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Outline 

• Introduction to Adversarial Search Problems 

• Optimal Decision in Games 

– Minimax Algorithm 

• Alpha Beta Pruning 

• State of the Art Game Programs 
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Adversarial Search Problems 

• In presence of multiple agents the 
unpredictability of other agents can introduce 
many possible contingencies into the problem 
solving process 

• Cooperation and Competition 

• Game Theory: Deals with multiple agent 
environments as a game provided that the impact 
of each agent on the others is significant 

• Competitive environments in which the agent’s 
goals are in conflict give rise to ASPs (games) 
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Examples 

• Games 

– Chess 

– Othello 

– Tic-Tac-Toe 
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Prisoner’s Dilemma 

• A typical example from Game Theory 
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NIM 

• A number of tokens are placed on a table 
between the two opponents; at each move 
the player must divide a pile of tokens into 
two non-empty piles of different sizes.  
– For example, 6 tokens can be divided into piles of 

5 & 1 or 4 & 2 but not 3 & 3.  

• The first player who can no longer make a 
move loses the game. 

• The utility function assigns a value of +1 when 
MAX is the winner and 0 otherwise.  

6 
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Optimal Decision in Games 

• A game represented as an ASP has the following 
components 

– Initial State 
• Includes the board position and identifies the player 

– Successor Function 
• Which generates a list of (move, state) pairs each indicating a legal 

move and the resulting state 

– Terminal Test 
• Which determines when the game is over 

• States where the game has ended are called terminal states 

– Utility Function 
• Assigns a numeric value to the terminal state 
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Game Tree 

Ply 
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Optimal Strategies 

• MAX must find a contingent strategy in 
relation to MIN’s actions 

• The optimal strategy can be determined by 
examining the minimax value of each node 
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Optimal Strategies… 

Action A1 is 
optimal 
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Optimal Strategy… 

• Minimax Decision 

– Maximizes the worst case outcome for Max 

– What if MIN does not play optimally? 

• MAX will do even better 
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function MINIMAX-DECISION(state) returns an action 

return argmaxa in ACTIONS(s) MIN-VALUE(RESULT(state,a)) 

 

function MAX-VALUE(state) returns a utility value 

if TERMINAL-TEST(state) then return UTILITY(state) 

v ← −∞ 

for each a in ACTIONS(state) do 

  v ← MAX(v,MIN-VALUE(RESULT(s,a)) 

return v 

 

function MIN-VALUE(state) returns a utility value 

if TERMINAL-TEST(state) then return UTILITY(state) 

v ← ∞ 

for each a in ACTIONS(state) do 

  v ← MIN(v,MAX-VALUE(RESULT(s,a)) 

return v 

 
12 

MINIMAX Pseudocode 
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Properties of minimax 

• Complete? Yes (if tree is finite) 

• Optimal? Yes (against an optimal opponent) 

• Time complexity? O(bm) 

• Space complexity? O(bm) (depth-first exploration) 

 

• For chess, b ≈ 35, m ≈100 for "reasonable" games 
 exact solution completely infeasible 
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Optimal Decision in Multiplayer Games 

 

• Alliances can be a natural consequence of optimal strategies for each 
player in a multiplayer game 

• If the game is not zero-sum, then collaboration can also occur with 
just two players 
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α-β pruning example 
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α-β pruning example 
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α-β pruning example 
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α-β pruning example 
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α-β pruning example 
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Properties of α-β 

• Pruning does not affect final result 

• Good move ordering improves effectiveness of 
pruning 

• With perfect ordering, time complexity = O(bm/2) 

 doubles depth of search 
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Why is it called α-β? 

• α is the value of the best 
(i.e., highest-value) 
choice found so far at 
any choice point along 
the path for max 

• If v is worse than α, max 
will avoid it 

 prune that branch 

• Define β similarly for min 
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The α-β algorithm 
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The α-β algorithm 



CIS 530: Artifiical Intelligence PIEAS Biomedical Informatics Research Lab 24 

Resource limits 

Suppose we have 100 secs, explore 104 nodes/sec 
 106 nodes per move 

 

Standard approach: 

• cutoff test:  

– e.g., depth limit (perhaps add quiescence search) 

– Cutoff should only be applied to Quiescent (Steady) Positions that 
do not exhibit wild swings in value in the near future  

• evaluation function  

= estimated desirability of position 
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Quiescent Search 

If B had looked forward one more ply then it would have seen that the Black 
Queen is in threat: A more sophisticated cutoff procedure is required. 
 
Do not stop the search if the current state is unstable. 
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Horizon Effect 

Black is in an apparently superior position but White can form a queen through its pawn 
Black would tend to ‘check’ the King to avoid this queening but ultimately the pawn will become a queen 
The problem with fixed depth search is that it believes that such a move would prevent queening, but the 
truth is that the queening move has been pushed over the horizon and cannot be seen  
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Evaluation functions 

• For chess, typically linear weighted sum of 
features 

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s) 

• e.g., w1 = 9 with  

 f1(s) = (number of white queens) –  (number 
of black queens), etc. 
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Cutting off search 

MinimaxCutoff is identical to MinimaxValue except 
1. Terminal? is replaced by Cutoff? 
2. Utility is replaced by Eval 

 
Does it work in practice? 
 bm = 106, b=35  m=4 

 
4-ply lookahead is a hopeless chess player! 

– 4-ply ≈ human novice 
– 8-ply ≈ typical PC, human master 
– 12-ply ≈ Deep Blue, Kasparov 
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Deterministic games in practice: Checkers 

• Checkers was solved on April 29, 2007 by 
the team of Jonathan Schaeffer, known for 
Chinook, the "World Man-Machine 
Checkers Champion“ 

• From the standard starting position, both 
players can guarantee a draw with perfect 
play 

• Checkers is the largest game that has been 
solved to date, with a search space of 
5x1020 

• The number of calculations involved were 
1014 and were done over a period of 18 
years. The process involved from 200 
desktop computers at its peak down to 
around 50 
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Deterministic games in practice: Chess 

• Deep Blue defeated human world 
champion Garry Kasparov in a six-
game match in 1997. Deep Blue 
searches 200 million positions per 
second, uses very sophisticated 
evaluation, and undisclosed methods 
for extending some lines of search up 
to 40 ply. 

• Solved by retrograde computer 
analysis for all 3- to 6-piece, and some 
7-piece endgames, counting the two 
kings as pieces. It is solved for all 3–3 
and 4–2 endgames with and without 
pawns, where 5-1 endgames are 
assumed to be won with some trivial 
exceptions  

• The full game has 32 pieces. Chess on 
a 3x3 board is strongly solved by Kirill 
Kryukov (2004)  
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Deterministic games in practice: Othello 

• Human champions refuse to 
compete against computers, 
who are too good! 
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Deterministic games in practice: Go 

• Human champions refuse to 
compete against computers, who are 
too bad (ca. 2007) 

• In go, b > 300, so most programs use 
pattern knowledge bases to suggest 
plausible moves 

 

• AlphaGo 

– Beat the human world champion 

– Uses Deep Neural Networks to 
predict the utility of a move 

 
Must watch:  
http://www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1.19234  
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Deterministic games in practice: Robocup 

• Initiated in 1993 

• Autonomous robots play 
soccer! 

• Official Goal Statement 

– By mid-21st century, a team 
of fully autonomous 
humanoid robot soccer 
players shall win the soccer 
game, complying with the 
official rule of the FIFA, 
against the winner of the 
most recent World Cup 
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End of Lecture 

Humans Are the World's Best Pattern-Recognition 
Machines, But for How Long? 

 
http://bigthink.com/endless-innovation/humans-are-the-worlds-best-pattern-recognition-machines-but-for-how-long  
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