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Analysis Of Algorithms- 
Introduction 
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Cast of characters 
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Running time 
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Reasons to analyze algorithms 
 Predict performance. 

 Compare algorithms. 

 Provide guarantees. 

 Understand theoretical basis. 

 

 Primary practical reason: avoid performance bugs.  
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Some algorithmic successes 
Discrete Fourier transform. 

 Break down waveform of N samples into periodic components. 

 Applications: DVD, JPEG, MRI, astrophysics, …. 

 Brute force: N2 

 steps. 

 FFT algorithm: N log N steps, enables new technology. 
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Some algorithmic successes 
N-body simulation. 

 Simulate gravitational interactions among N bodies. 

 Brute force: N2 steps. 

 Barnes-Hut algorithm: N log N steps, enables new research. 
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The challenge 
Q. Will my program be able to solve a large practical input? 

 

 

 

 

 

 

 

 

 

              

                  Insight. [Knuth 1970s] Use scientific method to understand performance. 
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Scientific method applied to analysis of algorithms 

A framework for predicting performance and comparing algorithms. 

Scientific method. 

 Observe some feature of the natural world. 

 Hypothesize a model that is consistent with the observations. 

 Predict events using the hypothesis. 

 Verify the predictions by making further observations. 

 Validate by repeating until the hypothesis and observations agree. 

Principles. 

 Experiments must be reproducible. 

 Hypotheses must be falsifiable. 

 

Feature of the natural world. Computer itself. 
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Analysis Of Algorithms- 
Observations 
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Example: 3-SUM 
3-SUM. Given N distinct integers, how many triples sum to exactly zero? 

 

 

 

 

 

 

 

              

            Context. Deeply related to problems in computational geometry. 
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3-SUM: brute-force algorithm 
3-SUM. Given N distinct integers, how many triples sum to exactly zero? 
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class ThreeSum 

{         

public:  

int count(int arr[]) 

{ 

            int N = length(a); 

             int count = 0; 

            for (int i = 0; i < N; i++)  

                     for (int j = i+1; j < N; j++) 

                              for (int k = j+1; k < N; k++) 

                                             if (a[i] + a[j] + a[k] == 0) 

                                                              count++; 

                return count;   

}    }  

 for (int i = 0; i < N; i++)  

                 for (int j = i+1; j < N; j++) 

                             for (int k = j+1; k < N; k++) 

                                           if (a[i] + a[j] + a[k] == 0) 

                                                           count++; 



Measuring the running time 

Q. How to time a program? 

A. Manual. 

 

 

 

 

 

 

              

 

 

$ g++ ThreeSum 4Kints.ccp 
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Measuring the running time 

Q. How to time a program? 

A. Automatic. 
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Empirical analysis 

Run the program for various input sizes and measure running time. 
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Data analysis 

Standard plot. Plot running time T (N) vs. input size N. 
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Data analysis 
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Prediction and validation 
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Doubling hypothesis 
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Doubling hypothesis 

Doubling hypothesis. Quick way to estimate b in a power-law relationship. 

Q. How to estimate a (assuming we know b) ? 

A. Run the program (for a sufficient large value of N) and solve for a. 
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Experimental algorithmics 

System independent effects. 

 Algorithm. 

 Input data. 

System dependent effects. 

 Hardware: CPU, memory, cache, … 

 Software: compiler, interpreter, garbage collector, … 

 System: operating system, network, other apps, … 

 

Bad news. Difficult to get precise measurements. 

Good news. Much easier and cheaper than other sciences. 
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Analysis Of Algorithms- 
Algorithmic Complexity 
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Common order-of-growth classifications 

 Good news. the small set of functions 

 1, log N, N, N log N, N2, N3, and 2N 

     suffices to describe order-of-growth of typical algorithms.              
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Common order-of-growth classifications 
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Big-O complexities 

http://bigocheatsheet.com/ 26 



Common Data Structure Operations 
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Array Sorting Algorithms 
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Types of analyses 

Best case. Lower bound on cost. 

 Determined by “easiest” input. 

 Provides a goal for all inputs. 

Worst case. Upper bound on cost. 

 Determined by “most difficult” input. 

 Provides a guarantee for all inputs. 

Average case. Expected cost for random input. 

 Need a model for “random” input. 

 Provides a way to predict performance. 
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Types of analyses 

Best case. Lower bound on cost. 

Worst case. Upper bound on cost. 

Average case. “Expected” cost. 

 

 

Actual data might not match input model? 

 Need to understand input to effectively process it. 

 Approach 1: design for the worst case. 

 Approach 2: randomize, depend on probabilistic guarantee. 
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Commonly-used notations in the theory of 
algorithms 
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Theory of algorithms 

Goals. 

 Establish “difficulty” of a problem. 

 Develop “optimal” algorithms. 

 

Approach. 

 Suppress details in analysis: analyze “to within a constant factor”. 

 Eliminate variability in input model by focusing on the worst case. 

 

Optimal algorithm. 

 Performance guarantee (to within a constant factor) for any input. 

 No algorithm can provide a better performance guarantee. 

Data Structure and Algorithms 32 



Acknowledgement 
 Mostly Slides taken from Book: “Algorithhms”  4th  Edition by Robert Sedgewick, Kevin 

Wayne 

33 


