
Department of Computer Sciences and IT,

The University of Lahore

Heap Data Structure

Rao Muhammad Umer

Lecturer,

CS and IT Department,

The University of Lahore.

Web: raoumer.com

1

http://raoumer.com/

Outlines
• Heap

• Max/Min Heap

• Operations on Heap

• Build Heap

• Complexity Analysis of Heap

• Binomial Heap

• Fibonacci Heap

• Applications of Heap

• Heap Sort

• Priority Queue

• Event-Driven Simulation
2

Heap Data Structure

Heap: A special form of complete

binary tree that key value of each node is

no smaller (larger) than the key value of

its children (if any).

Heaps are based on the notion of

a complete tree

A binary tree is completely full if it is of

height, h, and has 2h+1-1 nodes.

3

Complete Binary Tree

• A binary tree of height, h, is complete iff :

it is empty OR

 its left subtree is complete of height h-1 and its

right subtree is completely full of height h-2 or

its left subtree is completely full of height h-1

and its right subtree is complete of height h-1.

• A complete tree is filled from the left

4

A complete binary tree in nature

Binary tree in Computing

6

Max/Min Tree

Max-Tree:

 A max tree is a tree in which the key
 value in each node is no smaller than the
 key values in its children.

Min-Tree:

 A min tree is a tree in which the key
 value in each node is no larger than the
 key values in its children.

7

Min Tree Example

2

4 3

4 8 7

9 9

Root has minimum element.
8

Max Tree Example

9

4 8

4 2 7

3 1

Root has maximum element.
9

Max/Min Heap

Max-Heap: root node has the largest key.

 A max heap is a complete binary
 tree that is also a max tree.

Min-Heap: root node has the smallest key.

 A min heap is a complete binary
 tree that is also a min tree.

10

Min Heap With 9 Nodes

Complete binary tree with 9 nodes.

11

Min Heap With 9 Nodes

Complete binary tree with 9 nodes

that is also a min tree.

2

4

6 7 9 3

8 6

3

12

Max Heap With 9 Nodes

Complete binary tree with 9 nodes

that is also a max tree.

9

8

6 7 2 6

5 1

7

13

 Heap Height

 Since a heap is a complete binary

tree, the height of an n node heap is

log2 (n+1).

14

9 8 7 6 7 2 6 5 1

1 2 3 4 5 6 7 8 9 10 0

A Heap Is Efficiently Represented As An Array

9

8

6 7 2 6

5 1

7

15

Moving Up And Down A Heap

9

8

6 7 2 6

5 1

7

1

2 3

4 5 6 7

8 9

16

Inserting An Element Into A Max Heap

Complete binary tree with 10 nodes.

9

8

6 7 2 6

5 1

7

7

17

Inserting An Element Into A Max Heap

New element is 5.

9

8

6 7 2 6

5 1

7

7 5

18

Inserting An Element Into A Max Heap

New element is 20.

9

8

6

7

2 6

5 1

7

7

7

19

Inserting An Element Into A Max Heap

New element is 20.

9

8

6

7

2 6

5 1

7

7 7

20

Inserting An Element Into A Max Heap

New element is 20.

9

8 6

7

2 6

5 1

7

7 7

21

Inserting An Element Into A Max Heap

New element is 20.

9

8 6

7

2 6

5 1

7

7 7

20

22

Inserting An Element Into A Max Heap

Complete binary tree with 11 nodes.

9

8 6

7

2 6

5 1

7

7 7

20

23

Inserting An Element Into A Max Heap

New element is 15.

9

8 6

7

2 6

5 1

7

7 7

20

24

Inserting An Element Into A Max Heap

New element is 15.

9

8

6

7

2 6

5 1

7

7 7

20

8

25

Inserting An Element Into A Max Heap

New element is 15.

8

6

7

2 6

5 1

7

7 7

20

8

9

15

26

Complexity Of Insert

Complexity is O(log n), where n is

heap size.

8

6

7

2 6

5 1

7

7 7

20

8

9

15

27

Removing The Max Element

Max element is in the root.

8

6

7

2 6

5 1

7

7 7

20

8

9

15

28

Removing The Max Element

After max element is removed.

8

6

7

2 6

5 1

7

7 7 8

9

15

29

Removing The Max Element

Heap with 10 nodes.

8

6

7

2 6

5 1

7

7 7 8

9

15

Reinsert 8 into the heap.
30

Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

7 7

9

15

31

Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

7 7

9

15

32

Removing The Max Element

Reinsert 8 into the heap.

6

7

2 6

5 1

7

7 7

9

15

8

33

Removing The Max Element

Max element is 15.

6

7

2 6

5 1

7

7 7

9

15

8

34

Removing The Max Element

After max element is removed.

6

7

2 6

5 1

7

7 7

9

8

35

Removing The Max Element

Heap with 9 nodes.

6

7

2 6

5 1

7

7 7

9

8

36

Removing The Max Element

Reinsert 7.

6 2 6

5 1

7 9

8

37

Removing The Max Element

Reinsert 7.

6 2 6

5 1

7

9

8

38

Removing The Max Element

Reinsert 7.

6 2 6

5 1

7

9

8

7

39

Complexity Of Remove Max Element

Complexity is O(log n).

6 2 6

5 1

7

9

8

7

40

Construction, Insertion and

Deletion of heap

• See animation of construction of heap

• See animation of insertion of heap

• See animation of deletion of heap

E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/construction of heap/conheap.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/insertion heap/insertion.exe
E:/UOL_Courses/summer-2017-courses/DSA/Data Structures Through C-Yashavant Kanetkar/CD-ROM/DSTC2EdAccompanying CD/contents/tree/animations/deletion heap/deletion.exe

Initializing A Max Heap

Initializing A Max Heap

input array = [-, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

8

4

7

6 7

8 9

3

7 10

1

11

5

2

Initializing A Max Heap

Start at rightmost array position that has a child.

8

4

7

6 7

8 9

3

7 10

1

11

5

2

Index is n/2.

Initializing A Max Heap

Move to next lower array position.

8

4

7

6 7

8 9

3

7 10

1

5

11

2

Initializing A Max Heap

8

4

7

6 7

8 9

3

7 10

1

5

11

2

Initializing A Max Heap

8

9

7

6 7

8 4

3

7 10

1

5

11

2

Initializing A Max Heap

8

9

7

6 7

8 4

3

7 10

1

5

11

2

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 10

1

5

11

2

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 10

1

5

11

2

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 10

1

5

11

Find a home for 2.

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 5

1

11

Find a home for 2.

10

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 2

1

11

Done, move to next lower array position.

10

5

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 2

1

11

10

5

Find home for 1.

11

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 2

10

5

Find home for 1.

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 2

11

10

5

Find home for 1.

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 2

11

10

5

Find home for 1.

Initializing A Max Heap

8

9

7

6 3

8 4

7

7 2

11

10

5

Done.

1

Time Complexity

Cost of Max-Heapify (A, i) is O(log n)

Number of node/elements to be processed is n.

Total Time Complexity is O(n log n).

BINOMIAL HEAPS

Binomial Tree

Def. A binomial tree of order k is defined

recursively:

• Order 0: single node.

• Order k: one binomial tree of order k –1

linked to another of order k – 1.

Binomial Tree

Binomial Heap

Def. A binomial heap is a sequence of

binomial trees such that:

• Each tree is heap-ordered

• There is either 0 or 1 binomial tree of order

k

Binomial Heap

Binomial Heap

FIBONACCI HEAPS

Fibonacci Heap

Basic Idea

• Similar to binomial heaps, but less rigid

structure

• Binomial heap: eagerly consolidate trees

after each INSERT; implement

DECREASE-KEY by repeatedly

exchanging node with its parent

FIBONACCI HEAPS

IN NATURE

Application of Heap

Sorting(Heap Sort)

Priority Queues

Heap Sort

• Algorithm for Heap Sort

• Time Complexity is O(n log n).

71

Heap Sort

• Array interpreted as a binary tree

 1 2 3 4 5 6 7 8 9 10

 26 5 77 1 61 11 59 15 48 19

input file

26 [1]

5 [2] 77 [3]

1 [4] 61 [5] 11 [6] 59 [7]

15 [8] 48 [9] 19 [10]

72

Heap Sort

• Adjust it to a MaxHeap

77 [1]

61 [2] 59 [3]

48 [4] 19 [5] 11 [6] 26 [7]

15 [8] 1 [9] 5 [10]

initial heap

73

Heap Sort

• Exchange and adjust
77 [1]

61 [2] 59 [3]

48 [4] 19 [5] 11 [6] 26 [7]

15 [8] 1 [9] 5 [10]

exchange

74

Heap Sort

61

[1]

48
[2]

59
[3]

15
[4]

19
[5]

11
[6]

26
[7]

5
[8]

1
[9]

77
[10]

59
[1]

48
[2]

26
[3]

15
[4]

19
[5]

11
[6]

1
[7]

5
[8]

61
[9]

77
[10]

(a)

(b)

75

Heap Sort

48
[1]

19
[2]

26
[3]

15
[4]

5
[5]

11
[6]

1
[7]

59
[8]

61
[9] 77

[10] 26
[1]

19
[2]

11
[3]

15
[4]

5
[5]

1
[6]

48
[7]

59
[8]

61
[9]

77
[10]

(c)

(d)

59

61 59

48

76

Heap Sort

19
[1]

15
[2]

11
[3]

1
[4]

5
[5]

26
[6]

1
[7]

59
[8]

61
[9] 77

[10] 15
[1]

5
[2]

11
[3]

1
[4]

5
[5]

1
[6]

48
[7]

59
[8]

61
[9]

77
[10]

(e)

(f)

59

61 59

48

48 26

26 19

77

Heap Sort

11
[1]

5
[2]

1
[3]

1
[4]

5
[5]

26
[6]

1
[7]

59
[8]

61
[9] 77

[10] 5
[1]

1
[2]

1
[3]

1
[4]

5
[5]

1
[6]

48
[7]

59
[8]

61
[9]

77
[10]

(g)

(h)

59

61 59

48

48 26

26 19

19 15

15

11

78

Heap Sort

• So results

1
[1]

1
[2]

1
[3]

1
[4]

5
[5]

1
[6]

48
[7]

59
[8]

61
[9]

77
[10]

(i)

59

48 26 19 15

11 5

77 61 59 48 26 19 15 11 5 1

Priority Queue

• A priority queue is a data structure for

maintaining a set S of elements, each with

an associated value called a key.

• Two kinds of priority queues:

• Min priority queue

• Max priority queue

Min Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:

 empty

 size

 insert an element into the priority queue (push)

 get element with min priority (top)

 remove element with min priority (pop)

Max Priority Queue

• Collection of elements.

• Each element has a priority or key.

• Supports following operations:

 empty

 size

 insert an element into the priority queue (push)

 get element with max priority (top)

 remove element with max priority (pop)

Priority Queue

• Algorithm for Priority Queue

Complexity Of Operations

Using a heap:

• empty, size, and top => O(1) time

• insert (push) and remove (pop) =>

O(log n) time where n is the size of the

priority queue

Priority Queue

• Use max-priority queues to schedule jobs on a

shared computer

• The max-priority queue keeps track of the jobs

to be performed and their relative priorities

• When a job is finished or interrupted, the

scheduler selects the highest-priority job from

among those pending by calling EXTRACT-

MAX

• The scheduler can add a new job to the queue

at any time by calling INSERT

Event-Driven Simulation

• Goal: Simulate the motion of N moving

particles that behave according to the laws

of elastic collision.

Event-Driven Simulation

Significance: Relates macroscopic

observables to microscopic dynamics

• Maxwell-Boltzmann: distribution of speeds

as a function of temperature.

• Einstein: explain Brownian motion of

pollen grains

Over-All Analysis of Heap

Some More Food

