
Data Structures and Algorithms

Rao Muhammad Umer
Lecturer,

CS and IT Department,
The University of Lahore.

Web: raoumer.com

Data Structure and Algorithms 1

http://raoumer.com/

outline

Trees

 What are Trees?

 Binary Trees Concepts

 Binary Search Tree

 Representation of Binary Tree
 As an Array

 As a Linked-list

 Operations on a BST
 Searching, Insertion, Deletion

 Expression Trees
 Prefix, Postfix, Infix expressions

 Reconstruction Tree

 Balanced Trees

 AVL Trees

Data Structure and Algorithms 2

Trees

Data Structure and Algorithms 3

 tree: A directed, acyclic structure of linked nodes.
 directed: Has one-way links between nodes.
 acyclic: No path wraps back around to the same node twice.
 binary tree: One where each node has at most two children.

 A binary tree can be defined as either:

 empty (null), or
 a root node that contains:

 Data
 a left subtree and a right subtree

 Either (or both) subtrees could be empty.

7 6

3 2

1

5 4

root

Trees in computer science

4

 folders/files on a computer

 family genealogy; organizational charts

 AI: decision trees

 compilers: parse tree

 a = (b + c) * d;

 cell phone T9

d +

* a

=

c b

Terminology

Data Structure and Algorithms 5

 node: an object containing a data value and left/right children

 root: topmost node of a tree

 leaf: a node that has no children

 branch: any internal node; neither the root nor a leaf

 parent: a node that refers to this one

 child: a node that this node refers to

 sibling: a node with common parent

7 6

3 2

1

5 4

root

Binary search trees

Data Structure and Algorithms 6

 Binary search tree ("BST"): a binary tree that is either:

 empty (null), or

 a root node R such that:

 every element of R's left subtree contains data "less than" R's data,

 every element of R's right subtree contains data "greater than" R's,

 R's left and right subtrees are also binary search trees.

 BSTs store their elements in sorted order, which is helpful
for searching/sorting tasks.

 See animation of building a BST

91 60

87 29

55

42 -3

overall root

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/building/building.exe

Exercise

Data Structure and Algorithms 7

x k

q g

m

e

b

42

18 10

11 5

8

4

2 7

20

18

-7 -1

-5

21.3 8.1

9.6 1.9

7.2

Which are BSTs?

Programming with Binary Trees

 Many tree algorithms are recursive
 Process current node, recurse on subtrees
 Base case is usually empty tree (null)

 traversal: An examination of the elements of a tree.
 A pattern used in many tree algorithms and methods

 Common orderings for traversals:
 pre-order: process root node, then its left/right subtrees

 See animation of working of pre-order

 in-order: process left subtree, then root node, then right
 See animation of working of pre-order

 post-order: process left/right subtrees, then root node
 See animation of working of pre-order

Data Structure and Algorithms 8

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/preorder/preorder.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/inorder/inorder.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/postorder/postorder.exe

Tree height calculation

 Height is max number of edges from root to leaf
 height(null) = -1

 height(1) = 0

 height(A)?

 Hint: it's recursive!

 Height = max (height(left), height(right)) + 1
 Height (null) = -1
 Runtime: O(N) visit each node once.

 Data Structure and Algorithms 9

A

hleft hright

Binary Trees: Some Numbers

 Recall: height of a tree = length of longest path from the root to a leaf.

 For binary tree of height h:

 max # of leaves:

 max # of nodes:

 min # of leaves:

 min # of nodes:

Data Structure and Algorithms 10

2h

2(h + 1) - 1

1

h + 1

Representation of a Binary Trees in Memory

 Node of Binary Tree:

 struct tnode

 {

 tnode *left;

 int data;

 tnode *rigth;

 }

 There are two ways to represent a binary tree:

 Linked representation of a binary tree

 Array representation of a binary tree

Data Structure and Algorithms 11

Representation of a Binary Trees in Memory

 Linked representation of a binary tree

 See animation of building tree using linked list

Data Structure and Algorithms 12

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/linked representation/build tree.exe

Representation of a Binary Trees in Memory

 Array representation of a binary tree

 See source code in C++ of building tree using array

 Data Structure and Algorithms 13

../Assignments/trees

Binary Search Tree (BST)

 Implementation of a binary search tree

 See source code in C++ of building binary search tree

 Operations on a BST

 Searching

 Insertion

 Deletion

Data Structure and Algorithms 14

../Assignments/trees

Operations of Binary Search Tree (BST)

 Operations on a binary search tree

 See animation of operations on a BST

 See source code of operations on a BST

Data Structure and Algorithms 15

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/deletion
E:/UOL_Courses/summer-2017-courses/DSA/DSA_Course/Assignments/trees

Expression Binary Trees

 Expression Trees

 Arithmetic expression: A * B + C * D + E

 Prefix form:

 Pre-order traversal of expression tree

 Infix form:

 In-order traversal of expression tree

 Postfix form:

 Post-order traversal of expression tree

Data Structure and Algorithms 16

E *

+ *

+

B A

root

C D

Preorder Of Expression Tree

Data Structure and Algorithms 17

+ * A B + * C D E

Gives prefix form of expression!

Inorder Of Expression Tree

Data Structure and Algorithms 18

+ * A B + * C D E

Gives infix form of expression!

Postorder Of Expression Tree

Data Structure and Algorithms 19

+ * A B + * C D E

Gives postfix form of expression!

Traversal Applications

 Make a clone.

 Determine height.

 Determine number of nodes.

Data Structure and Algorithms 20

21 18

20 8

15

14 2

root

Binary Tree Construction

 Suppose that the elements in a binary tree are distinct.

 Can you construct the binary tree from which a given traversal sequence came?

 When a traversal sequence has more than one element, the binary tree is not
uniquely defined.

 Therefore, the tree from which the sequence was obtained cannot be reconstructed
uniquely.

Data Structure and Algorithms 21

Some Examples

Data Structure and Algorithms 22

preorder

 = ab

a

b

a

b

inorder

= ab

b

a

a

b

postorder

= ab

b

a

b

a

A Balanced Tree

 Values: 2 8 14 15 18 20 21

 Order added: 15, 8, 2, 20, 21, 14, 18

 Different tree structures possible

 Depends on order inserted

 7 nodes, expected height log 7 ≈ 3

 Perfectly balanced

Data Structure and Algorithms 23

21 18

20 8

15

14 2

root

Mostly Balanced Tree

 Same Values: 2 8 14 15 18 20 21

 Order added: 20, 8, 21, 18, 14, 15, 2

 Mostly balanced, height 4

Data Structure and Algorithms 24

15

14

21 8

20

18 2

root

Degenerate Tree

 Same Values: 2 8 14 15 18 20 21

 Order added: 2, 8, 14, 15, 18, 20, 21

 Totally unbalanced, height 6

Data Structure and Algorithms 25

Balanced Tree

 Balanced Tree: a tree in which heights of sub-trees are approximately equal

Data Structure and Algorithms 26

unbalanced tree balanced tree

AVL Trees

 AVL tree: a binary search tree that uses modified add and remove operations
to stay balanced as items are added to and remove from it
 invented in 1962 by two mathematicians (Adelson-Velskii and Landis)
 one of several auto-balancing trees (others in book)
 specifically, maintains a balance factor of each node of 0, 1, or -1

 i.e. no node's two child subtrees differ in height by more than 1

 balance factor, for a tree node n :
 height of n's right subtree minus height of n's left subtree

 BFn = Heightn.right - Heightn.left

 start counting heights at n

Data Structure and Algorithms 27

AVL tree examples

 Two binary search trees:

 (a) an AVL tree

 (b) not an AVL tree (unbalanced nodes are darkened)

Data Structure and Algorithms 28

More AVL tree examples

Data Structure and Algorithms 29

0

0 0 -1

-1 0

0

1

-1 0

0 -1 1

0 0

Not AVL tree examples

Data Structure and Algorithms 30

-2

-1

0

-2

2 0

0

-1

1

-1 2

0 1

0

Which are AVL trees?

Data Structure and Algorithms 31

AVL Trees: search, insert, remove

 AVL search:

 Same as BST search.

 AVL insert:

 Same as BST insert, except you need to check your balance and may need to
“fix” the AVL tree after the insert.

 AVL remove:

 Remove it, check your balance, and fix it.

Data Structure and Algorithms 32

Testing the Balance Property

 We need to be able to:

1. Track Balance Factor

2. Detect Imbalance

3. Restore Balance

 How do we accomplish each step?

Data Structure and Algorithms 33

Tracking Balance

Data Structure and Algorithms 34

Acknowledgement
 Mostly Slides taken from Book: “Data Structures through C++” by Yashavant P.

Kanetkar

35

