Cloud & Cluster DM, Spring 2017, Lecture 6/7/2017
14

Data Management in the Cloud

PREGEL AND GIRAPH

Thanks to Kristin Tufte

Why Pregel?

* Processing large graph problems is challenging
* Options
— Custom distributed infrastructure

— Existing distributed computing platform (MapReduce is ill-suited to
some graph processing)

— Single-computer graph algorithm (not scalable)
— Existing parallel graph system (not fault-tolerant)
* Pregel...
— Vertex-centric Qperstep framework _—
— Focuses on independent local actions
* Well-suited for distributed implementation
Fault-tolerant
C++ API

Cloud & Cluster DM, Spring 2017, Lecture 6/7/2017
14

Why “Pregel”?

Seven bridges of Kénigsberg
Can you find a path that crosses each bridge exactly once?

0 The WGl Cosganise, Ing, all gt ressrssd

Efficient Processing of Graphs is Challenging

* Poor locality of memory access
* Little work per vertex

* Changing degree of parallelism over the course of
execution
“Long tail” of graph searches

Cloud & Cluster DM, Spring 2017, Lecture 6/7/2017
14

How is Pregel Different from Neo4j?

* Neodj is a graph storage system
Has some support for running graph searches

* Pregel holds its graph in main memory
Focus on parallel graph algorithms

Model of Computation

* Input: Directed graph, each vertex has a unique id

« Computation: BS P @V\.\AL %M%W

— Input/initialization 4
— Sequence of Supersteps (global synch between Supersteps) ‘,a'
— Termination/output

Vote to halt
— _-_-‘-‘“'“—L

(_ ﬂ Active |
A g

:'\Inactive]__’_)

Message received

Figure 1: Vertex State Machine

Cloud & Cluster DM, Spring 2017, Lecture

14

Model of Computation Il

State:
* Set of vertexes and directed edges
* Each vertex stores

— A (possibly complex) value
— A list of outgoing edges plus (optional) state for each

* Example: Facebook users
— One vertex per user, value is <user 1D>

— One out edge to each friend:
Edge value is <#li1kes, #comments>

Model of Computation Il

* Computation proceeds in Supersteps...

— In a Superstep vertexes compute in parallel, execute the same user-
defined function

* |n a Superstep, a vertex can:
— Receive messages sent to it in previous Superstep

Modify the value of the vertex

Modify values of outgoing edges

Send messages to other vertexes to be received in next Superstep
Add/remove vertexes and edges

* Note: edges may have value, but have no associated
computation

* Note: pure message-passing model, no remote reads or shared
memory assumptions

6/7/2017

Cloud & Cluster DM, Spring 2017, Lecture
14

Example: Maximum Vertex Value

* Each vertex v has a LocalVal (an integer) and
GlobalMax (initally = LocalVal)

* For each i1ncoming message msg:m
GlobalMax <
max(GlobalMax, m)

« IT GlobalMax changed then
for each outgoing edge (v, u)
send msg:GlobalMax to u

Maximum Vertex Value
o 0T
0-E 0 -

Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.

Figure credit: Pregel: A System for Large-Scale Graph Processing 10

6/7/2017

Cloud & Cluster DM, Spring 2017, Lecture
14

Termination

At the end of a Superstep, a vertex can vote to halt
If all vertexes vote to halt, then stop

Example: If no change in GlobalMax, vote to halt

11

Level from Vardi to Hellerstein

name: string
co-author level: Inf.

* Set Vardi’s level to O
* [Process i1ncoming messages]
* [Send outgoing messages]

« I level not Inf
and name = “Hellerstein”
then output level

12

6/7/2017

Cloud & Cluster DM, Spring 2017, Lecture
14

Model of Computation - Comments

* Vertexes and edges kept on machine that performs
computation

* Chained map-reduce would require passing the entire
state of the graph from one stage to the next

* There is also provision for aggregation across all
vertexes
— Compute current error
— Collect results

C++ API

* Implement by subclassing the Vertex Class
* Functions possible:
— Compute()
— GetValue() / MutableValue()
— Inspect and modify values of output edges

* Note: no data races, each vertex can only modify its outgoing
edges
— Note: limited state (values associated with a vertex and its
edges) — simplifies computation, graph distribution and
failure recovery

Checkpoint: Local state of vertexes plus current rounf of
messages

14

6/7/2017

Cloud & Cluster DM, Spring 2017, Lecture

14

template <typename VertexValue,

typename EdgeValue,
typename MessageValue>

class Vertex {
public:

* Messages

— Consist of: message value and ID of destination vertex
* Vertex can send as many messages as it wants in a Superstep
Normally, messages sent to neighbor vertexes (but can send

virtual void Compute(Messagelterator* msgs) = O;

const stringk vertex_id() const;
int64 superstep() const;

congt VertexValue& GetValue();

VertexValue* MutableValue();

OutEdgelterator GetOutEdgeIterator(l;
void~SendMessageTo(const stringk dest_vertex,

const MessageValuek messagze)’;
void VoteToHalt();

Figure 3: The Vertex API foundations.

Figure credit: Pregel: A System for Large-Scale Graph Processing

Message Passing

sent from vertex to vertex

to any vertex)

* Messages sent to V in Superstep S are visible when Compute

method is

called in Superstep S+1

15

* No guaranteed order of messages, but guaranteed they will be

delivered

16

6/7/2017

Cloud & Cluster DM, Spring 2017, Lecture

14

Combiners & Aggregators

* Combiners

— Suppose we know a vertex will always take the max value of all
incoming values

— Can reduce overhead by doing local maxs over all messages to same
vertex

— User can write a Combiner function that combines several messages
intended for vertex V into a single message

— No guarantees about what messages will or will not be combined
— Fourfold reduction for single-source shortest path
* Aggregators
— Global aggregations
— Each vertex provides a value to the aggregator in each superstep (S)
— Aggregate value made available to all vertices in step S+1
— Sum applied to local out-degrees can count edges in the graph

17

Suppose
these vertexes
on same
worker

Superstep 0

Can combine
these
Superstep 1 messages

Superstep 2

@‘—*@jc Superstep 3

Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.

Figure credit: Pregel: A System for Large-Scale Graph Processing 18

6/7/2017

Cloud & Cluster DM, Spring 2017, Lecture 6/7/2017
14

Architecture

* Designed for Google cluster architecture
* Graph is partitioned — sets of vertices and their outgoing edges

* Default partitioning is hash(vertexid) mod N, but can be
customized (i.e. colocate vertices representing pages of same
site)

* Execution stages:

1. Initialization: Program copies begin executing — one is master — workers
discover master’s location and register with master

2. Graph partitioning: Master determines # of partitions and assigns
partitions to worker machines

3. Load: master assigns a portion of input to each worker (independent of
partitions); worker reads vertex and loads or forwards

4. Master tells each worker to complete a Superstep; repeat until all
vertexes vote halt

5. [Master may instruct workers to checkpoint their portion of the graph]

19

Architecture

worker A

input
data 1l

master

worker B

)
input
data 2

sample record:

worker C [a, value]

graph has nodes a,b,c,d...

Architecture slides credit Hector Garcia-Molina 20

10

Cloud & Cluster DM, Spring 2017, Lecture

Architecture

master

partition graph and
assign to workers

Architecture

master

read input data

worker A T
| vertexes ldnputl
ta,b,c ata
worker B -
B | vertexes input
id, e data 2
worker C
| vertexes
fgh
Architecture slides credit Hector Garcia-Molina 21
worker A Y
| vertexes | | — |dnput1
ta,bc ata
| {b,e,f}
worker B -
- | vertexes input
id, e data 2
worker C
worker A
o forwards input
| vertexes
; values to
1 fl g, h .
S appropriate
workers
Architecture slides credit Hector Garcia-Molina 22

6/7/2017

11

Cloud & Cluster DM, Spring 2017, Lecture
14

Architecture

master

run Superstep 1

Architecture

master

6/7/2017

worker A T
| vertexes ldnputl
ta,b,c ata
worker B -
B | vertexes input
id, e data 2
worker C
| vertexes
fgh
Architecture slides credit Hector Garcia-Molina 23
worker A Y
| vertexes IaniUtl
L~ ata
halt? 1a,b,c
worker B -
| vertexes input
id, e data 2
worker C
at end
o T Superstep 1,
| vertexes P q P
; send messages
i fl g; h g
Architecture slides credit Hector Garcia-Molina 24

12

Cloud & Cluster DM, Spring 2017, Lecture 6/7/2017
14

Architecture
worker A T
| vertexes input
ab,c datal
master
worker B
)
—_— | vertexes input
d, e | data 2
worker C
run Superstep 2
| vertexes
‘f,g h
Architecture slides credit Hector Garcia-Molina 25

Fault Tolerance

* Fault tolerance handled with checkpointing

* At start of a superstep (but not every superstep), master
instructs workers to save state
— Vertex values
— Edge values
— Incoming messages
— Master saves aggregator values

Worker fails (doesn’t respond to ping)
— Reassigns “lost” partitions
— Everyone restarts from most recent checkpoint

* Confined recovery was under development
— Recovery confined to only lost partitions

26

13

Cloud & Cluster DM, Spring 2017, Lecture
14

6/7/2017

Architecture
worker A T
| vertexes input
La,b, datal
master
worker B -
B | vertexes input
d, e data 2
. worker C
checkpoint
| vertexes
‘f,g h
Architecture slides credit Hector Garcia-Molina 27
Architecture
worker A
| vertexes
a,b,c
master
worker B
— vertexes |
d, e /\'
checkpoint worker C
write to stable store: .
MysState, OutEdges, i vertexes
InputMessages f.eh
Architecture slides credit Hector Garcia-Molina 28

14

Cloud & Cluster DM, Spring 2017, Lecture 6/7/2017
14

Architecture
worker A
| vertexes
ta, b, c
master
worker B
| vertexes
id, e
if worker dies,
find replacement &
restart from
latest checkpoint
Architecture slides credit Hector Garcia-Molina 29

Implementation Details

* Worker maintains state of its portion of graph in memory
* Worker loops through all vertexes - each vertex Compute()
function receives:
— Vertex’s current value
— Iterator to incoming messages
— Iterator to outoing edges
* Messages
— Worker determines if messages are for a local or remote vertex
— Remotes are buffered until threshold reached, then flushed
— Combiners are applied when messages are:

* added to outgoing message queue (reduces space and network
transmission)

* received at incoming message queue (reduces space only)

30

15

Cloud & Cluster DM, Spring 2017, Lecture
14

class PageRankVertex
: public Vertex<double, void, double> {
public:
virtual void Compute(Messagelterator* msgs)
if (superstep() >= 1) {
double sum = 0,
for (; !msgs—>Done(); msgs->Next()
sum += msgs->Value();
*MutableValue() =
0.15 / NumVertices() + 0.85 * sum;

Update my own page rank.
0.85 is “damping factor”

}

if (superstep() < 30) {

const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors (GetValue() / n); Distribute my value evenly
} else { among the pages | point to

VoteToHalt();
}
}
};

Figure 4: PageRank implemented in Pregel.

Figure credit: Pregel: A System for Large-Scale Graph Processing 31

Initialization

class ShortestPathVertex
: public Vertex<int, int, int> {
void Compute(Messagelterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value()); path to source
if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())
SendMessageTo (iter.Target(),
mindist + iter.GetValue());

I

VoteToHalt(); Send out known shortest path
} to that vertex

};

Figure 5: Single-source shortest paths.

Figure credit: Pregel: A System for Large-Scale Graph Processing 32

6/7/2017

16

Cloud & Cluster DM, Spring 2017, Lecture 6/7/2017
14

class MinIntCombiner : public Combiner<int> {
virtual void Combine(MessageIterator* msgs) {
int mindist = INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
Output("combined_source", mindist);

b
};

Figure 6: Combiner that takes minimum of message

values.
Figure credit: Pregel: A System for Large-Scale Graph Processing 33
180 500
5 160 T
ER 2 ew
T B,
2 e g
: w 7
£ w0 £
.5 an £
Cow = e
100 200 300 400 500 600 70O BOO 310G 130 20G 256G 30G 350 406G 45G 50G
Number of worker tasks Number of vertices
Figure T: SSSP—1 billion vertex binary tree: vary- Figure 8: SSSP—binary trees: varying graph sizes
ing number of worker tasks scheduled on 300 multi- on 800 worker tasks scheduled on 300 multicore ma-
core machines chines
w00
. T
1
-
R
i
<
E
5 m
£
100N 00N A0M LOOM GOOM TOOM ROMBOOSL 1

Number of vertices

Figure 9: S88P—log-normal random graphs, mean
out-degree 127.1 (thus over 127 billion edges in the
largest case): wvarying graph sizes on 800 worker
tasks scheduled on 300 multicore machines 34

17

Cloud & Cluster DM, Spring 2017, Lecture

14

Pregel Graph Processing System

* Vertex-based

* Distributed (message passing only)
* Parallel

* Fault-tolerant

* Master/Worker architecture

* To be continued ...

35

Giraph: Billions = Trillions of Edges

* Apache Giraph started as an open-source version of
Pregel

* Facebook is a main contributor

Challenge: Scale graph-processing framework such as
Pregel to 100s of billions of edges

Facebook graph (2014):

— 1.4B active users

— 600B edges

* Will organize material as issues + solutions.

36

6/7/2017

18

Cloud & Cluster DM, Spring 2017, Lecture

14

Facebook Stack

Giraph Hive MR

HivelO = YARN MapReduce
Hive Tables
HDFS

From Ching, et al.: One Trillion Edges: Graph Processing at Facebook-Scale P

Issue 1: Input Organization

Input needs to be organized as vertex plus outgoing
edges
Might want to take edges from a different place than vertexes
— Vertexes: FB users
— Edges 1: User A likes posts of User B
— Edges 2: User A messages to User B

Solution: Allow edges to be supplied separately and
distributed.

Often drawn from Hive tables

38

6/7/2017

19

Cloud & Cluster DM, Spring 2017, Lecture
14

Issue 2: Better Pallelism

Were generally running one worker per machine.
Wasn’t giving optimum parallelism
For example, slowest-worker problem

Solution: More parallelism options
— Coarse-grain: multiple workers per machine

— Fine-grain: multiple threads (hence cores) per worker

Second option works better: fewer TCP connections, bigger
messages batches

39

Issue 3: Size of State

Vertex value, edge values, message payloads were all
Java objects

Out-of-memory errors, lots of garbage collection

Solution: Serialize edge info for a vertex into a byte
array

— In one example, reduced space by 6x
— Don’t compress vertex data. Why?

40

6/7/2017

20

Cloud & Cluster DM, Spring 2017, Lecture
14

Issue 4: Using Zookeeper for Aggregation

* Workers write partial aggregates to Zookeeper

* Master computer final aggregate and puts back in ZK

— Limit of 1 MB per “znode”, could have 10s of GB from each
worker

— Master doing all the work

Solution: Sharded aggregators — assign a different
worker to each aggregate, communicate directly
Note that workers aren’t busy between Supersteps

41

Solution 4: Sharded Aggregators

Figure 3: After sharding aggregators, aggregated communication is distributed across workers.

From Ching, et al.: One Trillion Edges: Graph Processing at Facebook-Scale .

6/7/2017

21

Cloud & Cluster DM, Spring 2017, Lecture
14

Issue 5: Different Computations

Might need to run different computations at different
Supersteps.
Example: Friend of a Friend (FOAF)
— Which friends do you have the most friends in common
with?

— Note: This is a simple form of triangles

43

Mutual Friends

* Superstep 1: Each vertex sends its friend list to its
neighbors (friends)

* Superstep 2: Each vertex compares incoming friend
lists with its own set of friends, finds largest
intersection

Solution: Separate Computation from Vertex
* Define multiple possible computations for the
vertexes

* Master says which one to use at the beginning of the
Superstep.

44

6/7/2017

22

Cloud & Cluster DM, Spring 2017, Lecture
14

Issue 6: Too Much Message State

Not enough room for all the incoming messages

e Consider mutual friends
— Maximum of 5000 friends on FB

— How much message state can one vertex receive,
potentially?

45

Solution 6: “Sub-Supersteps”

Divide message-sending and processing into rounds

* For example:
— Round 1: Send messages to even # vertexes
— Round 2: Send messages to odd # vertexes

Choose the number of rounds such that one round of
messages fits in main memory of a worker.

46

6/7/2017

23

Cloud & Cluster DM, Spring 2017, Lecture
14

Remaining Issues

* Graph partitioning
* Asynchronous messaging option

47

Other Graph-Processing Frameworks

* GraphX: Combining graphs and tables, uses Spark
* GraphLab: Asynchronous messaging

48

6/7/2017

24

Cloud & Cluster DM, Spring 2017, Lecture
14

References

* Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010.
Pregel: a system for large-scale graph processing.

In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data (SIGMOD '10).

* Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios
Logothetis, and Sambavi Muthukrishnan. 2015. One trillion
edges: graph processing at Facebook-scale. Proc. VLDB
Endow. 8, 12 (August 2015), 1804-1815.

49

6/7/2017

25

