, or https://bigquery.cloud.google.com/

Big Query: compose query

A table can be queried with the format: [project id]:[dataset name].[table name]

Big Query: create a new table

We will create a new table to store the results of the word count job

 In your project, create a new dataset and a new table if you haven't had one

Big Query: create a new table

Create an empty table with two fields: Word (type string) and Count (type Integer). Our MapReduce job will write the results into this table

Dataproc

Dataproc: create a new cluster

Go to Main Menu → Dataproc, or https://console.cloud.google.com/dataproc/, then click on "Clusters"

Click on "Create Cluster"

Settings on next slide...

Dataproc: create a new cluster

We will create one master node and three worker nodes

Dataproc: important

Dataproc is billed <u>by the minute</u> https://cloud.google.com/dataproc/docs/resources/pricing

It'll be fine for our example, but if you don't use it: delete the cluster

MapReduce word count in Java

Source code is on github

https://github.com/cuong3/GoogleCloudPlatformExamples/blob/master/dataproc-mapreduce/WordCount.java

Input arguments

- arg0 projectId = your project id (example: mine is codelab-mapreduce)
- arg1 fullyQualifiedInputTableId = bigquery-public-data:samples.shakespeare
- arg2 fieldName = word
- arg3 fullyQualifiedOutputTableId = output table (example: mine is codelab-mapreduce:mroutput.output1)

How do we run it?

Go to Main Menu → Dataproc → Jobs, click on Submit a job

To run the code on our clusters, we will need to compile it into a .jar file first

Go to Main Menu \rightarrow Dataproc \rightarrow Clusters

Click on your cluster name

Choose "VM Instances"

Click on SSH. This will open a command line interface that lets you access your cluster.

Setup environment variables (needs to be done every time you open SSH)

Create a home directory

hadoop fs -mkdir -p /user/your user name

To find your user name, run

whoami

Setup paths

```
export PATH=${JAVA_HOME}/bin:${PATH}
export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar
```

Upload your .java file to the cluster: click on the gear icon in the top right corner and selects "Upload file"

Compile

```
hadoop com.sun.tools.javac.Main ./WordCount.java
jar cf wordcount.jar WordCount*.class
Check if wordcount.jar has been created
ls
```

We now have the wordcount.jar in the cluster, we need to move it to a Google Cloud Storage folder so we can submit a MapReduce job with it later

Why store the .jar file in Cloud Storage?

You still have access to the files when you shut down the cluster

You can transfer/access files in Cloud Storage in almost all of GCP's APIs

Cloud Storage

Go to Main Menu → Dataproc → Clusters, click on "Cloud Storage staging bucket"

In the Browser tab, Click on "Create Folder", give it a name.

Example: if a create a folder called "testMapReduce", then my Cloud Storage link would be gs://dataproc-9b19685e-1912-48fa-afab-651b8f92355b-us/testMapReduce/

Transfer wordcount.jar to Cloud Storage

Back to the SSH interface of our cluster, run these commands:

Copy wordcount.jar to Hadoop file system

hadoop fs -copyFromLocal ./wordcount.jar

Copy wordcount.jar to folder testMapReduce in Cloud Storage

hadoop fs -cp ./wordcount.jar gs://dataproc-9b19685e-1912-48fa-afab-651b8f92355b-us/testMapReduce/

Buckets / dataproc-9b19685e-1912-48fa-afab-651b8f92355b-us / testMapReduce		
Name	Size	Туре
□ wordcount.jar	4.73 KB	application/octet-stream

Submit the MapReduce job

Go to Main Menu \rightarrow Dataproc \rightarrow Jobs

Click on Submit Job

Set Job type to: Hadoop

Set <u>Jar files</u> to your Cloud Storage link (example: my link is gs://dataproc-9b19685e-1912-48fa-afab-651b8f92355b-

us/testMapReduce/wordcount.jar)

Set Main class of jar to: WordCount

Set <u>arguments</u> (see slide 24)

Click Submit

It should take about 2~10 minutes to finish the job

Check the results in BigQuery

Note: if you run the MapReduce job one more time, the results will be appended to this table

Important

Don't forget to delete your clusters when you're done

