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Basics

▪ Gradient

▪ Generalization of the 

slope to 

multidimensional 

functions

▪ 𝛁𝒇 𝒙 =

∂𝒇
∂𝑥1
∂𝒇
∂𝑥2
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Basics

▪ Gradient Descent

▪ A method for 

optimization

▪ To find the minima 

of a function, take  a 

step in the direction 

opposite to the 

gradient

▪ Local minimas?
3

𝒙𝒊 = 𝒙𝑖−1 + α𝛁𝒇 𝒙
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The Human Brain: Neurons and Nerve Cells

▪ Most complex organ in the human 

body

▪ Contains some 1010 neurons, which 

are capable of electrical and 

chemical communication with tens 

of thousands of other nerve cells

▪ Nerve cells in turn rely on some 

quadrillion (1015) synaptic

connections for their 

communications. 
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Functioning of the Biological Neuron

▪ Electrically Excitable Cells

▪ Process and Transmit 
Information

▪ Major Parts

▪ Soma (3-18um)
▪ Cell Body

▪ Dendrites
▪ Receive Inputs from other 

Neurons

▪ Axon
▪ Transmit Output to other 

Neurons
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Structural Mathematical Model for the Biological 

Neuron
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Concepts of Linear Separability

▪ Find a line that separates

▪ (0,0),(0,1),(1,0)

▪ (1,1)

7
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Perceptron

▪ Given:

▪ Training data and labels
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▪ Thus there are two hyperplanes)

▪ H+: WTX+b=θ

▪ H-: WTX+b=-θ
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Learning Algorithm

Update Occurs only when 

there is an error

If output is -1 and target is 

+1, we must increase the 

net input: Achieves this by 

increasing weight by alpha 

when if the input is +1 or 

decreasing weight if the 

input is -1 or not changing 

it when input is 0

Epoch



CIS530: Artificial Intelligence

Pakistan Institute of Engineering and Applied Sciences (PIEAS).

10

Example: AND Gate, θ=0.2, α=1

x1 x2 1 ynet y T dw1 dw2 db w1= w1+dw1 w2= w2+dw2 b=b+db

0 0 0

1 1 1 0 0 1 1 1 1 1 1 1

1 0 1 2 1 -1 -1 0 -1 0 1 0

0 1 1 1 1 -1 0 -1 -1 0 0 -1

0 0 1 -1 -1 -1 0 0 -1 0 0 -1

1 1 1 -1 -1 1 1 1 1 1 1 0

1 0 1 1 1 -1 -1 0 -1 0 1 -1

0 1 1 0 0 -1 0 -1 -1 0 0 -2

0 0 1 -2 -1 -1 0 0 -1 0 0 -2

1 1 1 -2 -1 1 1 1 1 1 1 -1

1 0 1 0 0 -1 -1 0 -1 0 1 -2

0 1 1 -1 -1 -1 0 -1 -1 0 1 -2

0 0 1 -2 -1 -1 0 0 -1 0 1 -2

1 1 1 -1 -1 1 1 1 1 1 2 -1

1 0 1 0 0 -1 -1 0 -1 0 2 -2

0 1 1 0 0 -1 0 -1 -1 0 1 -3

0 0 1 -3 -1 -1 0 0 -1 0 1 -3

1 1 1 -2 -1 1 1 1 1 1 2 -2

1 0 1 -1 -1 -1 -1 0 -1 1 2 -2

0 1 1 0 0 -1 0 -1 -1 1 1 -3

0 0 1 -3 -1 -1 0 0 -1 1 1 -3
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x1 x2 1 ynet y T dw1 dw2 db w1= w1+dw1 w2= w2+dw2 b=b+db

1 1 -3

1 1 1 -1 -1 1 1 1 1 2 2 -2

1 0 1 0 0 -1 -1 0 -1 1 2 -3

0 1 1 -1 -1 -1 0 -1 -1 1 2 -3

0 0 1 -3 -1 -1 0 0 -1 1 2 -3

1 1 1 0 0 1 1 1 1 2 3 -2

1 0 1 0 0 -1 -1 0 -1 1 3 -3

0 1 1 0 0 -1 0 -1 -1 1 2 -4

0 0 1 -4 -1 -1 0 0 -1 1 2 -4

1 1 1 -1 -1 1 1 1 1 2 3 -3

1 0 1 -1 -1 -1 -1 0 -1 2 3 -3

0 1 1 0 0 -1 0 -1 -1 2 2 -4

0 0 1 -4 -1 -1 0 0 -1 2 2 -4

1 1 1 0 0 1 1 1 1 3 3 -3

1 0 1 0 0 -1 -1 0 -1 2 3 -4

0 1 1 -1 -1 -1 0 -1 -1 2 3 -4

0 0 1 -4 -1 -1 0 0 -1 2 3 -4

1 1 1 1 1 1 1 1 1 2 3 -4

1 0 1 -2 -1 -1 -1 0 -1 2 3 -4

0 1 1 -1 -1 -1 0 -1 -1 2 3 -4

0 0 1 -4 -1 -1 0 0 -1 2 3 -4
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Videos!
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Observations on Perceptron

▪ Learning rate impacts the speed of learning

▪ Perceptron was unable to learn the XOR problem

▪ Perceptron learning rule convergence theorem

▪ If the data is linearly separable, you can always 

use a perceptron algorithm to find a separating 

hyperplane

13
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Feed Forward Backpropagation Neural Networks

aka Multi-layer Perceptrons

▪ Very General Nature

▪ Applicable to a variety of practical problems
▪ NETtalk

▪ Signature Classification

▪ Disease Classification 

▪ Hand Written Character Recognition 

▪ Combat Outcome Predication

▪ Earthquake Prediction

▪ Etc…

▪ Objective:

▪ To achieve a balance between Memorization and 
Generalization
▪ Memorization: Ability to respond correctly to the input patterns used 

for training

▪ Generalization: Ability to give reasonable responses to input that is 
similar but not identical to that used in training
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Architecture

▪ Consists of multiple layers

▪ Layers of units other than the input 
and output are called hidden units

▪ Unidirectional weight connections 
and biases

▪ Activation functions

▪ Use of sigmoid functions
▪ Nonlinear Operation: Ability to solve 

practical problems

▪ Differentiable: Makes theoretical 
assessment easier

▪ Derivative can be expressed in terms 
of functions themselves: 
Computational Efficiency

▪ Activation function is the same 
for all neurons in the same layer

▪ Input layer just passes on the 
signal without processing (linear 
operation)
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Architecture: Activation functions
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Training

▪ During training we are presented with input 
patterns and their targets

▪ At the output layer we can compute the error 
between the targets and actual output and 
use it to compute weight updates through the 
Delta Rule

▪ But the Error cannot be calculated at the 
hidden input as their targets are not known

▪ Therefore we propagate the error at the 
output units to the hidden units to find the 
required weight changes (Backpropagation)

▪ 3 Stages

▪ Feed-forward of the input training pattern

▪ Calculation and Backpropagation of the 
associated error

▪ Weight Adjustment

▪ Based on minimization of SSE (Sum of 
Square Errors)
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Backpropagation training cycle

Feed forward

BackpropagationWeight Update
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Proof for the Learning Rule

Change in wjk affects only Yk

Use of Gradient Descent Minimization
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Proof for the Learning Rule…

Change in vij affects all Y1..m

Change in vij affects only zj

Use of Gradient Descent Minimization
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Training Algorithm

xi

zj

yk
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Training Algorithm…

δk
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Training Algorithm…

δj
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Training Algorithm…
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Effect of Learning Rate

▪ Controls the change in synaptic weights

▪ The smaller the learning rate the smoother the 

trajectory in the weight space

▪ Slower rate of learning

▪ If learning rate is made too large (for speedy 

convergence) the network may become unstable 

(oscillatory)
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Stopping Criterion

▪ The Backpropagation (BP) algorithm cannot be shown to 
converge

▪ No well defined criterion for stopping its operation

▪ Criterion Used

▪ BP is considered to have converged when the Euclidean 
norm of the gradient vector reaches a sufficiently small 
threshold
▪ Ideally Gradient is zero at the minima

▪ Drawbacks

▪ For successful trials, learning times may be large

▪ Calculation of the gradient is required

▪ BP is considered to have converged when the absolute 
rate of change in the average squared error per epoch is 
sufficiently small
▪ May result in premature termination of the learning process
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Application Procedure

▪ Involves only the feed-forward phase (fast!)
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Solution of the XOR Problem

▪ Initial weights
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Solution of the XOR Problem…

▪ We consider the input pattern as (1,1) with target = 0 and α=0.1

▪ Feed Forward

▪ Backpropagation

1

(1 0.5 1 0.4 1 0.8)

1 ( ) 1/  1 0.5250Tz sigmoid V X e          
(1 0.9 11.0 1 0.1)

2 2( ) 1/  1 0.8808Tz sigmoid V X e          

( 0.5250 1.2 0.88081.1 1 0.3)

1 ( ) 1/  1 0.5097Ty sigmoid W Z e           

1 0 0.5097 0.5097e t y     

1 1 1(1 ) 0.5097 (1 0.5097)  ( 0.5097) 0.1274k y  y  e           

21 2 1 0.1 0.8808 ( 0.1274) 0.0112kw z           

11 1 1 0.1 0.5250 ( 0.1274) 0.0067kw z           

01 1(1) 0.1 ( 1) ( 0.1274) 0.0127kw             
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Solution of the XOR Problem…

▪ Backpropagation…

1 1 1 1 11(1 ) 0.5250  (1 0.5250) ( 0.1274) ( 1.2) 0.0381j z z  w             

2 2 2 1 21(1 ) 0.8808 (1 0.8808) ( 0.127 4)  1.1 0.0147j z z  w             

11 1 1 0.1 1 0.0381 0.0038jv x         

21 2 1 0.1 1 0.0381 0.0038jv x         

01 1( 1) 0.1 ( 1) 0.0381 0.0038jv             

12 1 2 0.1 1 ( 0.0147) 0.0015jv x           

22 2 2 0.1 1 ( 0.0147) 0.0015jv x           

02 2( 1) 0.1 ( 1) ( 0.0147) 0.0015jv              
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Solution of the XOR Problem…

▪ Weight Update

▪ The training process is repeated until the sum of 

squared errors is less than 0.001.  
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Solution of the XOR Problem…

0 50 100 150 200

10
1

Epoch

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

Sum-Squared Network Error for 224 Epochs

10
0

10
-1

10
-2

10
-3

10
-4

See Video!
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Number of hidden layers…

▪ Theoretically, One hidden layer is sufficient for a 

Backpropagation net to approximate any 

continuous mapping from the input patterns to 

the output pattern to an arbitrary degree of 

accuracy 

▪ However two hidden layers may make training 

easier in some situations
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Selecting parameters

▪ Architecture

▪ Number of layers

▪ Number of neurons in each layer

▪ Activation Function

▪ Learning rate

▪ Stopping criterion

34
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Implementation

▪ Keras! https://keras.io/

35

# The network is not recurrent and has a sequence of layers
# Number of layers, 

neurons, activations & 
weight init.

# Loss function and optimization

https://keras.io/
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Doing all this in Keras

• Layers

36

model = Sequential() 
model.add(Dense(32, input_shape=(500,))) 
model.add(Dense(10, activation='softmax')) 
model.compile(optimizer='rmsprop', 
loss='categorical_crossentropy', metrics=['accuracy'])

Useful attributes of Model 
model.layers: is a flattened list of the layers comprising the model graph. 
model.inputs: is the list of input tensors
model.outputs: is the list of output tensors.
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Doing all this in Keras
• Activations

• Available Activation
– Softmax
– Elu
– Softplus
– Softsign
– Relu
– Tanh 
– Sigmoid 
– Hard Sigmoid
– Linear

37

from keras.layers import Activation, Dense 
model.add(Dense(64)) 
model.add(Activation('tanh'))

model.add(Dense(64, activation='tanh'))
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Doing all this in Keras
• Losses

• Available
– Mean Squared Error
– Mean Absolute Error
– Mean Absolute Percentage Error
– Mean Squared Logarithmic Error
– Squared Hinge
– Hinge
– Categorical Cross Entropy
– Sparse categorical crossentropy
– Binary Crossentropy
– Kullback Leibler Divergence
– Posison
– Cosine Proximity

38

model.compile(loss='mean_squared_error', optimizer='sgd')

from keras import losses model.compile(loss=losses.mean_squared_error, optimizer='sgd')
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Doing all this in Keras

• Metrics
– Used to evaluate model performance

• Available
– Binary Accuracy

– Categorical Accuracy

– Sparse Categorical Accuracy

– Top K Categorical Accuracy

– Custom 

39

from keras import metrics
model.compile(loss='mean_squared_error', 

optimizer='sgd', 
metrics=[metrics.mae, metrics.categorical_accuracy])
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Doing all this in Keras

• Optimizers

• Available
– SGD
– RMSprop
– Adagrad
– AdaDelta
– Adam
– Adamax
– Nadam

40

from keras import optimizers
model = Sequential()
model.add(Dense(64, init='uniform', input_shape=(10,)) model.add(Activation('tanh'))
model.add(Activation('softmax'))
sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) 
model.compile(loss='mean_squared_error', optimizer=sgd)
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Doing all this in Keras

• Initializers

41

model.add(Dense(64, 
kernel_initializer='random_uniform', 
bias_initializer='zeros'))
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Doing all this in Keras

• Regularization

– L1 and L2

• Drop-Out

• Batch Normalization

42
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Doing all this in Keras

• Data Augmentation

– Noise Layer

– ImageDataGenerator

43
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Class Exercise!

• Requires Keras based computers

• Solve the XOR using a single hidden layer 
BPNN with sigmoid activations

– See what is the effect of different parameters on 
the convergence characteristics of the neural 
network

44
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Applications

45
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Recurrent NN

46
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Dimensionality Reduction

47
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Deep learning

▪ NNs can be used for feature learning

48
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Reading

▪ Fundamentals of Neural Networks (Laurene

Faucett) 

▪ Perceptron: Chapter 2

▪ MLP: Chapter 6

▪ Neural Networks a comprehensive foundation 

(1999)

49


