Data Structures and Algorithms

Rao Muhammad Umer Lecturer, **CS** and **IT Department**, The University of Lahore. Web: <u>raoumer.github.io</u>

Data Structure and Algorithms

1

outline

Analysis Of Algorithms

- Introduction
- Observations
- Algorithmic Complexity

Data Structure and Algorithms

Analysis Of Algorithms-Introduction

Data Structure and Algorithms

Cast of characters

Programmer needs to develop a working solution.

Client wants to solve problem efficiently.

Theoretician wants to understand.

Basic blocking and tackling is sometimes necessary. [this lecture]

4

Data Structure and Algorithms

Student might play any or all of these roles someday.

Running time

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise—By what course of calculation can these results be arrived at by the machine in the shortest time?" — Charles Babbage (1864)

Analytic Engine

Data Structure and Algorithms

how many times do you have to turn the crank?

Reasons to analyze algorithms

- Predict performance.
- Compare algorithms.
- Provide guarantees.
- Understand theoretical basis.
- Primary practical reason: avoid performance bugs.

Some algorithmic successes

Discrete Fourier transform.

- Break down waveform of N samples into periodic components.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: **N**²
- steps.
- FFT algorithm: *N log N* steps, enables new technology.

Friedrich Gauss 1805

7

Some algorithmic successes

N-body simulation.

- Simulate gravitational interactions among N bodies.
- Brute force: **N**² steps.
- Barnes-Hut algorithm: *N log N* steps, enables new research.

Andrew Appel PU '81

The challenge

Q. Will my program be able to solve a large practical input?

Insight. [Knuth 1970s] Use scientific method to understand performance.

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms. Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- **Predict** events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree. Principles.
- Experiments must be reproducible.
- Hypotheses must be falsifiable.

Feature of the natural world. Computer itself.

Analysis Of Algorithms-Observations

Data Structure and Algorithms

Example: 3-SUM

3-SUM. Given **N** distinct integers, how many triples sum to exactly zero?

	a[i]	a[j]	a[k]	sum
1	30	-40	10	0
2	30	-20	-10	0
3	-40	40	0	0
4	-10	0	10	0

Context. Deeply related to problems in computational geometry.

3-SUM: brute-force algorithm

3-SUM. Given N distinct integers, how many triples sum to exactly zero?

c: punt(int arr[]) int N = length(a);
c: ount(int arr[]) int N = length(a);
ount(int arr[]) int N = length(a);
int N = length(a);
int N = length(a);
int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
for (int k = j+1; k < N; k++)
if (a[i] + a[j] + a[k] == 0)
count++;
1

Measuring the running time

Q. How to time a program? A. Manual.

\$ g++ ThreeSum 4Kints.ccp

tick tick

Measuring the running time

Q. How to time a program?

A. Automatic.

#include <time.h> 1 2 time_t start,end; 3 time (&start); 4. 5 6 <your code> 7 8 9 10 11 time (&end); 12 double dif = difftime (end,start);

Empirical analysis

Run the program for various input sizes and measure running time.

Ν	time (seconds) †
250	0.0
500	0.0
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1
16,000	?

Data analysis

Standard plot. Plot running time T (N) vs. input size N.

Data analysis

Log-log plot. Plot running time T(N) vs. input size N using log-log scale.

Regression. Fit straight line through data points: a N^b. Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

$$lg(T(N)) = b lg N + c$$

 $b = 2.999$
 $c = -33.2103$

 $T(N) = a N^{b}$, where $a = 2^{c}$

Prediction and validation

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Predictions.

- 51.0 seconds for N = 8,000.
- 408.1 seconds for *N* = 16,000.

~ I						
()h	CO	PN/	311	\sim	n	C
$\mathbf{v}\mathbf{v}$	30	I V	au	IU		э.

Ν	time (seconds) †
8,000	51.1
8,000	51.0
8,000	51.1
16,000	410.8

validates hypothesis!

"order of growth" of running time is about N³ [stay tuned]

Doubling hypothesis

Doubling hypothesis. Quick way to estimate *b* in a power-law relationship.

Run program, doubling the size of the input.

N	time (seconds) †	ratio
250	0.0	
500	0.0	4.8
1,000	0.1	6.9
2,000	0.8	7.7
4,000	6.4	8.0
8,000	51.1	8.0

Hypothesis. Running time is about $a N^{b}$ with b = lg ratio. Caveat. Cannot identify logarithmic factors with doubling hypothesis.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

- Q. How to estimate a (assuming we know b)?
- A. Run the program (for a sufficient large value of N) and solve for a.

Ν	time (seconds) †
8,000	51.1
8,000	51.0
8,000	51.1

3 10^{-10}

Experimental algorithmics

System independent effects.

- Algorithm.
- Input data.

System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ..
- System: operating system, network, other apps, ...

Bad news. Difficult to get precise measurements.

determines exponent b

in power law

Good news. Much easier and cheaper than other sciences.

determines constant a in power law

Analysis Of Algorithms-Algorithmic Complexity

Data Structure and Algorithms

Common order-of-growth classifications

Good news, the small set of functions 1, log N, N, N log N, N2, N3, and 2N

suffices to describe order-of-growth of typical algorithms.

Common order-of-growth classifications

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
log N	logarithmic	<pre>while (N > 1) { N = N / 2; }</pre>	divide in half	binary search	~ 1
N	linear	<pre>for (int i = 0; i < N; i++) { }</pre>	loop	find the maximum	2
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }</pre>	double loop	check all pairs	4
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2№	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Horrible Bad Fair Good Excellent

O(n!) O(2^n) O(n^2)

http://bigocheatsheet.com/

Operations

Common Data Structure Operations

Data Structure	Time Con	nplexity							Space Complexity
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Array	Θ(1)	Θ(n)	Θ(n)	Θ(n)	0(1)	0(n)	0(n)	0(n)	0(n)
<u>Stack</u>	<mark>Θ(n)</mark>	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Queue	<mark>Θ(n)</mark>	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	0(n)	<mark>Θ(n)</mark>	0(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	0(n)	Θ(n)	0(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
<u>Skip List</u>	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	O(n log(n))
Hash Table	N/A	Θ(1)	Θ(1)	Θ(1)	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	0(n)
<u>Cartesian Tree</u>	N/A	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	N/A	0(n)	0(n)	0(n)	0(n)
<u>B-Tree</u>	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	O(log(n))	O(log(n))	O(log(n))	O(log(n))	0(n)
Red-Black Tree	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	O(log(n))	O(log(n))	O(log(n))	O(log(n))	0(n)
<u>Splay Tree</u>	N/A	$\Theta(\log(n))$	$\Theta(\log(n))$	0(log(n))	N/A	O(log(n))	O(log(n))	O(log(n))	0(n)
AVL Tree	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	0(log(n))	O(log(n))	O(log(n))	O(log(n))	0(n)
KD Tree	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	0(n)

Array Sorting Algorithms

Algorithm	Time Complexity				
	Best	Average	Worst		
Quicksort	$\Omega(n \log(n))$	$\theta(n \log(n))$	O(n^2)		
<u>Mergesort</u>	$\Omega(n \log(n))$	Θ(n log(n))	O(n log(n))		
<u>Timsort</u>	<mark>Ω(n)</mark>	Θ(n log(n))	O(n log(n))		
<u>Heapsort</u>	$\Omega(n \log(n))$	0(n log(n))	O(n log(n))		
Bubble Sort	<mark>Ω(n)</mark>	0(n^2)	O(n^2)		
Insertion Sort	<mark>Ω(n)</mark>	0(n^2)	O(n^2)		
Selection Sort	$\Omega(n^2)$	0(n^2)	O(n^2)		
Tree Sort	$\Omega(n \log(n))$	Θ(n log(n))	O(n^2)		
Shell Sort	$\Omega(n \log(n))$	0(n(log(n))^2)	O(n(log(n))^2)		
Bucket Sort	$\Omega(n+k)$	Θ(n+k)	O(n^2)		
Radix Sort	$\Omega(nk)$	Θ(nk)	0(nk)		
Counting Sort	$\Omega(n+k)$	Θ(n+k)	0(n+k)		
Cubesort	<u>Ω(n)</u>	$\Theta(n \log(n))$	O(n log(n))		

http://bigocheatsheet.com/

Types of analyses

Best case. Lower bound on cost.

- Determined by "easiest" input.
- Provides a goal for all inputs.

Worst case. Upper bound on cost.

- Determined by "most difficult" input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.

- Need a model for "random" input.
- Provides a way to predict performance.

Ex 1. Arra	ay accesses for brute-force 3-SUM.	Ex 2. Con	npa
Best:	$\sim \frac{1}{2} N^3$	Best:	~
Average:	$\sim \frac{1}{2} N^3$	Average:	~
Worst:	$\sim \frac{1}{2} N^3$	Worst:	~

ares for binary search.

- 1
- lg N
- lg N

Types of analyses

Best case. Lower bound on cost. Worst case. Upper bound on cost. Average case. "Expected" cost.

Actual data might not match input model?

- Need to understand input to effectively process it.
- Approach 1: design for the worst case.
- Approach 2: randomize, depend on probabilistic guarantee.

Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for	used to
Big Theta	asymptotic order of growth	Θ(N ²)	½ N² 10 N² 5 N² + 22 N log N + 3N :	classify algorithms
Big Oh	Θ(N ²) and smaller	O(N ²)	10 N ² 100 N 22 N log N + 3 N :	develop upper bounds
Big Omega	Θ(N ²) and larger	Ω(N ²)	½ N ² N ⁵ N ³ + 22 N log N + 3 N ⋮	develop lower bounds

Data Structure and Algorithms

Theory of algorithms

Goals.

- Establish "difficulty" of a problem.
- Develop "optimal" algorithms.

Approach.

- Suppress details in analysis: analyze "to within a constant factor".
- Eliminate variability in input model by focusing on the worst case.

Optimal algorithm.

- Performance guarantee (to within a constant factor) for any input.
 - No algorithm can provide a better performance guarantee.

Data Structure and Algorithms

Acknowledgement

Mostly Slides taken from Book: "Algorithhms" 4th Edition by Robert Sedgewick, Kevin Wayne

