Data Structures and Algorithms

Rao Muhammad Umer Lecturer, CS and IT Department, The University of Lahore. Web: raoumer.com

Data Structure and Algorithms

1

outline

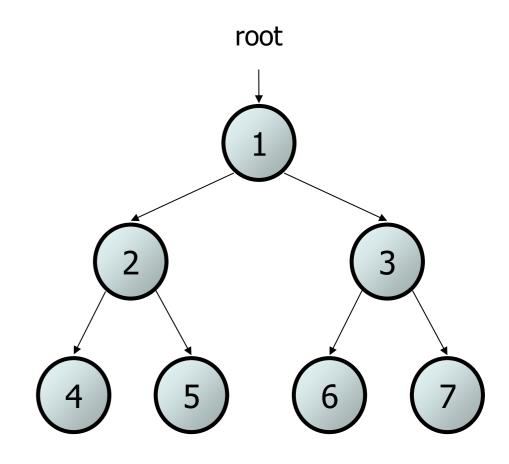
Trees Expression Trees Prefix Postfix In

- What are Trees?
- Binary Trees Concepts
- Binary Search Tree
- Representation of Binary Tree
 - As an Array
 - As a Linked-list
- Operations on a BST
 - Searching, Insertion, Deletion

- Prefix, Postfix, Infix expressions
- Reconstruction Tree
- Balanced Trees
- AVL Trees

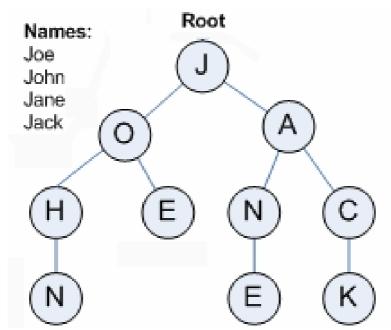
Trees

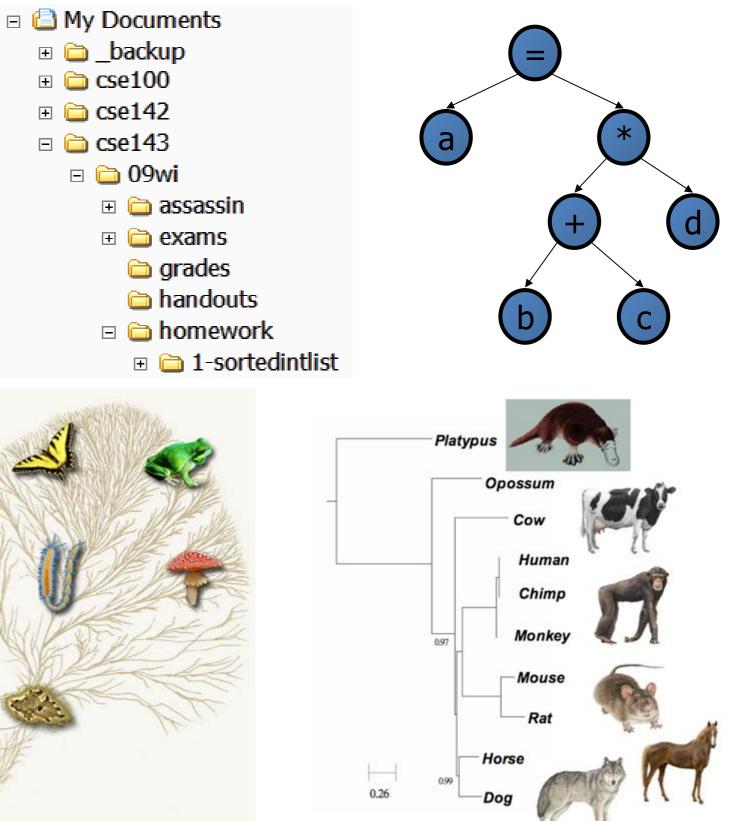
- tree: A directed, acyclic structure of linked nodes.
 - directed: Has one-way links between nodes.
 - *acyclic*: No path wraps back around to the same node twice.
 - **binary tree:** One where each node has at most two children.
- A binary tree can be defined as either:
 - empty (null), or
 - a root node that contains:
 - Data
 - a left subtree and a right subtree
 - Either (or both) subtrees could be empty.

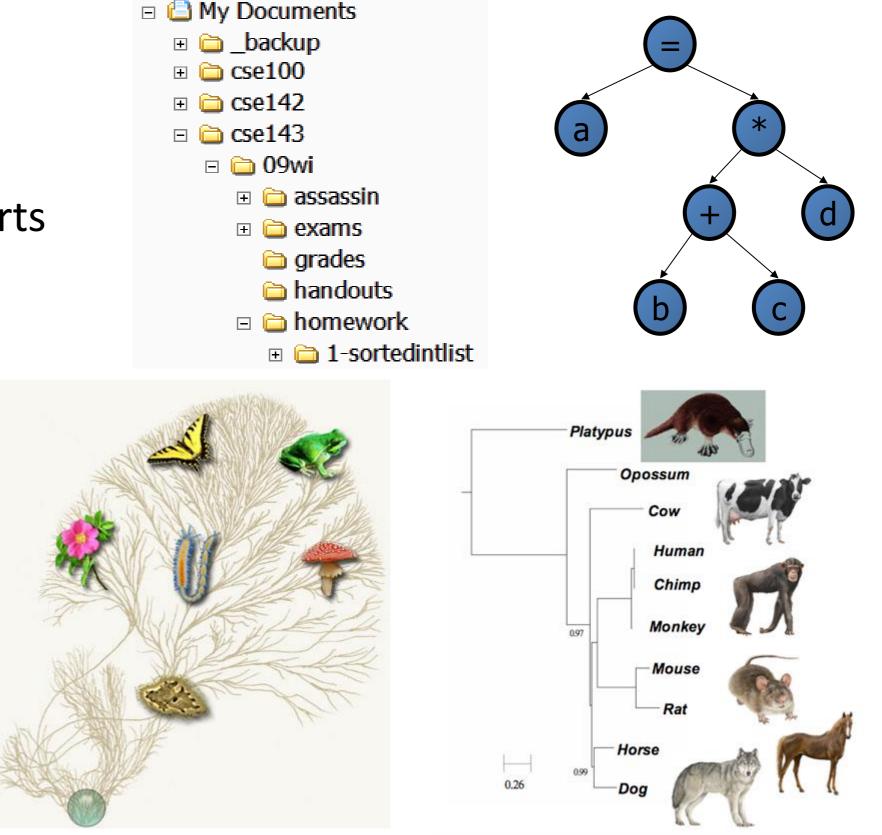


Trees in computer science

- folders/files on a computer
- family genealogy; organizational charts
- AI: decision trees
- compilers: parse tree
 - a = (b + c) * d;
- cell phone T9

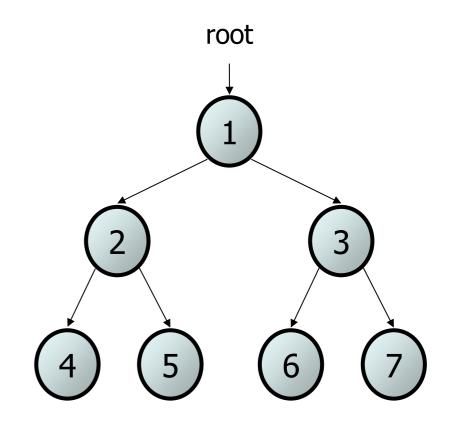






Terminology

- **node:** an object containing a data value and left/right children
- **root**: topmost node of a tree
- leaf: a node that has no children
- **branch**: any internal node; neither the root nor a leaf
- parent: a node that refers to this one
- child: a node that this node refers to
- sibling: a node with common parent



Binary search trees

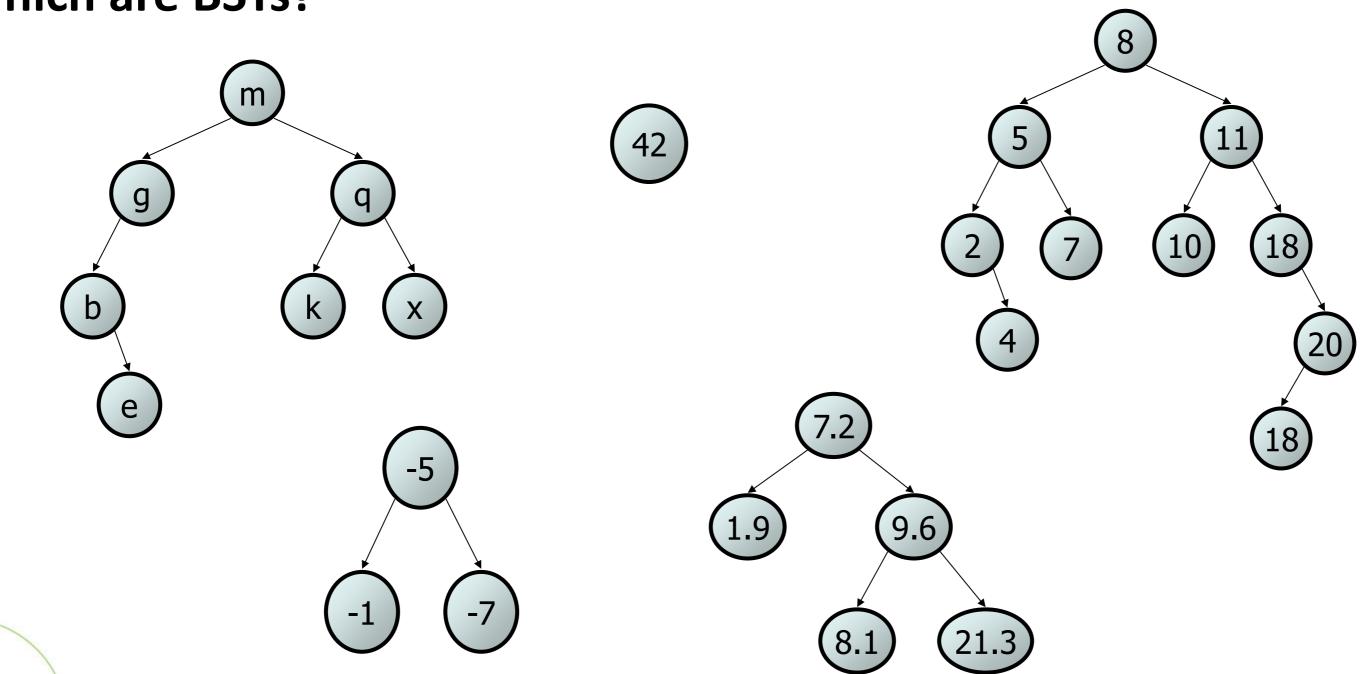
- Binary search tree ("BST"): a binary tree that is either:
 - empty (null), or
 - a root node R such that:
 - every element of R's left subtree contains data "less than" R's data,
 - every element of R's right subtree contains data "greater than" R's,
 - R's left and right subtrees are also binary search trees.
- BSTs store their elements in sorted order, which is helpful for searching/sorting tasks.
- See <u>animation</u> of building a BST

Data Structure and Algorithms

overall root 55 87 29 91 60

6

Which are BSTs?



7

Programming with Binary Trees

- Many tree algorithms are recursive
 - Process current node, recurse on subtrees
 - Base case is usually empty tree (null)
- traversal: An examination of the elements of a tree.
 - A pattern used in many tree algorithms and methods
- Common orderings for traversals:
 - pre-order: process root node, then its left/right subtrees
 - See <u>animation</u> of working of pre-order
 - in-order: process left subtree, then root node, then right
 - See <u>animation</u> of working of pre-order
 - **post-order**: process left/right subtrees, then root node
 - See <u>animation</u> of working of pre-order

Tree height calculation

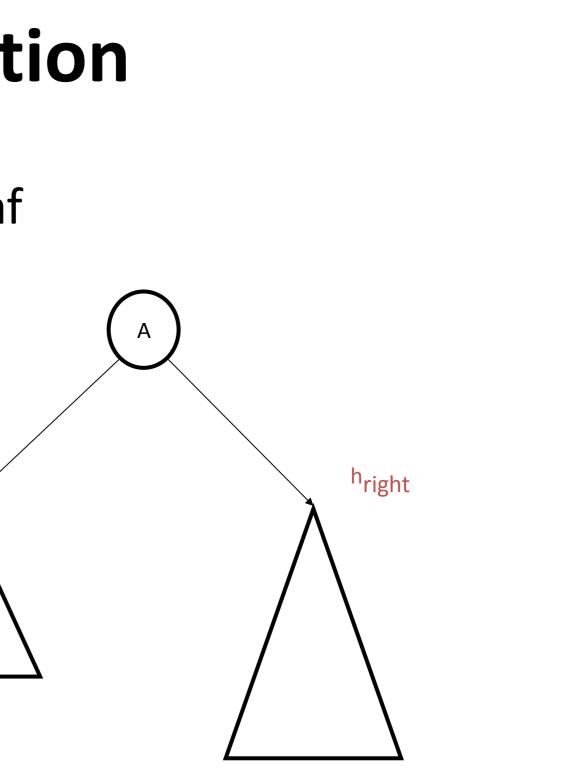
- Height is max number of edges from root to leaf
 - height(null) = -1
 - height(1) = 0
 - height(A)?
 - Hint: it's recursive!

Height (null) = -1

Runtime: O(N) visit each node once.

Data Structure and Algorithms

h_{left}



9

Binary Trees: Some Numbers

- Recall: height of a tree = length of longest path from the root to a leaf.
- For binary tree of height **h**:

- max # of nodes: $2^{(h+1)} - 1$
- min # of leaves:
- min # of nodes:

h+1

1

Representation of a Binary Trees in Memory

Node of Binary Tree:

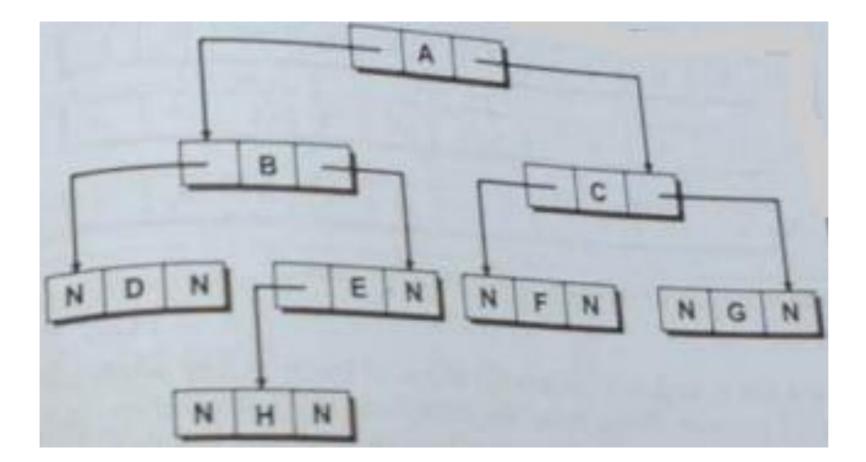
tnode *left; int data; tnode *rigth;

There are two ways to represent a binary tree:
 Linked representation of a binary tree
 Array representation of a binary tree

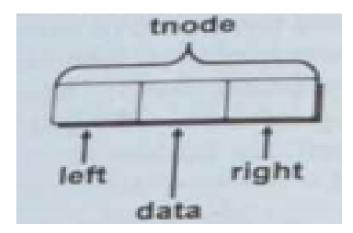
struct thode

Representation of a Binary Trees in Memory

Linked representation of a binary tree



See <u>animation</u> of building tree using linked list



Representation of a Binary Trees in Memory

Array representation of a binary tree

See <u>source code in C++</u> of building tree using array

Binary Search Tree (BST)

Implementation of a binary search tree

See <u>source code in C++</u> of building binary search tree

Operations on a BST

- Searching
- Insertion
- Deletion

Operations of Binary Search Tree (BST)

- Operations on a binary search tree
 - See <u>animation</u> of operations on a BST
 - See <u>source code</u> of operations on a BST

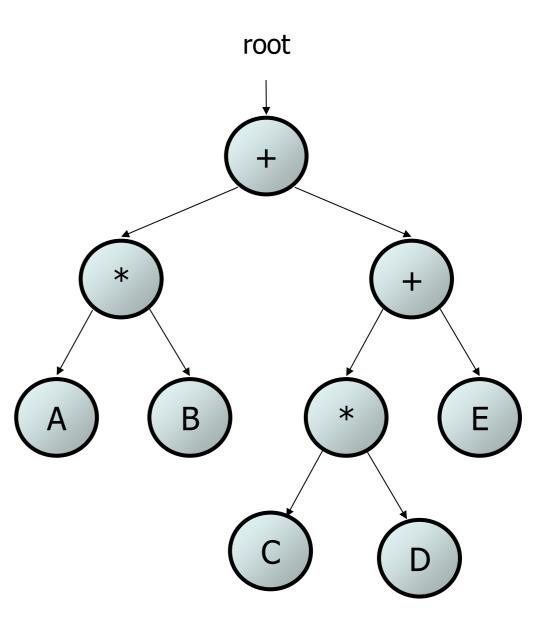
Expression Binary Trees

Expression Trees

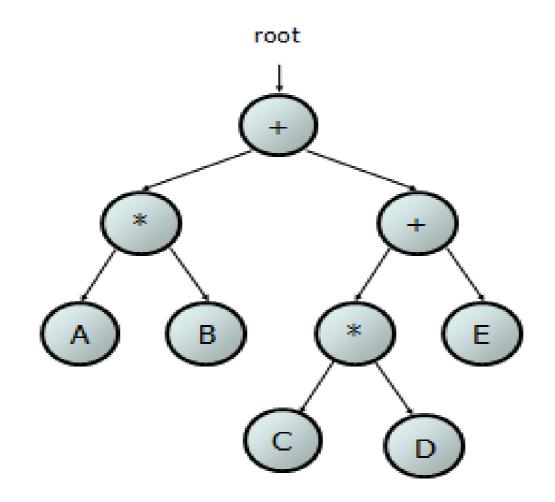
Arithmetic expression: A * B + C * D + E

Prefix form:

- Pre-order traversal of expression tree
- Infix form:
 - In-order traversal of expression tree
- Postfix form:
 - Post-order traversal of expression tree



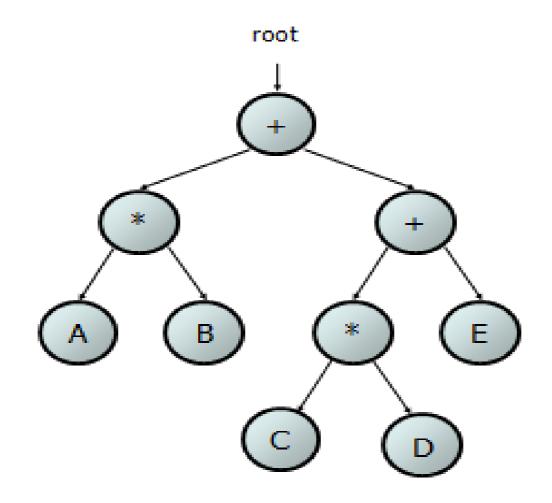
Preorder Of Expression Tree



+ * A B + * C D E

Gives prefix form of expression!

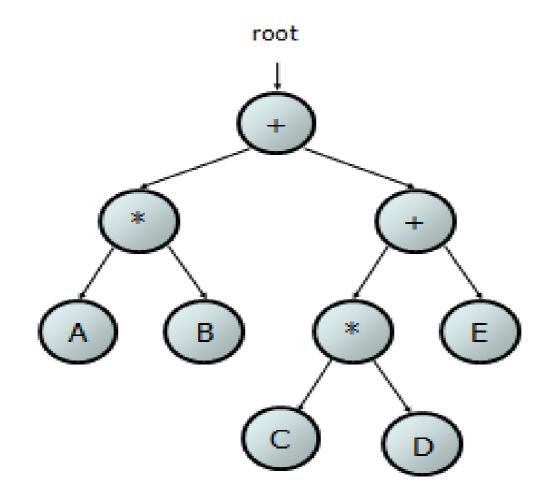
Inorder Of Expression Tree



A * B + C * D + E

Gives infix form of expression!

Postorder Of Expression Tree



AB * CD * E+ +

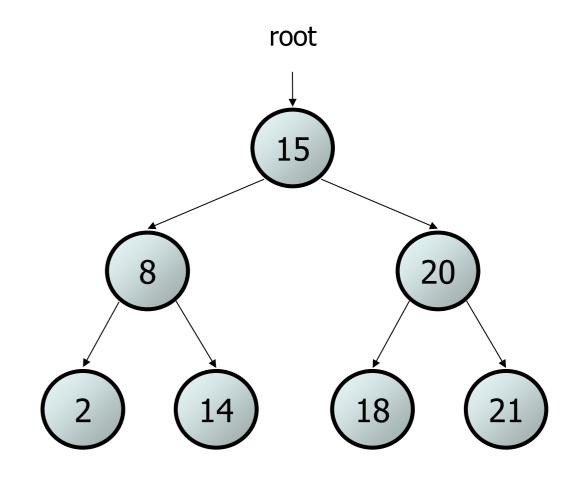
Gives postfix form of expression!

Traversal Applications

Make a clone.

Determine height.

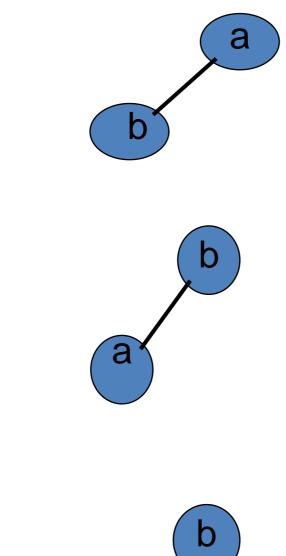
Determine number of nodes.



Binary Tree Construction

- Suppose that the elements in a binary tree are distinct.
- Can you construct the binary tree from which a given traversal sequence came?
- When a traversal sequence has more than one element, the binary tree is not uniquely defined.
- Therefore, the tree from which the sequence was obtained cannot be reconstructed uniquely.

Some Examples



a

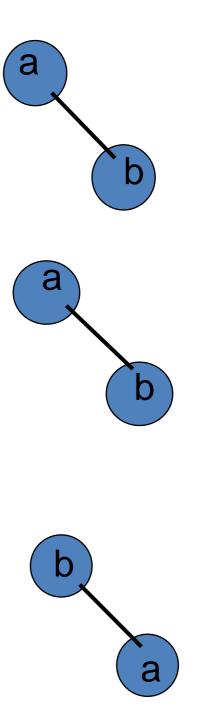
Data Structure and Algorithms

preorder

= ab

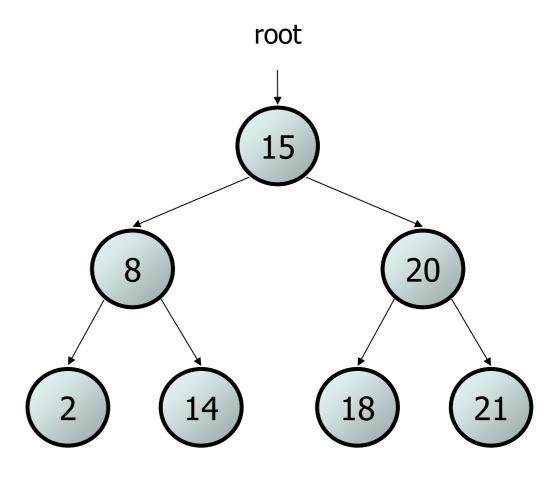
inorder = ab

postorder = ab



A Balanced Tree

- Values: 2 8 14 15 18 20 21
 - Order added: 15, 8, 2, 20, 21, 14, 18
- Different tree structures possible
 - Depends on order inserted
- 7 nodes, expected height log 7 ≈ 3

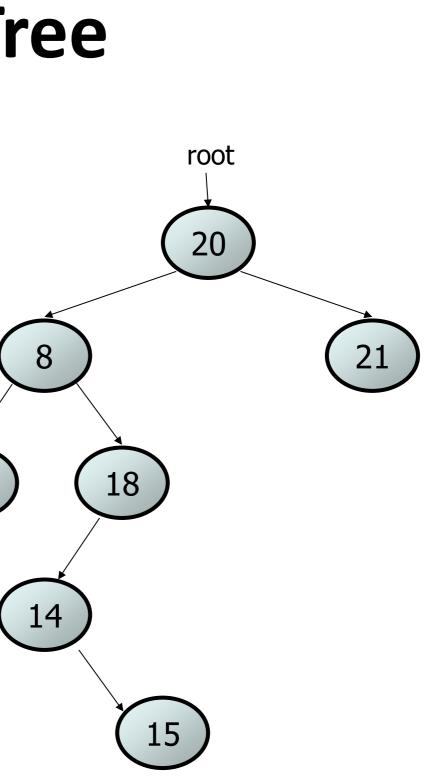


Perfectly balanced

Mostly Balanced Tree

- Same Values: 2 8 14 15 18 20 21
 - Order added: 20, 8, 21, 18, 14, 15, 2
- Mostly balanced, height 4

Data Structure and Algorithms

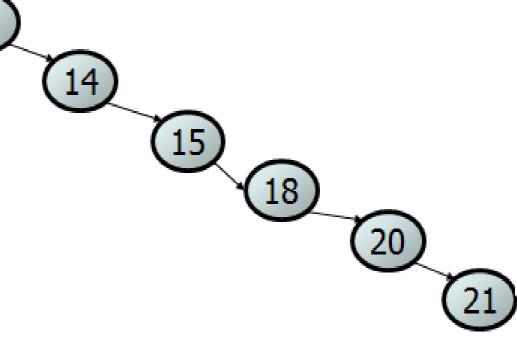


2

Degenerate Tree

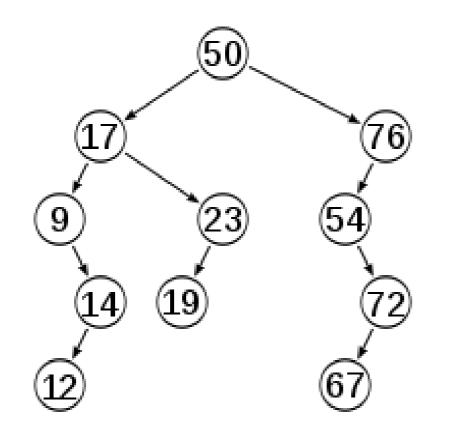
- Same Values: 2 8 14 15 18 20 21
 - Order added: 2, 8, 14, 15, 18, 20, 21
- root 2 8

Totally unbalanced, height 6

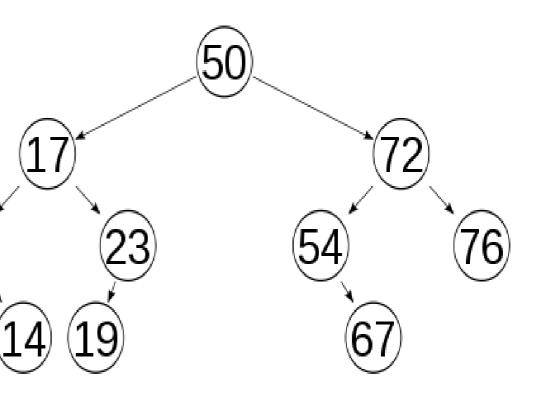


Balanced Tree

Balanced Tree: a tree in which heights of sub-trees are approximately equal



Data Structure and Algorithms



balanced tree

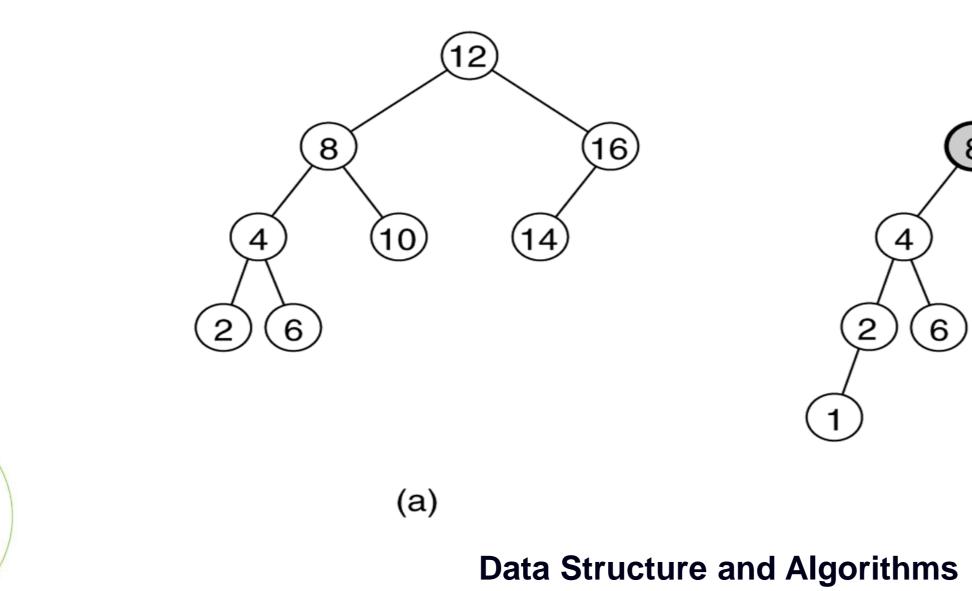
AVL Trees

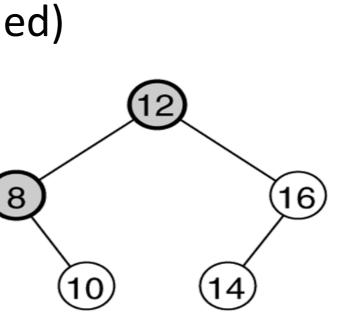
- i.e. no node's two child subtrees differ in height by more than 1
- AVL tree: a binary search tree that uses modified add and remove operations to stay balanced as items are added to and remove from it invented in 1962 by two mathematicians (Adelson-Velskii and Landis) one of several auto-balancing trees (others in book) specifically, maintains a balance factor of each node of 0, 1, or -1

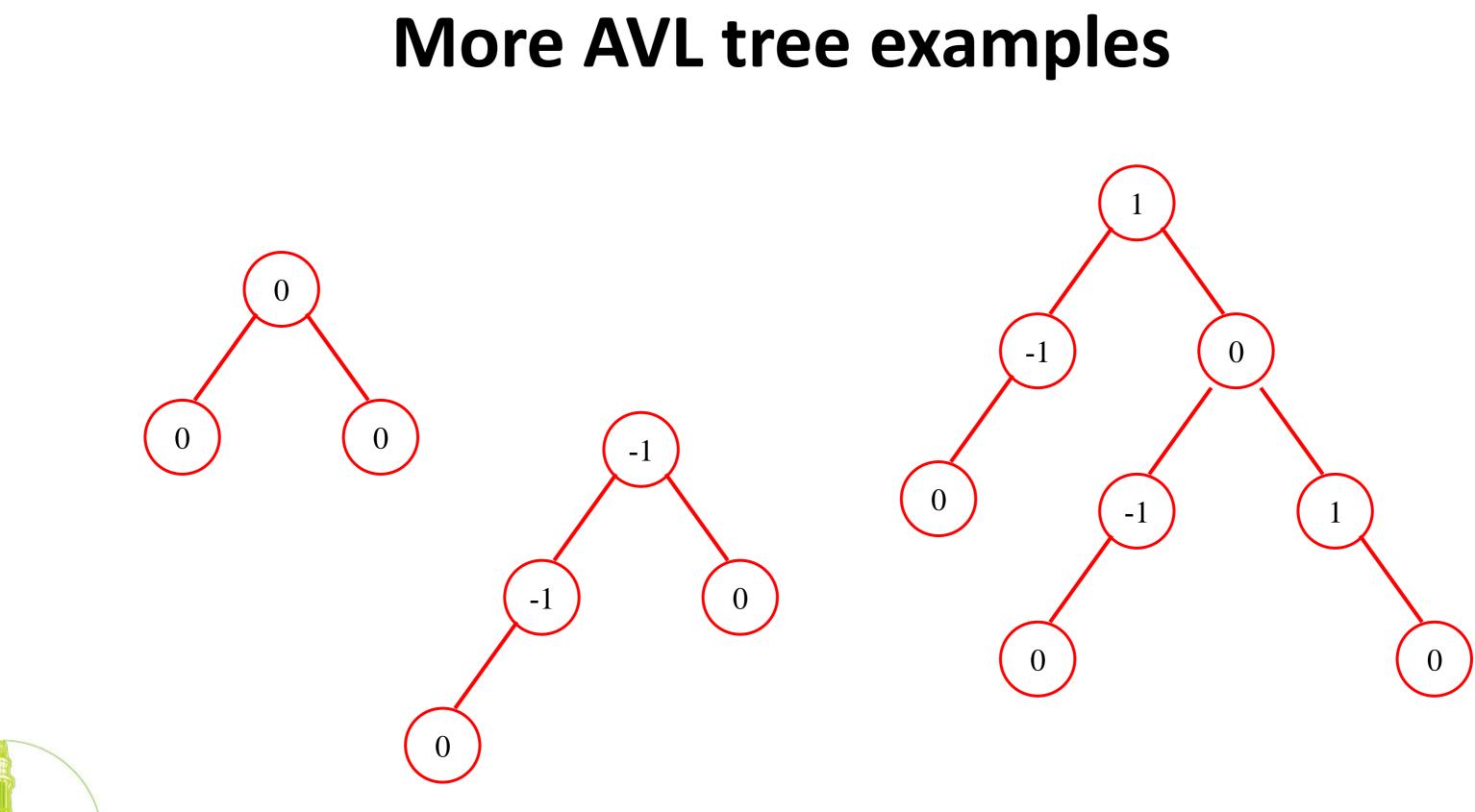
- **balance factor**, for a tree node *n* :
 - height of n's right subtree minus height of n's left subtree
 - BF_n = Height_{n.right} Height_{n.left}
 - start counting heights at n

AVL tree examples

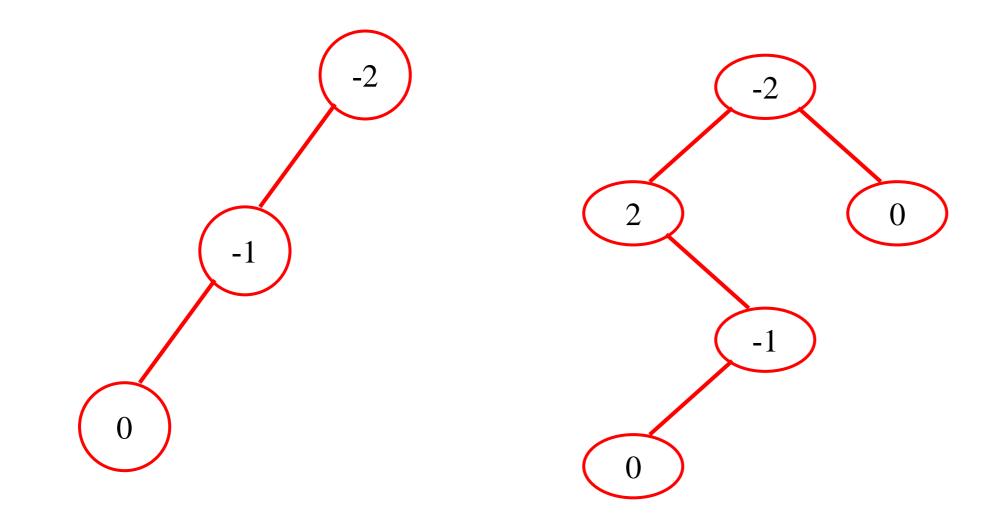
- Two binary search trees:
 - (a) an AVL tree
 - (b) not an AVL tree (unbalanced nodes are darkened)

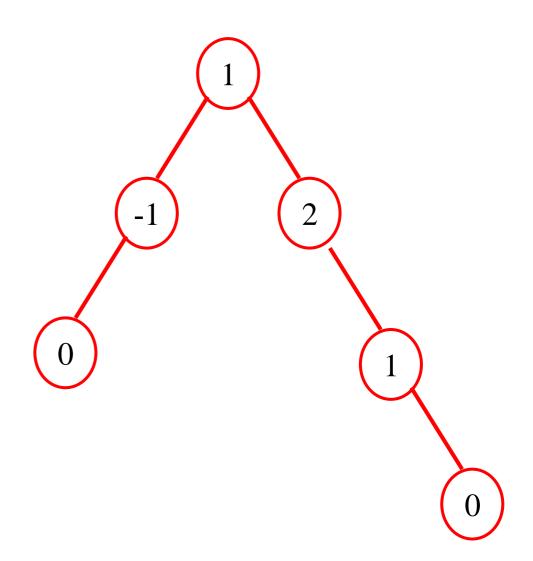




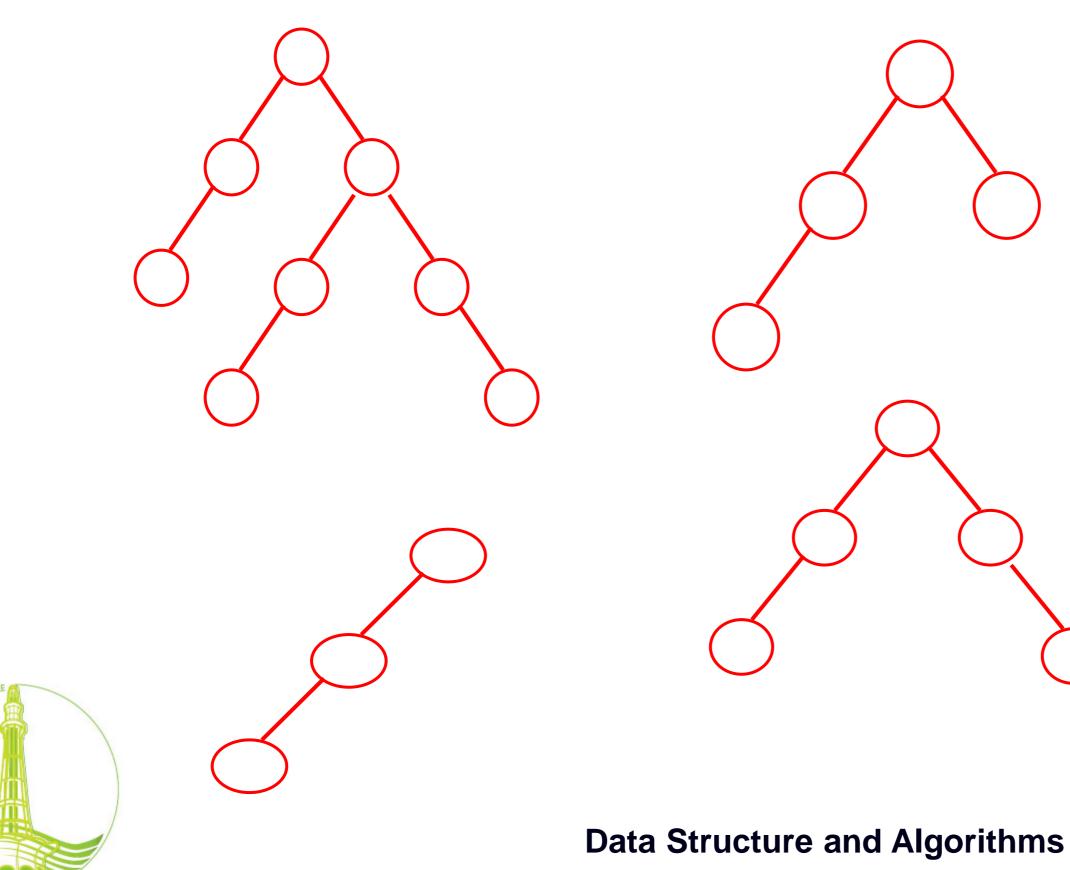


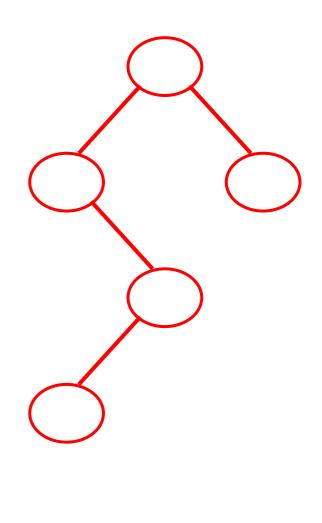
Not AVL tree examples

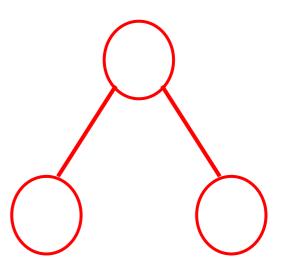




Which are AVL trees?







AVL Trees: search, insert, remove

• AVL search:

Same as BST search.

AVL insert:

Same as BST insert, except you need to check your balance and may need to "fix" the AVL tree after the insert.

AVL remove:

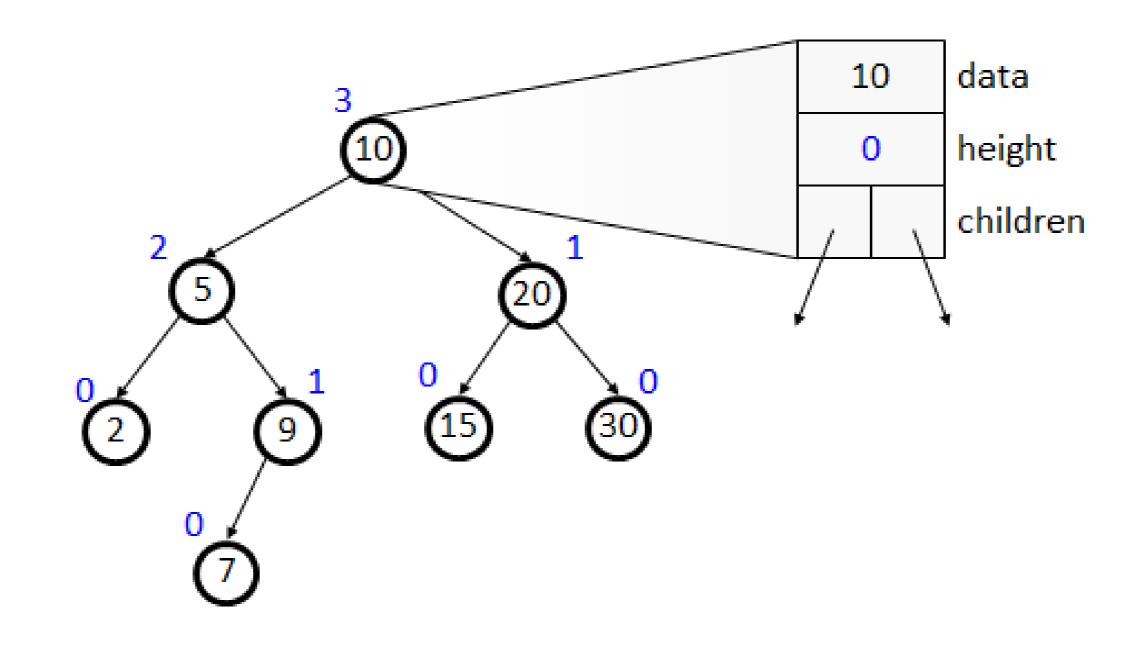
Remove it, check your balance, and fix it.

Testing the Balance Property

We need
1. Track
2. Dete
3. Restor
4. Track
4. Track
5. Dete
3. Restor
4. How data

- We need to be able to:
- 1. Track Balance Factor
- 2. Detect Imbalance
- 3. Restore Balance
- How do we accomplish each step?

Tracking Balance



Acknowledgement

Mostly Slides taken from Book: "Data Structures through C++" by Yashavant P. Kanetkar

