
Data Structures and Algorithms

Rao Muhammad Umer
Lecturer,

CS and IT Department,
The University of Lahore.
Web: raoumer.github.io

Data Structure and Algorithms 1

http://raoumer.github.io/

outline

Analysis Of Algorithms

 introduction

 Observations

 Algorithmic Complexity

Data Structure and Algorithms 2

Analysis Of Algorithms-
Introduction

Data Structure and Algorithms 3

Cast of characters

Data Structure and Algorithms 4

Running time

Data Structure and Algorithms 5

Reasons to analyze algorithms
 Predict performance.

 Compare algorithms.

 Provide guarantees.

 Understand theoretical basis.

 Primary practical reason: avoid performance bugs.

6

Some algorithmic successes
Discrete Fourier transform.

 Break down waveform of N samples into periodic components.

 Applications: DVD, JPEG, MRI, astrophysics, ….

 Brute force: N2

 steps.

 FFT algorithm: N log N steps, enables new technology.

7

Some algorithmic successes
N-body simulation.

 Simulate gravitational interactions among N bodies.

 Brute force: N2 steps.

 Barnes-Hut algorithm: N log N steps, enables new research.

8

The challenge
Q. Will my program be able to solve a large practical input?

 Insight. [Knuth 1970s] Use scientific method to understand performance.
9

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

 Observe some feature of the natural world.

 Hypothesize a model that is consistent with the observations.

 Predict events using the hypothesis.

 Verify the predictions by making further observations.

 Validate by repeating until the hypothesis and observations agree.

Principles.

 Experiments must be reproducible.

 Hypotheses must be falsifiable.

Feature of the natural world. Computer itself.

10

Analysis Of Algorithms-
Observations

Data Structure and Algorithms 11

Example: 3-SUM
3-SUM. Given N distinct integers, how many triples sum to exactly zero?

 Context. Deeply related to problems in computational geometry.

12

3-SUM: brute-force algorithm
3-SUM. Given N distinct integers, how many triples sum to exactly zero?

13

class ThreeSum

{

public:

int count(int arr[])

{

 int N = length(a);

 int count = 0;

 for (int i = 0; i < N; i++)

 for (int j = i+1; j < N; j++)

 for (int k = j+1; k < N; k++)

 if (a[i] + a[j] + a[k] == 0)

 count++;

 return count;

} }

 for (int i = 0; i < N; i++)

 for (int j = i+1; j < N; j++)

 for (int k = j+1; k < N; k++)

 if (a[i] + a[j] + a[k] == 0)

 count++;

Measuring the running time

Q. How to time a program?

A. Manual.

$ g++ ThreeSum 4Kints.ccp

14

Measuring the running time

Q. How to time a program?

A. Automatic.

15

Empirical analysis

Run the program for various input sizes and measure running time.

16

Data analysis

Standard plot. Plot running time T (N) vs. input size N.

17

Data analysis

18

Prediction and validation

19

Doubling hypothesis

20

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Q. How to estimate a (assuming we know b) ?

A. Run the program (for a sufficient large value of N) and solve for a.

21

Experimental algorithmics

System independent effects.

 Algorithm.

 Input data.

System dependent effects.

 Hardware: CPU, memory, cache, …

 Software: compiler, interpreter, garbage collector, …

 System: operating system, network, other apps, …

Bad news. Difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.

22

Analysis Of Algorithms-
Algorithmic Complexity

Data Structure and Algorithms 23

Common order-of-growth classifications

 Good news. the small set of functions

 1, log N, N, N log N, N2, N3, and 2N

 suffices to describe order-of-growth of typical algorithms.

24

Common order-of-growth classifications

25

Big-O complexities

http://bigocheatsheet.com/ 26

Common Data Structure Operations

http://bigocheatsheet.com/ 27

Array Sorting Algorithms

http://bigocheatsheet.com/ 28

Types of analyses

Best case. Lower bound on cost.

 Determined by “easiest” input.

 Provides a goal for all inputs.

Worst case. Upper bound on cost.

 Determined by “most difficult” input.

 Provides a guarantee for all inputs.

Average case. Expected cost for random input.

 Need a model for “random” input.

 Provides a way to predict performance.

29

Types of analyses

Best case. Lower bound on cost.

Worst case. Upper bound on cost.

Average case. “Expected” cost.

Actual data might not match input model?

 Need to understand input to effectively process it.

 Approach 1: design for the worst case.

 Approach 2: randomize, depend on probabilistic guarantee.

30

Commonly-used notations in the theory of
algorithms

Data Structure and Algorithms 31

Theory of algorithms

Goals.

 Establish “difficulty” of a problem.

 Develop “optimal” algorithms.

Approach.

 Suppress details in analysis: analyze “to within a constant factor”.

 Eliminate variability in input model by focusing on the worst case.

Optimal algorithm.

 Performance guarantee (to within a constant factor) for any input.

 No algorithm can provide a better performance guarantee.

Data Structure and Algorithms 32

Acknowledgement
 Mostly Slides taken from Book: “Algorithhms” 4th Edition by Robert Sedgewick, Kevin

Wayne

33

