Data Structures and Algorithms

Rao Muhammad Umer
Lecturer,
CS and IT Department,
The University of Lahore.
Web: raoumer.github.io

Data Structure and Algorithms

http://raoumer.github.io/

outline

Analysis Of Algorithms

" introduction

" (Observations

= Algorithmic Complexity

Data Structure and Algorithms

Analysis Of Algorithms-
Introduction

Data Structure and Algorithms

Cast of characters

Programmer needs to develop
a working solution. -

Student might play

1 / any or all of these
Client wants to solve

> " roles someday.
problem efficiently.
r

Theoretician wants
to understand.

Basic blocking and tackling
IS sometimes necessary.
[this lecture]

Data Structure and Algorithms

Running time

“ As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the guestion
will arise—By what course of calculation can these results be arrived at by
the machine in the shortest time? " — Charles Babbage (1864)

how many times do you
have to turn the crank?

’n
Il | Analytic Engine
[l
L

w Data Structure and Algorithms

Ny .."""-.._-}-x
AR

Reasons to analyze algorithms

Predict performance.
Compare algorithms.

Provide guarantees.
Understand theoretical basis.

Primary practical reason: avoid performance bugs.

A4

=i client gets poor performance because programmer

did not understand performance characteristics

Some algorithmic successes

Discrete Fourier transform.

" Break down waveform of N samples into periodic components.
" Applications: DVD, JPEG, MRI, astrophysics,

= Brute force: N?

Friedrich Causs
1805

" steps.
" FFT algorithm: N log N steps, enables new technology.

tirHe

| quadratic
64T -

32T

16T — . i i
linearithmic

8T —

Some algorithmic successes

N-body simulation.
" Simulate gravitational interactions among N bodies.
= Brute force: N? steps.

" Barnes-Hut algorithm: N log N steps, enables new research.

titHe
| quadratic

64T

32T =

16T -

8T

The challenge

Q. Will my program be able to solve a large practical input?

Why is my program so D Why does it run out of m@

—

Insight. [Knuth 1970s] Use scientific method to understand performance.

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithmes.
Scientific method.

= (Observe some feature of the natural world.

= Hypothesize a model that is consistent with the observations.

" Predict events using the hypothesis.

= Verify the predictions by making further observations.

= \Validate by repeating until the hypothesis and observations agree.
Principles.

" Experiments must be reproducible. AN
* Hypotheses must be falsifiable. _* _

Feature of the natural world. Computer itself.
10

Analysis Of Algorithms-
Observations

Data Structure and Algorithms

11

Example: 3-SUM

3-SUM. Given N distinct integers, how many triples sum to exactly zero?

| 30 -40 10

2z 30 -20 -10 0

3 -40 40 0 0

0

10

-10

Context. Deeply related to problems in computational geometry.

12

3-SUM: brute-force algorithm

3-SUM. Given N distinct integers, how many triples sum to exactly zero?

class ThreeSum

{
public:
int count(int arr(])
{
int N = length(a);

int count = 0;

for (inti=0; i< N; i++)
for (intj = i+1; j < N; j++)
for (int k = j+1; k < N; k++)
if (a[i] + a[j] + a[k] == 0)

count++;

return count;

I

Q. How to time a program?

A. Manual.

Measuring the running time

4039

S g++ ThreeSum 4Kints.ccp

fick dck ok ok rick mick tick rick
fick tick mick tick rick fick sick rick
fick dck ok ok rick mick tick rick
fick dck ok ok rick mick tick rick
fick dck ok ok rick mick tick rick
fick dck ok ok rick mick tick rick
fick tick mick tick rick fick sick rick
fick dck ok ok rick mick tick rick
fick dck ok ok rick mick tick rick
fick dck ok ok rick mick tick rick
fick dck ok ok rick mick tick rick
fok tick mick ek rack fick sick rick
fick dck ok ok rick mick tick rick
fick dck ok ok rick mick tick rick
ek tick mick ok rick rick sick rick
fick dck ok ok rick mick tick rick
ok sk mick sk rick tick sick rick
fick dck ok ok rick mick tick rick
fick dck ok ok rick mick tick rick
ek tick mick ok rick rick sick rick
fick dck ok ok rick mick tick rick
fick dck ok ok rick mick tick rick
fick dck ok ok rick mick tick rick
fick dck ok ok rick mick tick rick

14

Measuring the running time

Q. How to time a program?
A. Automatic.

#include <time.h>
time_t start,end;
time (&start);

Lyour coaex

time (&end);
double dif = difftime (end,start);

Empirical analysis

Run the program for various input sizes and measure running time.

— time (seconds) 1

16

Data analysis

Standard plot. Plot running time T (N) vs. input size N.

standard plot 5

I
=

T(N)

L
2
|

FUMMTING fime

Pl
2
|

-
|

17

Data analysis

Log-log plot. Plot running time T(N) vs. input size N using log-log scale.

log-logplot g7 2 -

straight line

e of slope 3 h““‘u.
T lg(T(N) = blgN +c
— 54 h = 2.999
= 3.2 1 c=-33.2103
= 1.6
B T'N)y=aN?*" wherea=2r
4 -

power law

Regression. Fit straight line through data points: a N . - slope
Hypothesis. The running time is about 1.006 x 10 -1? x N 2999 seconds.

18

Prediction and validation

Hypothesis. The running time is about 1.006 x 10 -1 x N 2999 seconds.

\

"order of growth" of running
time is about N3 [stay tuned]

Predictions.
* 5]1.0 seconds for N=8.000.
« 408.1 seconds for N = 16.000.

time (seconds) 1

Observations. “

8,000

validates hypothesis!

19

Ih;:\i

Doubling hypothesis

Doubling hypothesis. Quick way to estimate » in a power-law relationship.

Run program, doubling the size of the input.

250 0.0

500 0.0 4.8 2.3
1,000 0.1 6.9 2.8
2,000 0.8 7.7 2.9
4,000 6.4 8.0 3.0

8,000 51.1 8.0

seems to converge to a constant b = 3

Hypothesis. Running time is about a N* with &= Ig ratio.

Caveat. Cannot identify logarithmic factors with doubling hypothesis. 20

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Q. How to estimate a (assuming we know b) ?

A. Run the program (for a sufficient large value of N) and solve for a.

51.1 = a = 8OO0
= a = 0.998 x 10-10

Hypothesis. Running time is about 0.998 x 10-1? x N3 seconds.

T

almost identical hypothesis
to one obtained via linear regression

21

Experimental algorithmics

System independent effects.

\
- Algorlt nm. determines exponent b

= InpUt C ata. - in power law

SyStem dependent Effects_ .} determines constant a

in power law

= Hardware: CPU, memory, cache, ...

= Software: compiler, interpreter, garbage collector, ..

= System: operating system, network, other apps, ...

Bad news. Difficult to get precise measurements.
Good news. Much easier and cheaper than other sciences.

Analysis Of Algorithms-
Algorithmic Complexity

Data Structure and Algorithms

23

Common order-of-growth classifications

Good news. the small set of functions
1, log N, N, Nlog N, N2, N3, and 2N
suffices to describe order-of-growth of typical algorithmes.

log-log plot
512T

T T T T T r
1K 2K 4K 8K o 512K

Typical orders of growth

24

Common order-of-growth classifications

typical code framework description example T(2ZN} / T(N)

add two
1 constant a=Db+ C; statement 1

numbers
log M logarithmic while (N> 1) divide in half binary search ~ 1

f MN=N/2; ... }

i i = 0: 1 . 4§ find the
N linear for (int 1 0; 1 < N; 1++) oop 3

{ ... } maximum
Nlog N linearithmic [see mergesort lecture] divide mergesort ~ g

and conguer
for (int 1 = 0; i < N; i++)

' ' check all

N2 quadratic for (int j = 0; 3 < N; j++) double loop 4
pairs
{ ... }
for (int 1 = 0; 1 < N; 1++)

for (int j = 0; j < N; j++) check all
N3 cubic triple loo 8

- for (nt k = 0; k < N; k++) P P triples

l hausti heck all
iy 2M exponential [see combinatorial search lecture] exhaustive check a T(N)

Il | search subsets

Operations

Big-O complexities
[Horrible][Bad] | Fair || Good] [Excelient]

Elements

http://bigocheatsheet.com/

26

Common Data Structure Operations

Data Structure

Array
tack

Queue
Singly-Linked List
Doubly-Linked List
Skip List

Hash Table

L)

Binary Search Tree [e(2og(n)) |

Cartesian Tree
B-Tree
Red-Black Tree
Splay Tree
AVL Tree

KD Tree

Time Complexity

Average Worst
Access Search Insertion Deletion Access Search Inserfion Deletion
@ o @ (o
a(n) a(n) e(1)] 0(n) o(n)
a(n) a(n) e(1)] 0(n) o(n)
a(n) a(n) 6(1)] 0(n) 0(n)
a(n) a(n) e(1)] 0(n) o(n)
|B(log(n)) | [8(log(n)) | [8(log(n)) | [@(log(n))| [0(m) o(n) o(n) o(n)
N/A e(1)] e(1)] o) N/ A o(n) o(n) o(n)
@(log(n)) ||8(1og(n}) |[@(10g(n)) 0(n) a(n) 0(n)
N/ A B{log{n}) ||B8{log(n}) ||B(log{n}) M/ A o{n) 0(n) 0{n)
|8(10g(n)) ||@(10g(n)) ||8(10g(n}) ||8(10g(n)) ||0(10g(n))||0(10g(n)) || O(10g(n)) || 0(10g(n})
|8(10g(n)) ||@(10g(n)) ||@(10g(n})||B8(10g(n)) ||0(10g(n))||O(10g(n)) |[0(10g(n)) || 0(108(n})
N/A 8(log(n}) (| @(log(n)}) ||@(Llog(n}) h/A O(log(n}) ||0(logln})||O(Llog(n})
|8(1og(n)) ||@(10g(n)) ||@(10e(n})||B(10g(n)) ||0(10g(n))||O(10g(n)) |[0(10g(n)) || 0(10g(n})
[8(10g(n)) |[@(10g(n))] [0(10g(n))] [@(10g(n))

http://bigocheatsheet.com/

Space Complexity
Worst

O(n)

|DEn lug{n}}|

O({n)

O{n)

O{n)

O{n)

O(n)

Oi{n)

O({n)

O{n)

27

Array Sorting Algorithms

Algorithm Time Complexity Space Complexity
Best Average Worst Worst

Quicksort [2(n 1og(n))| [8(n log(n))] [o(n"2)] [0(10g(n)) |

Mergesort [a(n log(n))| [@(n loz(n))| [0(n 1oz(n)) a(n

Timsort 8(n log(n)}| |O(n log(n))

Heapsort [atn 1oz(n))| [@(n loz(n))| |0(n log(n))]

Bubble Sort [e(n"2)]
Insertion Sort [8(n~2) |
Selection Sort [A{n*2)] [e(n~2) |
Tree Sort [a¢n 1oz(n))| [8(n log(n))]
Shell Sort [a(n log(n))] [8(n{1oe(n))*2)]
Bucket Sort [Aiask) [8(n+k) |

o]
o)
o)
o]

Radix Sort [a(nk) | [8(nk) | O(n+k)
Countng Sort [EER) (BGEEED
TR\ Cubesort [8(n 10g(n))]| [0(n 1og(n))] o(n)

Il
I}
I
Ill II'. 1

=/ http://bigocheatsheet.com/
LA

Types of analyses

Best case. Lower bound on cost.

Determined by “easiest” input.

Provides a goal for all inputs.

Worst case. Upper bound on cost.

Average case. Expected cost for random input.

Determined by “most difficult” input.

Provides a guarantee for all inputs.

Need a model for “random” input.

Provides a way to predict performance.

Ex 1. Array accesses for brute-force 3-Sum.
Best: ~ 1 N3
Average: ~ %N

Worst: ~ 14 N3

Ex 2. Compares for binary search.

Best:

Average:

Worst:

~ 1
~ lg N

~ lg N

29

Types of analyses

Best case. Lower bound on cost.
Worst case. Upper bound on cost.
Average case. “Expected” cost.

Actual data might not match input model?
" Need to understand input to effectively process it.

" Approach 1: design for the worst case.

= Approach 2: randomize, depend on probabilistic guarantee.

30

Commonly-used notations in the theory of

algorithms

notation provides shorthand for “

Y2 N2
_ asymptotic 5 10 N?
Big Theta order of growth SN 5N2+22 Nlog N+ 3N
10 N2
Big Oh O(N2) and smaller O(N?) B
9 22 NlogN+ 3N
Y2 N2
NS
Big O N2) and | .
ig Omega O(N?) and larger Q(N<) N3+22NlogN+3N
N Data Structure and Algorithms

classify
algorithms

develop
upper bounds

develop
lower bounds

31

Theory of algorithms

Goals.
= Establish “difficulty” of a problem.
= Develop “optimal”

algorithms.

Approach.
= Suppress details in analysis: analyze “to within a constant factor”.

" Eliminate variability in input model by focusing on the worst case.

Optimal algorithm.

" Performance guarantee (to within a constant factor) for any input.

" No algorithm can provide a better performance guarantee.

Data Structure and Algorithms

32

Acknowledgement

= Mostly Slides taken from Book: “Algorithhms” 4t Edition by Robert Sedgewick, Kevin
Wayne

33

