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Basics

* A school may give you rewards as follows:
— 1000 if you stood first
— 500 if you stood second
— 250 if you stood third
— 100 if you take any other position
* Your chances of getting the positions are as
follows:
— 50% for first position
— 30% for second
— 10% for third
— 10% for any other position

 What is the expected reward?
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* V(1) =1000

* \/(2) =500

* \/(3) =250

. V(>3) =100

 P(1)=0.50

* P(2)=0.30

 P(3)=0.10

e P(>3)=0.10

e F =
V(1)P(1)+V(2)P(2)+V(3)P(3)+V(>3)P(>3)=500+150
+75+10 =735
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Decisions of Agents

A decision is an action by an agent 0.1

— In what kind of environment will it be
easy to make decisions?
— Example

e Consider an agent that can move UDLR in
a grid

* However, due to sensor/actuator errors,
it ends up in its intended next square
80% of the time

* 10% of the time it ends up at a right
angle from the intended target 3
 To maximize the reward, what will be
the sequence of decisions of the
agent? 2
— Each state gives a reward: the two
terminal states (red and green) have

rewards +1 and -1 respectively. All 1 | Start (3,1)
other states have a reward of -0.04.

0.1
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Uncertainty in effects of actions

* |n a non-deterministic

environment
— Assume the current state is
IISI)
— An action “a” is performed in
this state
— The probability that the .
result of this action produces
state s’ is: Assume that the agent executes
' an action “U” in state (3,1)
A P(Result(U, (3,1)) = (3,2)|U) = 0.8
P (Reslult(a, s) =s'|a) P(Result(U, (3,1)) = (2,1)|U) = 0.1
= P(s'|s, a) P(Result(U, (3,1)) = (4,1)|U) = 0.1
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Markov Decision Processes

* Agent in a Markov Decision Process
— A set of states S
— A set of actions in each state A(s)

* An action causes a transition

— A transition probability model (may be unknown!)

* P(s’|s,a) is the probability of reaching state s’ from s by
action a

— Each state has a reward R(s)

* The probability of reaching a state is dependent only on
the previous state and the action taken in that state
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Reward, Policy and Utility

 Reward: Reward of -0.04 in each state
except the terminal states

e What action should be taken in each state
to maximize the overall reward?

 The solution is represented in terms of a
policy
— Tells the action to be taken in that state: (s)
* For a given policy, each state has a utility

— Equal to the reward of that state and
discounted rewards for future states (i.e.,

expected utility of the next state) Bellman equations
Uns) = E[ VeR(S >] =E[R(S) + ) Y'R(S)| =E[R(S) +7 ) y'R(Sts1)| = R(s) +yU™ (next)

U™ (next) = Z P(s’|s,n(s))U(s’) U(next) = maxgea(s) Z P(s'|s,a)U(s")
s'es /

S'€S
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Bellman Equations

e Utility of a state s for a policy is the sum of rewards of all
the states to come beginning in the initial state

U(s) = ) R(S)
t=0

* Since the effect of an action is not deterministic, therefore,
we take the expected value of the rewards, or:

U™ (s) = E [Z R(St)]
t=0

* We reduce the effects of future rewards in states (because,
we aren’t sure about them!)

UT(s) = E [Z YER(S,)
t=0
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Bellman Equations

 The equation can be expanded as:

> th(St)] - E lR(s) + ) YIR(S)
t=0 t=1

R(S)+7 ) 7*R(Sen)
t=0

 Thus: U™(s) = R(s) + yU™(next)
 The action in the current state is determined by the policy,
therefore:
— The probability that the effect of action a = m(s) in state s will be
state s’ is P(S’ |s, n(s))
— The utility of beingin s’ is U(s")
— Therefore, the expected utility of the next state under a given policy is:

U™ (next) = Z P(s’|s,7r(s))U(s’)
s'es

U™(s) =E

=E = R(s) + yU™(next)
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If the policy is not known...

* |f we do not know the policy, then the principle of
maximum expected utility (MEU) states that, we
should perform an action which maximizes our

expected utility
— The probability of moving from state s to state s’ due to
action a is P(s'|s, a)
— The utility of state s’ is U(s")
— Therefore, the expected utility due to action a is:

EU(q) = Z _P(sls,@U(s)

— Therefore the utility under MEU, the utility of the next
state is

U(next) = maxgea(s) 2 P(s'|s,a)U(s")
s'es
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Q-Learning

* |n active learning we must also obtain what
the optimal action is. So instead of utilities,
which are specific to states, we use an action-
utility representation Q (s, a) which is directly

related to the utility of the state by
U(s) = max,Q(s, a)
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Q-values vs. Utilities

Utility is for a state, Q-value is for a state-action
pair

Utility tells us the desirability of a state, Q-value
tells us the desirability of an action in a state

Similar to utility values
U(s) = R(s) + ymaxgea(s) Lores P(s'|s,a)U(s")
Bellman Equations can also be written for Q-

values
05,0 =R+ )

P(s'|s, a)maxareA(Sr)Q(s’, a')
S'ES

Notice that: U(s) = max,Q(s, a)
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Q-Learning

* Given initial estimates of Q(s, a), we can
update the value as a weighted combination
of the previous and “new” values

O(s,a) « (1—a)0Q(s,a) + a(R(S) + ymax,,Q(s’, a’))
— At each step, pick the action that you think is the
best based on the Q value estimates

— «a is the learning rate and it should decrease as go
through the iterations

* The optimal action in a state s is: argmax,,

CIS 530: Artifiical Intelligence PIEAS Biomedical Informatics Research Lab

13



Pseudo code

Function Q-Learning-Agent(percept) returns action to be performed by agent
Inputs: percept, a percept indicating the current state s’ and reward signal r’
Persistent: Q, a table of values for state-actions, initially zero

N;,, a table of frequencies for state-action pairs, initially zero
s,a,r, the previous state, action and reward, initially null

If Terminal?(s) then Q(s’,a’) « 1’
If s is not null then
increment Ng,(s,a)
Update: Q(s,a) « Q(s,a) + a(Nsa(s, a))(R(S) + ymax,,Q(s',a’) — Q(s, a))

s,a,r « s/, argmaxa,f(Q(s’, a'), Ny, (s a’)), r'

Return a
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The exploration function

 The exploration function allows an otherwise
suboptimal action to be optimal if it has not been

sampled enough times by returning an optimistic
utility in such cases

— N(s, a) is the frequency of state-action pair (s,a) and
f(u,n) is a function called the exploration function. It
controls the tradeoff between greed and curiosity. It
should be increasing in u and decreasing in n.

 Example

FUN) = {R+ if n <N,

u else
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Q-Function Approximation

* |nstead of using a table, we can also use a
function approximation scheme such as a
Neural network to return Q(s,a) given a
representation of s and a
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Policy Search

* Directly search for a policy that maximizes the
utility/Q-value
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Deep Q-Learning

To remove correlations, build data-set from agent’'s own experience
« Take action a; according to s-greedy policy
(Choose “best” action with probability 1- £, and selects a random action with probability ¢)
» Store transition (s;, ar, rr41, Se41) IN replay memory D (Huge data base to store historical samples)
» Sample random mini-batch of transitions (s, a,r,s") from D

« Optimize MSE between Q-network and Q-learning targets, e.g.

2
L;(6;) = Es,a,r,s’fv?_’) [(T Ty n}f}X Q(s',a’;6;) —Q(s,a; 95)) ]

g o

W

target
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To avoid oscillations, fix parameters used in Q-learning target

« Compute Q-learning targets w.r.t. old, fixed parameters @,
r+ymaxQ(s’,a’;0; )
ar

* Optimize MSE between Q-network and Q-learning targets

2
Li(0;) = E;prstep [(r - yn}]a}xQ(s’, a;6;)—Q(s, a; 91-)) ]
+ Periodically update fixed parameters 8; < 6,

DQN clips the reward to [-1, +1]
This prevents Q-values from becoming too large

Ensures gradients are well-conditioned
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= |Loss function :

2
LI'.(BI'.) = Es,a,r,s’w‘j} [(T + Y n}f}x Q(Sr: (I’; 91_) - Q(SF a,; 81'.)) ]

= Differentiating the loss function w.r.t. the weights we arrive at following

gradient :

Vo, Li(0) = Eggpsrp|(r+ymaxQ(s',a’;7) = Q(s,a:6;)) Vo, Q (5, 6;) |

Do gradient descent:
Oi1 = 0; + a- Vg Li(6;)
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Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s,)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; =argmax_ Q(¢(s; ).a; 0)
Execute action g, in emulator and observe reward r, and image x, , ;
Set ;41 =5¢,a;,X¢+1 and preprocess ¢, ; =P (st+1)
Store transition (¢;,a:,r,¢;, 1) in D
Sample random minibatch of transitions (d)j,a_,-,r_,-,(/)j " 1) from D

i if episode terminates at step j+ 1
Sety; = A B :
i rj+7y maxy Q (d),-+ 1,30 ) otherwise

Perform a gradient descent step on (yj -0 ((/)I-,aj; 9) )2 with respect to the
network parameters 0
Every C steps reset 0=0
End For
End For



Database 2 of samples

During Training (9 s )

1 million samples

. ,~ remini-batchsize Add new dataisample to database
’ (k1, ak1, ri1,Pri+1) ‘ ’ (P2, ak2, ri2,Pk2+1) ‘ (Phn, Gy Vi, Phn+1 )
v ] (pr-1, ar-1, 1,91 )

\

Do mini-batch gradient
descent on parameter 6
for one step

O(syau) & an e

- ‘ o a; = argmax,Q(s;, a)
Under training ~ O(s:12) & a with probability 1-¢

| ~ Convolutional > L p
Neural Network | d "
Input game Parameter 6 T ENHONECNON &,
image \ [ . with probability €

image attime t: x; O(st,am) & am
2 -’
St = St-1,A¢—-1, Xt Q J

repro n
Preprocessed sequencs Play the game for one step

e = Pp(se) 30
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After Training

O(s,as1) & asi
' ™ ™

-

T/

a NV

Trained T O(s,a) & as
Convolutional «
- Neural Network >~ a =argmax,Q(s,a)
Input game Parameter 8 ‘e,

mege - /\\w\

Q(S s asn) & asn\_. ,\j

-

Play the game for one step
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Coding

* Coding

— https://github.com/aimacode/aima-
python/blob/master/rl.ipynb
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Applications
* Robot Walking

 Game Play

— Algorithm plays against itself to learn what moves
to take in different states

— Uses Neural Networks

e Web document searches
— Minimizes the number of web-crawls
— Only crawl when needed
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Dynamic Marble Control
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Useful Links

e Videos

e Learn from interaction with the environment

— Just like humans
* Learning from examples
* Learning from experience

 Demystifying

— https://www.intelnervana.com/demystifying-deep-reinforcement-learning/
* Flappy bird code

— https://yanpanlau.github.io/2016/07/10/FlappyBird-Keras.html
* http://edersantana.github.io/articles/keras rl/

* https://oshearesearch.com/index.php/2016/06/14/kerlym-a-deep-
reinforcement-learning-toolbox-in-keras/

* Siraj
— https://www.youtube.com/watch?v=79pmNdyxEGo&t=43s
— https://www.youtube.com/watch?v=A5eihauRQvo
— CAR
— https://www.youtube.com/watch?v=EaY5QiZwSP4
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End of Lecture

Humans Are the World's Best Pattern-Recognition
Machines, But for How Long?

http://bigthink.com/endless-innovation/humans-are-the-worlds-best-pattern-recognition-machines-but-for-how-long
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