Run PySpark Word Count example on
Google Cloud Platform using Dataproc

Overview

This word count example is similar to the one introduced earlier. It will use the Shakespeare dataset in
BigQuery. The only difference is that instead of using Hadoop, it uses PySpark which is a Python library
for Spark.

Step 1: create the output table in BigQuery
We need a table to store the output of our Map Reduce procedure.

- Select your project or create a new one, remember to enable billing

- GotoBigQuery
- Create a dataset, then a table using the following schema

Table Details: wc1

Query History

Schema Details Preview

Job History

. word STRING NULLABLE
Filter by ID or label

. word_count INTEGER NULLABLE
:uong-project1 v -

w wc class
- Add New Fields

== wel

Example: my project is “cuong-projectl”, dataset is “wc_class”, and output table is “wcl”. The output
table has two fields: word and word_count. We will need these fields to store the output.

Step 2: create a cluster in Dataproc and Google Cloud Storage
Go to Dataproc and create a cluster similar to our previous tutorial. It should look like this

Search clusters, press Ent

Name - Zone Total worker nodes Cloud Storage staging bucket Created Status

@ cluster-1 us-west1-a 3 dataproc-e4225d08-23a8-481f-aff9-5205024119a5-us May 9, 2017, 9:57:29 AM Running

Now click on the link in the “Cloud Storage staging bucket” column, it will bring you to your Cloud
Storage. This is where we will upload our python code, which will then give us a link to submit a job to
the cluster.



Step 3: modify the code and upload it to Cloud Storage
Download the code from here https://cloud.google.com/hadoop/examples/bigquery-connector-spark-
example (remember to click on the PySpark tab instead of Scala)

SCALA PYSPARK
N———

* Indirect BigQuery import PySpark cannot use th:
BigQuery because, unlike Scala Spark, it cannot «
example loads the data into Google Cloud Storac
into BigQuery. Alternatively, you can create a org
the JsonObjects (see these examples for more il

input directory =
'gs://{}/hadoop/tmp/bigquery/pyspark input'.format (bucket)

Replace the {} symbols with your Cloud Storage Bucket id.

#output dataset = 'wordcount dataset'
#output table = 'wordcount table'

Set the corresponding dataset name and table name of your output table (created in Step 1).

output directory =

similar to input_directory, assign the correct Cloud Storage Bucket id here.

Then, upload the python file to your Cloud Storage and get the link to it. We will use this link as input to
our PySpark job.


https://cloud.google.com/hadoop/examples/bigquery-connector-spark-example
https://cloud.google.com/hadoop/examples/bigquery-connector-spark-example

Browser % UPLOAD FILES % UPLOAD FOLDER E3 CREA1

Buckets / dataproc-e4225d08-23a8-481f-aff9-5205024119a5-us

Name Size Type
google-cloud-dataproc-metainfo/ - Folder
] sparkwc.py 2.73 KB binary/octet-stream

For example, here | uploaded sparkwc.py, and my link would be gs://dataproc-e4225d08-23a8-481f-
aff9-5205024119a5-us/sparkwc.py

Step 4: submit the job
Similar to our Hadoop example. Use the settings below. Remember to use your own gs:// link, not mine.

Cluster

cluster-1 v
Job type

PySpark -

Main python file
gs://dataproc-e4225d08-23a8-481f-aff9-5205024119a5-us/sparkwc.py

Additional python files

Jar files

Arguments

Properties

+ Add item

[T

Step 5: browse the result
Once the job is done (should be around 2~10 minutes). Go back to Big Query and explore the result.



New Query 7

1 select word, word_count from [cuong-projectl:wc_class.wcl] order by word_count desc

Ctrl+E
RUN QUERY ~ Save Query Save View Format Query Show Options Query complete (20.2s elapst
Results Explanation = Job Information Download as CSV Download as JSON

Row word word_count
1 the 29801
2 and 27529
3 i 21029
4 to 20957
5 of 18514



