
Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

1	

NEO4J:	GRAPH	DATA	MODEL	
Data	Management	in	the	Cloud,	Lecture	11	

1	

Graph	Data	
Many	types	of	data	can	be	represented	with	nodes	and	edges	
VariaBons	
•  Edges	can	be	directed	or	undirected	
•  Nodes	and	edges	can	have	types	or	labels	
•  Nodes	and	edges	can	have	aFributes	

2	Credit:	h*p://mathinsight.org/	

Undirected	edges	 Directed	edges	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

2	

Road	Network	
•  Nodes:	IntersecBons	
•  Edges:	Road	segments	

3	Credit:	Marius	Thériault	et	al.,	Journal	of	Geographic	Informa?on	and	Decision	Analysis,	vol.	3,	no.	1,	pp.	41-55,	1999		

Computer	Network	
•  Nodes:	Computers	
•  Edges:	CommunicaBon	links	

4	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

3	

Power	Transmission	System	
•  Nodes:	SubstaBons	
•  Edges:	Power	transmission	lines		(possible	aFributes?)	

5	Credit:	h*p://portlandwiki.org/	

Social	Network	
•  Nodes:	People,	PosBngs	
•  Edges:	Friend,	Like,	Created,	…	

6	Credit:	h*p://mathinsight.org/	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

4	

Discussion	QuesFon	
Consider	a	graph	of	TwiFer	users	(each	node	is	a	disBnct	user).	
List	some	kinds	of	edges	that	might	be	in	the	graph	

–  Should	the	edge	be	directed	or	undirected?	
–  What	aFributes	should	the	edge	have?	

See	if	you	can	come	up	with	at	least	two	kinds	of	edges.	

7	

Neo4j	Nodes	and	RelaFonships	
•  Nodes	
–  have	a	system-assigned	id	
–  can	have	key/value	properBes	
–  there	is	a	reference	node	(“starBng	point”	into	the	node	space)	

•  RelaBonships	(Edges)	
–  have	a	system-assigned	id	
–  are	directed	(but	can	be	traversed	in	either	direcBon)	
–  have	a	type	
–  can	have	key/value	properBes	

•  Key/value	properBes	
–  values	always	stored	as	strings	
–  support	for	basic	types	and	arrays	of	basic	types	

8	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

5	

OperaFons	
•  Nodes	are	managed	using	the	GraphDatabaseService	
interface	
–  createNode()	creates	and	returns	a	new	node	
–  getNodeById(id)	returns	the	node	with	the	given	id	
–  getAllNodes()	returns	an	iterator	over	all	nodes	(index	is	beFer)	

•  RelaBonships	are	managed	using	the	Node	interface	
–  createRelationshipTo(target,type)	creates	and	returns	a	

relaBonship	
–  getRelationships(direction,types)	returns	an	iterator	

over	a	node’s	relaBonships	
–  hasRelationship(type,direction)	queries	the	existence	of	

a	certain	relaBonship	

9	

OperaFons	
•  Node	and	relaBonship	properBes	are	managed	using	the	
PropertyContainer	interface	
–  setProperty(key,value)	sets	(or	creates)	a	property	
–  getProperty(key)	returns	a	property	value	(or	throws	excepBon)	
–  hasProperty(key)	checks	if	a	key/value	property	exists	
–  removeProperty(key)	deletes	a	key/value	property	
–  getPropertyKeys()	returns	all	the	keys	of	a	node’s	properBes	
	

•  Nodes	and	relaBonships	are	deleted	using	the	corresponding	
method	in	the	Node	and	Relationship	interfaces	

10	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

6	

Example	
GraphDatabaseService db = ...
Transaction tx = db.beginTx();
try {
 Node mike = db.createNode();
 mike.setProperty(“name”, “Michael”);
 Node pdx = db.createNode();
 Relationship edge = mike.createRelationshipTo(pdx, LIVES_IN);
 edge.setProperty(“years”, new int[] { 2010, 2011, 2012 });
 for (edge: pdx.getRelationship(LIVES_IN, INCOMING)) {
 Node node = edge.getOtherNode(pdx);
 }
 tx.success();
} catch (Exception e) {
 tx.fail();
} finally {
 tx.finish();
}

 11	

Indexes	
•  Neo4j	does	not	support	any	value-based	retrieval	of	nodes	and	
relaBonships	without	indexes	
•  Interface	IndexManager	supports	the	creaBon	of	node	and	
relaBonship	indexes	
–  forNodes(name,configuration)	returns	(or	creates)	a	node	

index	
–  forRelationships(name,configuration)	returns	(or	

creates)	a	relaBonship	index	

•  Behind	the	scenes,	Neo4j	indexes	are	based	on	Apache	Lucene	
as	an	indexing	service	
•  Values	are	indexed	as	strings	by	default,	but	a	so-called	value	
context	can	be	used	to	support	numeric	indexing	
•  Neo4j	also	supports	auto	indexers	for	nodes	and	relaBonships	

12	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

7	

Node	Indexes	
•  Index	maintenance	(manual)	
–  add(node,key,value)	indexes	the	given	node	based	on	the	given	

key/value	property	
–  remove(node)	removes	all	index	entries	for	the	given	node	
–  remove(node,key)	removes	all	index	entries	for	the	given	node	

with	the	given	key	
–  remove(node,key,value)	removes	a	key/value	property	from	

the	index	for	the	given	node		

•  Index	lookups	
–  get(key,value)	supports	equality	index	lookups	
–  query(key,query)	does	a	query-based	index	lookup	for	one	key	
–  query(query)	does	a	query-based	index	lookup	for	arbitrary	keys	

13	

Example	
Index<Node> people = db.index().forNodes(“people_idx”);

// do an exact lookup
Node mike = people.get(“name”, “Michael”).getSingle();

// do a query-based lookup for one key
for (Node node: people.query(“name”, “M* OR m*”)) {
 System.out.println(node.getProperty(“name”);
}

// do a general query-based lookup
for (Node node: people.query(“name:M* AND title:Mr”) {
 System.out.println(node.getId());
}

14	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

8	

RelaFonship	Indexes	
•  Index	maintenance	is	analogous	to	node	indexes	
•  AddiBonal	index	lookup	funcBonality	
–  get(key,value,source,target)	does	an	exact	lookup	for	the	

given	key/value	property,	taking	the	given	source	and	target	node	into	
account	

–  query(key,query,source,target)	does	a	query-based	lookup	
for	the	given	key,	taking	the	given	source	and	target	node	into	account	

–  query(query,source,target)	does	a	general	query-based	
lookup,	taking	the	given	source	and	target	node	into	account	

•  Note:	There	is	now	schema-level	indexing	

15	

Example	
Index<Node> homes = db.index().forRelationships(“homes_idx”);

// do an exact lookup
Relationship r = homes.get(“span”, “2”, mike, pdx).getSingle();

// do a query-based lookup for one key
for (Relationship r: homes.query(“span”, “*”, mike, null)) {
 System.out.println(r.getOtherNode(mike));
}

// do a general query-based lookup
for (Relationship r:
 homes.query(“type:LIVES_IN AND span:3”, mike, null) {
 System.out.println(r.getOtherNode(mike));
}

16	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

9	

Schema	Indexing	

• A	more	recent	feature	to	support	automaBc	indexing	
on	nodes	
• Depends	on	nodes	being	assigned	to	collecBons	using	
labels.	
–  A	label	can	be	assigned	at	creaBon	Bme	
–  Node mike = db.createNode(Labels.ACTOR);

•  Can	also	create	unique	constraints	on	properBes	
• We’ll	see	an	example	in	Cypher	
(Note:	There	is	an	automaBc	form	of	manual	indexing,	
but	it	indexes	a	given	property	no	maFer	what	kind	of	
node	it	belongs	to	–	can’t	index	name	just	for	ciBes.)	

17	

Traversal	Framework	
•  Neo4j	provides	a	traversal	interface	to	specify	navigaBon	
through	a	graph	
–  based	on	callbacks	
–  executed	lazily	on	demand	

•  Main	concepts	
–  expanders define	what	to	traverse,	typically	in	terms	of	relaBonships	

direcBon	and	type	
–  the	order guides	the	exploraBon,	i.e.	depth-first	or	breadth-first	
–  uniqueness indicates	whether	nodes,	relaBonships,	or	paths	are	visited	

only	once	or	mulBple	Bmes	
–  an	evaluator decides	what	to	return	and	whether	to	stop	or	conBnue	

traversal	beyond	the	current	posiBon	
–  a	starFng	node	where	the	traversal	will	begin	

18	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

10	

Example:	DFS	in	Finding	Bridges	
List<Relationship> result = ...
Set<Node> roots = ...

IndexManager manager = this.database.index();
Index<Node> dfsNodes = manager.forNodes("dfsNodes");
RelationshipIndex treeEdges = manager.forRelationships("treeEdges");

TraversalDescription traversal = new TraversalDescriptionImpl();
traversal = traversal.order(Traversal.postorderDepthFirst());
traversal = traversal.relationships(EDGE, OUTGOING);

int treeId = 0;
while (!roots.isEmpty()) {
 Node root = roots.iterator().next();
 Traverser traverser = traversal.traverse(root);
 int pos = 0;
 for (Node node : traverser.nodes()) {
 dfsNodes.add(node, P_DFSPOS, treeId + ":" + pos);
 roots.remove(node);
 pos++;
 }
 for (Relationship relationship : traverser.relationships()) {
 treeEdges.add(relationship, P_ID, relationship.getId());
 }
 result.addAll(this.tarjan(dfsNodes, treeEdges, treeId));
 treeId++;
}

19	

Graph	Algorithms	
•  Some	common	graph	algorithms	are	directly	supported	
–  all	shortest	paths	between	two	nodes	up	to	a	maximum	length	
–  all	paths	between	two	nodes	up	to	a	maximum	length	
–  all	simple	paths	between	two	nodes	up	to	a	maximum	length	
–  “cheapest”	path	based	on	Dijkstra	or	A*	

•  Class	GraphAlgoFactory	provides	methods	to	create	
PathFinders	that	implement	these	algorithms	

20	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

11	

Example:	Shortest	Path	
// unweighted case
PathFinder<Path> pathFinder = GraphAlgoFactory.shortestPath(
 Traversal.expanderForTypes(EDGE, OUTGOING),
 Integer.MAX_VALUE);
Path path = pathFinder.findSinglePath(source, target);
for (Node node: path.nodes()) {
 System.out.println(node);
}

// weighted case
PathFinder<WeightedPath> pathFinder = GraphAlgoFactory.dijkstra(
 Traversal.expanderForTypes(EDGE, OUTGOING), P_WEIGHT);

Path path = pathFinder.findSinglePath(source, target);
for (Relationship relationship: path.relationships()) {
 System.out.println(relationship);
}

21	

Queries	
•  Support	for	the	Cypher	graph	query	language	has	been	added	
to	Neo4j	
•  Unlike	the	imperaBve	graph	scripBng	language	Gremlin,	
Cypher	is	a	declaraBve	language	
•  Cypher	is	comprised	of	four	main	concepts	
–  START:	starBng	points	in	the	graph,	obtained	by	element	IDs	or	via	

index	lookups	
–  MATCH:	graph	paFern	to	match,	bound	to	the	starBng	points		
–  WHERE:	filtering	criteria	
–  RETURN:	what	to	return	

•  Implemented	using	the	Scala	programming	language	

22	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

12	

Example:	Director	and	Actor	
with	Same	Last	Name	in	a	Musical	

MATCH (a:PERSON)-[:IS-IN]->(m:MOVIE)<-[:DIRECTS]-(b:PERSON)
WHERE a.LastName = b.LastName AND m.Genre = “musical”
RETURN a.LastName, m.Title

23	

Example:	Index	CreaFon,	Constraint	

CREATE INDEX ON :ACTOR(name);

MATCH (p:ACTOR {name: ’Michael'}) RETURN p

CREATE CONSTRAINT ON (p:ACTOR) ASSERT p.name IS UNIQUE

24	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

13	

Deployments	
•  Several	deployment	scenarios	are	supported	
•  Embedded	database	
–  wraps	around	a	local	directory	
–  implements	the	GraphDatabaseService	interface	
–  runs	in	the	same	process	as	applicaBon,	i.e.	no	client/server	overhead	

•  Client/server	mode	
–  server	runs	as	a	standalone	process	
–  provides	Web-based	administraBon	
–  communicates	with	clients	through	REST	API	

•  High	availability	setup	
–  one	master	and	mulBple	slaves,	coordinated	by	ZooKeeper	
–  supports	fault	tolerance	and	horizontal	scaling	
–  implements	the	GraphDatabaseService	interface	

25	

High	Availability	Setup	

26	

Cloud	&	Cluster	DM,	Spring	2017,	Lecture	11	

14	

High	Availability	Setup	
•  High	availability	
–  reads	are	highly	available	
–  updates	to	master	are	replicated	asynchronously	to	slaves	
–  updates	to	slaves	are	replicated	synchronously	to	master	
–  transacBons	are	atomic,	consistent	and	durable	on	the	master,	but	

eventually	consistent	on	slaves	
•  Fault	tolerance	
–  depending	on	ZooKeeper	setup,	Neo4j	can	conBnue	to	operate	from	

any	number	of	machines	down	to	a	single	machine	
–  machines	will	be	reconnected	automaBcally	to	the	cluster	whenever	

the	issue	that	caused	the	outage	(network,	maintenance)	is	resolved	
–  if	the	master	fails	a	new	master	will	be	elected	automaBcally	
–  if	the	master	goes	down	any	running	write	transacBon	will	be	rolled	

back	and	during	master	elecBon	no	write	can	take	place	

27	

