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Vectors

R™: n-dimensional Euclidean Space

A vector x € R"/C" is an n-tuple [z1, 22, - ,Zn], where z; € R/C.
We also consider a vector x € R"/C™ as a column vector or a n x 1
matrix.

Inner product in R": For x,y € R",

(xy)=x"y=3" zy=y x=(y,x) €R.

Inner product in C": For x,y € C",

(x,y) =x"y =" 7y = (y7x) = (y,x) €C

Euclidean norm in R™: For x € R™, we have ||x||2 = m > 0.
£y norm in C™: For x € C™, we have ||x||2 = m > 0.



Cauchy-Schwarz inequality

Lemma (Cauchy-Schwarz inequality)

For any x,y € R™ (or C"), we have
|G 3| < lxll2llyl2-
= When y = 0, It is trivially true.
= When y # 0, we have

0 <[lx = Ayl* = (x,x) = {Ay,x) = (x,Ay) + (Ay, Ay)
=|xI” = Alx,y) = A, y) + AP lyl*

Letting A = (x,y)/|lyl?>, we have

0 <|lx|? - LNl Gyl | [yl 1(x, ¥)2

Iyl (Ml yll? lyll?
= 11 Proofs for this lemma: Wu, Hui-Hua; Wu, Shanhe (April 2009).
“Various proofs of the Cauchy-Schwarz inequality”. OCTOGON
MATHEMATICAL MAGAZINE. 17 (1): 221-229.

= |Ix||* -




Cauchy-Schwarz inequality

Lemma (Cauchy-Schwarz inequality)

For any x,y € R™ (or C"), we have

|G 3| < lxll2llyll2-

= |t is one of the most important inequalities in all of mathematics.

» When does it hold with equality? x = ((x,y)/[|y]|®)y.



Triangle inequality
Lemma (Triangle inequality)
For any x,y € R" (or C"), we have

Ix+yl2 < lxllz + lIyll2-

[x+yl2 =(x+y,x+y) = (x,%)+ (x,y) + y,x) + (y,¥)
=[x/3 + (x,¥) + {y, %) + |y2
<|jx||3 + 2l1x|l2llyll2 + [l¥ll3 = (Ix]l2 + [[y]l2)*.

= When does this inequality hold with equality?
= Other variants:

Ix+yll2 =[xz = Iyl
%+ yll2 Z[lyllz = lIx]l2.



More identities |

Lemma (Parallelogram identity)
I + 113 + llx = ylIz = 2[Ix[13 + 2/ly]|3
Lemma (Polarization identity)
I +yl3 = lIx = yll3 = 4(x,y)
Lemma (Apollonius’ identity)

x — w3 =2[1x/13 + 2|lyl3 — |Ix + ¥l3
— Ix+yll2 — 4llzl3 + 4(x + y, z)

1
=2|jx — 2|3 + 2lly — 2|5 - A5G +y) - z3



More identities |l
Lemma (Cosine rule)
2z—x,y —z) =y — x| — |z —x|3 - |y — 23

Lemma (Three-point identity)

2(z — x,y) =lly = x|z — llz — x| ~ lly — 2l3 + 2(z — x,2)
=[ly — x[I3 — llz = x[3 ~ ly - 2ll3 + 2(z — x, 2)

2 2 2 2
=lly =xll2 = lly — zll2 + llzll2 = lIx]l2

Lemma (Four-point identity)

2 2 2 2
2z —x,y —w) =[ly = x|z — lly — zll2 + l|z[l2 — [Ix]l2
—llw =13 + [[w — 2|3 — |lz]13 + [|x]|3

=lly = x5 — [lw — x|z = lly — 2[I3 + |w — 2|3



What is a norm?

Norm properties

Absolute homogeneity/scalability: ||ax|| = |«|||x|| for x € V and
a €R/C

Triangle inequality or subadditivity: ||x + y|| < [|x| + ||y|| for x,y € V

Separates points: If ||x|| =0, then x =0

From the absolute homogeneity, we have ||0]| =0 and ||x|| = || — x
therefore 2[x|| = [Ix]| + || - xI| > x + (~x)|| = 0.

A seminorm is a function that satisfies absolute homogeneity and triangle
inequality.

Two norms (or seminorms) || - ||, and || - || on a vector space V are
equivalent if there exist two real constants ¢ and C, with ¢ > 0 such that

clixlle < lIxllp < Clixlly  ¥x €V



Norm in R"?

%12
Ix|lo: the number of non-zeros in x

Ix||1: taxicab norm or Manhattan norm

195l = /S0 i — 202
vx T Ax for some matrix A




¢, norm

Definition (¢, norm in R™/C")

When p > 1, [Ix||, = (Z?:l ‘$i|p) Y7 for x € R™/C".

Ly norm: [|xl2 = /37 |wil?

* L1norm: x|l =} 0 |l

= Lo nOrm: ||X|loc = maxi_; |z;|

* xlloe < lIxllz < VRllxloo

* xlleo < Ixll < mfx[lo

= xllz < llxlh < vnllxlle

- xllg < Ilxllp < nt/P7 Vx|l for 1 <p < g



Holder’s inequality

Lemma (Holder's inequality)

|63 < [xllpllyllq with 1/p+1/q =1 and p,q € [1,00]

= |- |lp and || - ||q are dual norms.



Collection of vectors, subspaces

A set of m vectors, V = {x1,X2, " ,Xm}

= Linear combination: Z;”:l a;xj, aj € R/C.

= Linearly independent: No vector in V can be written as linear
combination of other. If 0=3"" a;x;, then a; = 0 for all
j=1--- ,m.

= Span: Span(V) = {x|x = > a;x;,a; € R/C}

Jj=1

Definition (Subspace)
A collection of vectors V. C R™/C" is a subspace iff it is closed under linear

combination, i.e.,

x,y € V=ax+fy € V,Vo,B € R/C

= Basis of a subspace: A linearly independent spanning set

= Dimensionality of a subspace: the number of elements in a basis



Matrix

= A € R™*™: A matrix of dimension m X n.

A = [a;;] = [a1,a2, -+ ,a], here a; € R™/C™

= Rank(A) is the largest number of linearly independent columns, which is
equivalent to the largest number of linear independent rows.

» Rank(A) = Rank(A¥) < min(m,n)
= A is full-rank if Rank(A) = min(m,n).
= A is full-row-rank if Rank(A) = m and full-column-rank if Rank(A) = n.

Matrices are representations of linear operators.

A:R"/C" 5 R™/C™  x€R"/C™— Ax € R™/C™.

Examples of linear operators that aren't matrices?



Matrix structure and algorithm complexity

cost (execution time) of solving Ax = b with A € R"*"

= n® for general methods
= less if A is structured (banded, sparse, Toeplitz, ...)
Flop counts
= flop (floating-point operation): one addition, subtraction, multiplication,
or division of two floating-point numbers

= to estimate complexity of an algorithm: express number of flops as a
(polynomial) function of the problem dimensions, and simplify by keeping
only the leading terms

= not an accurate predictor of computation time on modern computers

= useful as a rough estimate of complexity



vector-vector operations (x,y € R")
= inner product x"y: 2n — 1 flops (or 2n if n is large)
= sum x + Yy, scalar multiplication ax: n flops
matrix-vector product y = Ax with A ¢ R™*"
= m(2n — 1) flops (or 2mn if n large)
= 2N if A is sparse with N nonzero elements

= 2p(n+m)if Ais givenas A=UV' U e R™?, VcR"P
matrix-matrix product C = AB with A ¢ R™*", B € R"*?

= mp(2n — 1) flops (or 2mnp if n large)
= less if A and/or B are sparse

= (1/2)m(m +1)(2n — 1) = m?n if m = p and C symmetric



Linear equations that are easy to solve Ax =b

diagonal matrices (a;; = 0 if ¢ # j and as; # 0 for all ¢): n flops
X = A_lb = [b1/a11§ b2/a22§ cee ;bn/ann]
lower triangular (a;; = 0 if j >4 and a;; # 0 for all i): n® flops

1 =b1/a11

2 =(b2 — a2121)/az2

Tn :(bn — An1T1 — ** — an,nflxnfl)/ann

called forward substitution

upper triangular (a;; = 0 if j < i and a;; # 0 for all i): n? flops via
backward substitution



Special matrix for Ax =b

= orthogonal matrices (A~' = A)
= 2n? flops to compute x = AHb for general A
« less with structure, e.g., if A =1 —2uu’ with ||[uljz = 1, we can
compute x = ATb = b — 2(u' b)u in 4n flops

= permutation matrices:

1 ] = T
Qij = .
0 otherwise
where m = (71,2, -+ ,Tn) is a permutation of (1,2,---,n).
= interpretation: Ax = (Try,...,Zx,,)
= cost of solving Ax = b is O flops
example:

0 1
A=1]10 0
1 0

S = O
|
_
I
_|
I
S = O
= o O
S O =



= orthogonal matrices (A~ = A¥)

= Discrete Fourier transform: nlog(n) for FFT

1 1 1 1 1
1 w w? w? wnt
L w? Wt Wb 2(n=1
W = % 1 W8 Wb W0 . W3n=1
_1 wn—l w2(n—1) w3(n—1) L w(n—l)(n—l)-
where w = e~ 2™/

= Discrete Wavelet transform: only O(n) in certain cases



The factor-solve method for solving Ax =b

= factor A as a product of simple matrices (usually 2 or 3):
A=AAs Ay

(A; diagonal, upper or lower triangular, etc)

= compute x = A" 'b = A,:l e A;lAflb by solving k ‘easy’ equations
Aix; =b, Asxe=x1, ..., ApX=Xp_1
cost of factorization step usually dominates cost of solve step
equations with multiple righthand sides
Ax; =b;, Axa=Dbs, ..., Ax, =b,

cost: one factorization plus m solves



LU factorization

every nonsingular matrix A can be factored as
A =PLU

with P a permutation matrix, L lower triangular, U upper triangular
cost: (2/3)n? flops
x=A"'"b=U"'L'P b

LU factorization: (2/3)n?

Permutation: 0

Lower triangular: n?

2

B e bh o=

Upper triangular: n

Total costs: (2/3)n® + 0+ n? +n? ~ (2/3)n® flops for large n.



sparse LU factorization
A =P,LUP;

= adding permutation matrix P2 offers possibility of sparser L, U (hence,

cheaper factor and solve steps)
= P; and P chosen (heuristically) to yield sparse L, U
= choice of P; and P2 depends on sparsity pattern and values of A

= cost is usually much less than (2/3)n?; exact value depends in a

complicated way on n, number of zeros in A, sparsity pattern



Cholesky factorization

every symmetric/Hermitian positive definite matrix A can be factored as
A=1L”

with L lower triangular.

cost: (1/3)n® flops

x=A"'b=LL")"'"b=L"L'p

1. Cholesky factorization: (1/3)n?

2. Lower triangular: n?

3. Upper triangular: n?

Total costs: (1/3)n° 40+ n? +n? ~ (1/3)n® flops for large n.



sparse Cholesky factorization

A =PLLYPT

= adding permutation matrix P offers possibility of sparser L
= P chosen (heuristically) to yield sparse L

= choice of P only depends on sparsity pattern of A (unlike sparse LU)



LDL' factorization

every nonsingular symmetric/Hermitian matrix A can be factored as
A =PLDL"P’

with P a permutation matrix, L lower triangular, D block diagonal with 1 x 1
or 2 x 2 diagonal blocks.
cost: (1/3)n?

x=A""b=PLDLP" )y 'b=P 'L D'L'P b

= total costs: (1/3)n® +0+n? +n+n?+ 0= (1/3)n® flops for large n
= for sparse A, can choose P to yield sparse L; cost < (1/3)n®



A W NN =

Equations with structured sub-blocks

A11 A12 X1 _ bl
Ay Ao X2 bs

variables x; € R"!, x2 € R™?; blocks A;; € R™*"™

if A11 is nonsingular, we can eliminate x;:

:>{A11 Ao ]{Xl}[ by }
Aoy — An A A X2 by — A21 A7 'by

. Form A;'A12 and A{'b;
. Form S = Ay — A21Af11A12 and b =by — A21A;11b1
. Determine x2 by solving Sxs = b

. Determine x; by solving Ai1x1 = b1 — A12X2



dominant terms in flop count

= step 1+4: f + nas (f is cost of factoring All; s is cost of solve step)
= step 2: 2n3n; (cost dominated by product of Az; and A A1)
= step 3: (2/3)n3

total: f + nas + 2n3n1 + (2/3)n3

examples
= general A1 (f = (2/3)n3, s = 2nf): no gain over standard method
#flops = (2/3)n3 + 2nina 4+ 2n3n1 + (2/3)n3 = (2/3)(n1 + na)®

= block elimination is useful for structured A11 (f < n‘f)

for example, diagonal (f = 0, s = n1): # flops~ 2n3n1 + (2/3)n3



Structured matrix plus low rank term

(A+BC)x=b

where A € R™*", B € R"*?, and C € RP*™. Assume that A has structure
such that Ax = b is easy to solve. We can rewrite is as

FIMEH

A B x b
= =
{ 1+CAlBHy} [0+CA1b]

(A+BC) '=A"'"-A'BI+CA'B)'cA!



example: A diagonal, B, C dense

= method 1: form D = A 4+ BC, then solve Dx = b
cost: (2/3)n® + 2pn?

= method 2 (via matrix inversion lemma): solve
(I+ CA™'B)y = CA™'b,

then compute x = A~'b — A"!'By
cost: 2p*n + (2/3)p* (i.e., linear in n)



Underdetermined linear equations

if A € RP*™ with p < n, rankA = p,

{x|Ax =b} ={Fz+ %|z € R"""}

= X is (any) particular solution
= columns of F € R™*(™P) span nullspace of A

= there exist several numerical methods for computing F (QR factorization,

rectangular LU factorization, . . . )



Eigenvalues and eigenvectors

Definition (Eigenvalues and eigenvectors)

Let A be a n X n square matrix, A is an eigenvalue of A if
Ax = \x

for some nonzero x, and x is the corresponding eigenvectors.

= Intuition: eigenvectors are vectors in R /C™ whose direction is preserved
under action of A; however, length may change.
= A =UDU™! where D is diagonal, then the diagonal entries of D are

eigenvalues and the columns of U are eigenvectors.



Spectral theorem

Theorem (Spectral Theorem)
If A= A", then
= The matrix is symmetric/Hermitian
= all eigenvalues are real,
= eigenvectors with different eigenvalues are perpendicular

= there exists a complete orthogonal basis of eigenvectors



Singular value decomposition
Definition (SVD)

Any matrix A € R™*™/C™*™ can be written as
A =UzV?

where U € R™*™/C™*™ and V € R"*™/C"*™ are unitary and X € R™*" is
diagonal.

» UUY =U”U =1and VV7 = VFV =1 (unitary)

= Diagonal entries of X are called the singular values; they are positive and
real. Typically, o1 > 02 > --- > o, > 0, where r is the rank of A.

» ATA =VITUPUSVH = VETEVH. Therefore,
VATA =VV/ETEVH

= Singular values are the eigenvalues of VAHZA and VAAE,

= The columns of V are eigenvectors of A7 A, and the columns of U are

eigenvectors of AAH
= If A =A¥ singular values are the same as the eigenvalues

= Geometric picture and other properties, read Wikipedia



Singular value decomposition

Definition (SVD2)
Any matrix A € R™*"™ can be written as
A=UxV',

where U € R™*" and V € R™*" are unitary and ¥ € R™*" is diagonal.

» If A7! exists, then A~ = VR 'UT
= Even if A is singular, we can deifiAne a pseudo-inverse A™ as follows:

= The ratio of the largest to smallest singular value is the so-called condition

number of A



Matrix norm

Definition (Spectral norm)

A
2,2 = maxw = max [|Ax]2

Al =
x#0  ||x||2 lIx]l2=1

= The norm is call the induced norm or the ¢2-norm

= Quantifies the maximum increase in length of unit-norm vectors due to the
operation of the matrix A

||A[|2,2 is equal to the largest singular value of A

[Ax|2 < ||All2,2]|x]l2 (Q: When is it equal?)

Lemma

[AB|l2,2 < [|Afl2,2|B]l2,2



Induced matrix norm

Definition

A
|Allpg = max 1A%Ma o 14
z#0  ||X||p [l p=1

q

|A]|2,2: the maximum singular value of A.

[A]l1,1: the maximum of the absolute column sums.

|A]loo,00: the maximum of the absolute row sums.

[A%[lg < [|Allp,qllx]l»
A3, < [1A]1,1]| Ao 00




Other frequently-used matrix norms

Definition (Frobenius norm)

Alr = [ lail = V/tr(AFA) = \/tr(AAF)

Definition (Nuclear norm)

min(m,n)

IAll. = tr(VAFA) = >~ o

i=1

where o; are the singular values of the matrix A.

= All matrix norms are equivalent.



Derivatives with vectors |

Vector-by-scalar y € R"
9y _ [0y Oy2 %}

oz Loz’ oz’ 7 ox
. Ozra T
or
Scalar-by-vector x € R"

Oy [0y 9y 0Oy

ox 8x1 8002 a 3$n

* Vuf(x)=Vf(x)Tu



Derivatives with vectors Il

Vector-by-vector x € R" and y ¢ R™

Oy1  Oy2 ... Oym
Oy Oz oz
9y1 9y2 L OYm
8y Oxy Oxg Ox2
ox :
9y1 dy2 L Oym
Oxp Oxn Oz
6AX T
— = A
ox

du(x)-a) _dux)'a) du(x) o
ox ox %




= ais not a function of x: a =0
ox
" % —
ox
= A is not a function of x: %XX =A"
T T
= A is not a function of x: Ix A = OA x =
ox X
= q is not a function of x, u = u(x): Qau _ a
ox
. dut+v) Ou  9v
ox  Ox  0Ox
. _  Oau _ Ou  Oa 1
a = a(x), u=u(x): %~ “ox + 7"
— ulx). 28(w) _ Oudg(u)
u=ul) T T ox ou
= A is not a function of x, u = u(x): aéA—u =
X

=u(x):

Vector-by-vector identities

. 0f(g(u)) _ Oudg(u) 9f(g)

ox

T 9x Ou

og

A
ou

ax

ox

ou AT



Scalar-by-vector identities

. . da
a is not a function of x: — =0

ox

. . dau ou
a is not a function of x, u = u(x): =

x  Yox
O(u+v 0 0

w= (). v = oo LEED S, o
ow _ou o
ox va u@x

_ C9g(u) _ Ou dg(u)
u=ulX) = = ax ou
0f(g(w) _ u dg(u) Of(g)

ox ox Ou Og
6(uTv) Ou v 87\/
ox 8x 8x
u = u(x), v=v(x), A is not a function of x:
B(uTAv) odu ov Ta
Tox Y T

u=u(x), v =v(x):

u = u(x):

u=u(x), v=v(x):



Scalar-by-vector identities

a is not a function of x:

A is not a function of x, b is not a function of x:

Ix'x
ox

=2x

A is not a function of x:

A is not a function of x:

a is not a function of x, u = u(x):

a, b are not functions of x:

da’x

ox

ox"a
ox

dbT Ax
ox

OxTA

X@x = = (A+ AT)X
8%*xT Ax T
T ATA

da'xx"b

ox

) da'u Odu'a __ Ou

ox  Ox 787xa

=(ab' +ba')x

A, b, C, D, e are not functions of x:
=D'C'(Ax+b)+ A 'C(Dx +e)

I(Ax +b)'C(Dx +e)
ox

a is not a function of x:

Jlx—al| x-—a

ox

~x—all

=A"b



Derivatives with matrices

Scalar-by-matrix X € RP*¢

9y _

0X

Ay
dx11

dza1

Oy
dxp1

Ay
Ox12

DY)

9y
dxp2

Ay
Ox1q

dx2q

Oy
Oxpq




Scalar-by-matrix identities

tr(A) =tr(AT)

tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC)
dtr(AX)
X
atr(XTAX)
X
atr(X~tA)
0X
dtr(AXBX'C)
X
8tra())(( ) _ (X7

=A"T
=(A+A"X
_ _(X—l)TAT(X—l)T

=A'C'XB'" + CAXB

n—1
otr(AX") i g xen—i—INT
— %= ;(x AX )
8tr(ex) X\ T
53X (™)
Atr(sin(X))
X

= (cos(X)) "



