Lecture 1: Review of Linear Algebra

 $\label{eq:ming-Yan} \mbox{Michigan State University, CMSE/Mathematics}$

CMSE 890: Optimization Aug. 30th, 2017

Vectors

- \mathbb{R}^n : *n*-dimensional Euclidean Space
- A vector $\mathbf{x} \in \mathbb{R}^n/\mathbb{C}^n$ is an *n*-tuple $[x_1, x_2, \cdots, x_n]$, where $x_i \in \mathbb{R}/\mathbb{C}$.
- We also consider a vector $\mathbf{x} \in \mathbb{R}^n/\mathbb{C}^n$ as a column vector or a $n \times 1$ matrix.
- Inner product in \mathbb{R}^n : For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} \mathbf{y} = \sum_{i=1}^n x_i y_i = \mathbf{y}^{\top} \mathbf{x} = \langle \mathbf{y}, \mathbf{x} \rangle \in \mathbb{R}$.
- Inner product in \mathbb{C}^n : For $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^H \mathbf{y} = \sum_{i=1}^n \overline{x_i} y_i = \overline{(\mathbf{y}^H \mathbf{x})} = \overline{\langle \mathbf{y}, \mathbf{x} \rangle} \in \mathbb{C}$
- Euclidean norm in \mathbb{R}^n : For $\mathbf{x} \in \mathbb{R}^n$, we have $\|\mathbf{x}\|_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \geq 0$.
- ℓ_2 norm in \mathbb{C}^n : For $\mathbf{x} \in \mathbb{C}^n$, we have $\|\mathbf{x}\|_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \geq 0$.

Cauchy-Schwarz inequality

Lemma (Cauchy-Schwarz inequality)

For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (or \mathbb{C}^n), we have

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}||_2 ||\mathbf{y}||_2.$$

- When y = 0, It is trivially true.
- When $\mathbf{v} \neq \mathbf{0}$, we have

$$0 \le \|\mathbf{x} - \lambda \mathbf{y}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle - \langle \lambda \mathbf{y}, \mathbf{x} \rangle - \langle \mathbf{x}, \lambda \mathbf{y} \rangle + \langle \lambda \mathbf{y}, \lambda \mathbf{y} \rangle$$
$$= \|\mathbf{x}\|^2 - \lambda \overline{\langle \mathbf{x}, \mathbf{y} \rangle} - \overline{\lambda} \langle \mathbf{x}, \mathbf{y} \rangle + |\lambda|^2 \|\mathbf{y}\|^2.$$

Letting $\lambda = \langle \mathbf{x}, \mathbf{y} \rangle / ||\mathbf{y}||^2$, we have

$$0 \le \|\mathbf{x}\|^2 - \frac{|\langle \mathbf{x}, \mathbf{y} \rangle|^2}{\|\mathbf{y}\|^2} - \frac{|\langle \mathbf{x}, \mathbf{y} \rangle|^2}{\|\mathbf{y}\|^2} + \frac{|\langle \mathbf{x}, \mathbf{y} \rangle|^2}{\|\mathbf{y}\|^2} = \|\mathbf{x}\|^2 - \frac{|\langle \mathbf{x}, \mathbf{y} \rangle|^2}{\|\mathbf{y}\|^2}.$$

 11 Proofs for this lemma: Wu, Hui-Hua; Wu, Shanhe (April 2009).
 "Various proofs of the Cauchy-Schwarz inequality". OCTOGON MATHEMATICAL MAGAZINE. 17 (1): 221-229.

Cauchy-Schwarz inequality

Lemma (Cauchy-Schwarz inequality)

For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (or \mathbb{C}^n), we have

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}||_2 ||\mathbf{y}||_2.$$

- It is one of the most important inequalities in all of mathematics.
- When does it hold with equality? $\mathbf{x} = (\langle \mathbf{x}, \mathbf{y} \rangle / ||\mathbf{y}||^2) \mathbf{y}$.

Triangle inequality

Lemma (Triangle inequality)

For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (or \mathbb{C}^n), we have

$$\|\mathbf{x} + \mathbf{y}\|_2 \le \|\mathbf{x}\|_2 + \|\mathbf{y}\|_2.$$

$$\|\mathbf{x} + \mathbf{y}\|_{2}^{2} = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$= \|\mathbf{x}\|_{2}^{2} + \langle \mathbf{x}, \mathbf{y} \rangle + \overline{\langle \mathbf{y}, \mathbf{x} \rangle} + \|\mathbf{y}\|_{2}^{2}$$

$$\leq \|\mathbf{x}\|_{2}^{2} + 2\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2} + \|\mathbf{y}\|_{2}^{2} = (\|\mathbf{x}\|_{2} + \|\mathbf{y}\|_{2})^{2}.$$

- When does this inequality hold with equality?
- Other variants:

$$\|\mathbf{x} + \mathbf{y}\|_2 \ge \|\mathbf{x}\|_2 - \|\mathbf{y}\|_2$$

 $\|\mathbf{x} + \mathbf{y}\|_2 \ge \|\mathbf{y}\|_2 - \|\mathbf{x}\|_2$.

More identities I

Lemma (Parallelogram identity)

$$\|\mathbf{x} + \mathbf{y}\|_{2}^{2} + \|\mathbf{x} - \mathbf{y}\|_{2}^{2} = 2\|\mathbf{x}\|_{2}^{2} + 2\|\mathbf{y}\|_{2}^{2}$$

Lemma (Polarization identity)

$$\|\mathbf{x} + \mathbf{y}\|_2^2 - \|\mathbf{x} - \mathbf{y}\|_2^2 = 4\langle \mathbf{x}, \mathbf{y} \rangle$$

Lemma (Apollonius' identity)

$$\begin{aligned} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} &= 2\|\mathbf{x}\|_{2}^{2} + 2\|\mathbf{y}\|_{2}^{2} - \|\mathbf{x} + \mathbf{y}\|_{2}^{2} \\ &- \|\mathbf{x} + \mathbf{y}\|_{2}^{2} - 4\|\mathbf{z}\|_{2}^{2} + 4\langle\mathbf{x} + \mathbf{y}, \mathbf{z}\rangle \\ &= 2\|\mathbf{x} - \mathbf{z}\|_{2}^{2} + 2\|\mathbf{y} - \mathbf{z}\|_{2}^{2} - 4\|\frac{1}{2}(\mathbf{x} + \mathbf{y}) - \mathbf{z}\|_{2}^{2} \end{aligned}$$

More identities II

Lemma (Cosine rule)

$$2\langle \mathbf{z} - \mathbf{x}, \mathbf{y} - \mathbf{z} \rangle = \|\mathbf{y} - \mathbf{x}\|_2^2 - \|\mathbf{z} - \mathbf{x}\|_2^2 - \|\mathbf{y} - \mathbf{z}\|_2^2$$

Lemma (Three-point identity)

$$2\langle \mathbf{z} - \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{y} - \mathbf{x}\|_{2}^{2} - \|\mathbf{z} - \mathbf{x}\|_{2}^{2} - \|\mathbf{y} - \mathbf{z}\|_{2}^{2} + 2\langle \mathbf{z} - \mathbf{x}, \mathbf{z} \rangle$$
$$= \|\mathbf{y} - \mathbf{x}\|_{2}^{2} - \|\mathbf{z} - \mathbf{x}\|_{2}^{2} - \|\mathbf{y} - \mathbf{z}\|_{2}^{2} + 2\langle \mathbf{z} - \mathbf{x}, \mathbf{z} \rangle$$
$$= \|\mathbf{y} - \mathbf{x}\|_{2}^{2} - \|\mathbf{y} - \mathbf{z}\|_{2}^{2} + \|\mathbf{z}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}$$

Lemma (Four-point identity)

$$2\langle \mathbf{z} - \mathbf{x}, \mathbf{y} - \mathbf{w} \rangle = \|\mathbf{y} - \mathbf{x}\|_{2}^{2} - \|\mathbf{y} - \mathbf{z}\|_{2}^{2} + \|\mathbf{z}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}$$
$$- \|\mathbf{w} - \mathbf{x}\|_{2}^{2} + \|\mathbf{w} - \mathbf{z}\|_{2}^{2} - \|\mathbf{z}\|_{2}^{2} + \|\mathbf{x}\|_{2}^{2}$$
$$= \|\mathbf{y} - \mathbf{x}\|_{2}^{2} - \|\mathbf{w} - \mathbf{x}\|_{2}^{2} - \|\mathbf{y} - \mathbf{z}\|_{2}^{2} + \|\mathbf{w} - \mathbf{z}\|_{2}^{2}$$

What is a norm?

Norm properties

- Absolute homogeneity/scalability: $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for $\mathbf{x} \in \mathcal{V}$ and $\alpha \in \mathbb{R}/\mathbb{C}$
- Triangle inequality or subadditivity: $\|x+y\| \leq \|x\| + \|y\|$ for $x,y \in \mathcal{V}$
- Separates points: If $\|\mathbf{x}\| = 0$, then $\mathbf{x} = \mathbf{0}$
- From the absolute homogeneity, we have $\|\mathbf{0}\| = 0$ and $\|\mathbf{x}\| = \|-\mathbf{x}\|$, therefore $2\|\mathbf{x}\| = \|\mathbf{x}\| + \|-\mathbf{x}\| \ge \|\mathbf{x} + (-\mathbf{x})\| = 0$.
- A seminorm is a function that satisfies absolute homogeneity and triangle inequality.
- Two norms (or seminorms) $\|\cdot\|_p$ and $\|\cdot\|_q$ on a vector space $\mathcal V$ are equivalent if there exist two real constants c and C, with c>0 such that

$$c\|\mathbf{x}\|_q \le \|\mathbf{x}\|_p \le C\|\mathbf{x}\|_q \quad \forall \mathbf{x} \in \mathcal{V}.$$

Norm in \mathbb{R}^n ?

- $\|\mathbf{x}\|_2$
- $\|\mathbf{x}\|_0$: the number of non-zeros in \mathbf{x}
- $\|\mathbf{x}\|_1$: taxicab norm or Manhattan norm

•
$$\|\nabla \mathbf{x}\|_2 = \sqrt{\sum_{i=1}^{n-1} (x_{i+1} - x_i)^2}$$

- $\bullet \ \sqrt{\mathbf{x}^{\top} \mathbf{A} \mathbf{x}}$ for some matrix \mathbf{A}
- ..

ℓ_p norm

Definition $(\ell_p \text{ norm in } \mathbb{R}^n/\mathbb{C}^n)$

When $p \ge 1$, $\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ for $\mathbf{x} \in \mathbb{R}^n/\mathbb{C}^n$.

- ℓ_2 norm: $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$
- ℓ_1 norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- ℓ_{∞} norm: $\|\mathbf{x}\|_{\infty} = \max_{i=1}^{n} |x_i|$
- $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2} \leq \sqrt{n} \|\mathbf{x}\|_{\infty}$
- $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{1} \leq n\|\mathbf{x}\|_{\infty}$
- $\|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le \sqrt{n} \|\mathbf{x}\|_2$
- $\|\mathbf{x}\|_q \le \|\mathbf{x}\|_p \le n^{1/p-1/q} \|\mathbf{x}\|_q$ for $1 \le p < q$

Holder's inequality

Lemma (Holder's inequality)

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\|_p \|\mathbf{y}\|_q$$
 with $1/p + 1/q = 1$ and $p, q \in [1, \infty]$

• $\|\cdot\|_p$ and $\|\cdot\|_q$ are dual norms.

Collection of vectors, subspaces

A set of m vectors, $\mathbf{V} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m\}$

- Linear combination: $\sum_{j=1}^{m} \alpha_j \mathbf{x}_j$, $\alpha_j \in \mathbb{R}/\mathbb{C}$.
- Linearly independent: No vector in ${\bf V}$ can be written as linear combination of other. If ${\bf 0}=\sum_{j=1}^m \alpha_j {\bf x}_j$, then $\alpha_j=0$ for all $j=1,\cdots,m$.
- Span: Span(V) = {x|x = $\sum_{j=1}^{m} \alpha_j \mathbf{x}_j, \alpha_j \in \mathbb{R}/\mathbb{C}$ }.

Definition (Subspace)

A collection of vectors $\mathbf{V} \subset \mathbb{R}^n/\mathbb{C}^n$ is a subspace iff it is closed under linear combination, i.e.,

$$\mathbf{x}, \mathbf{y} \in \mathbf{V} \Rightarrow \alpha \mathbf{x} + \beta \mathbf{y} \in \mathbf{V}, \forall \alpha, \beta \in \mathbb{R}/\mathbb{C}$$

- Basis of a subspace: A linearly independent spanning set
- Dimensionality of a subspace: the number of elements in a basis

Matrix

- $\mathbf{A} \in \mathbb{R}^{m \times n}$: A matrix of dimension $m \times n$.
- $\mathbf{A} = [a_{ij}] = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_b]$, here $\mathbf{a}_i \in \mathbb{R}^m/\mathbb{C}^m$
- Rank(A) is the largest number of linearly <u>independent</u> columns, which is equivalent to the largest number of linear independent rows.
- $\operatorname{Rank}(\mathbf{A}) = \operatorname{Rank}(\mathbf{A}^H) \le \min(m, n)$
- **A** is $\underline{\text{full-rank}}$ if $\operatorname{Rank}(\mathbf{A}) = \min(m, n)$.
- A is <u>full-row-rank</u> if Rank(A) = m and <u>full-column-rank</u> if Rank(A) = n.

Matrices are representations of linear operators.

$$\mathbf{A}: \mathbb{R}^n/\mathbb{C}^n \to \mathbb{R}^m/\mathbb{C}^m \qquad \mathbf{x} \in \mathbb{R}^n/\mathbb{C}^m \mapsto \mathbf{A}\mathbf{x} \in \mathbb{R}^m/\mathbb{C}^m.$$

Examples of linear operators that aren't matrices?

Matrix structure and algorithm complexity

cost (execution time) of solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A} \in \mathbf{R}^{n \times n}$

- ullet n^3 for general methods
- less if A is structured (banded, sparse, Toeplitz, . . .)

Flop counts

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm: express number of flops as a (polynomial) function of the problem dimensions, and simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers
- useful as a rough estimate of complexity

vector-vector operations $(\mathbf{x}, \mathbf{y} \in \mathbf{R}^n)$

- inner product $\mathbf{x}^{\top}\mathbf{v}$: 2n-1 flops (or 2n if n is large)
- sum x + y, scalar multiplication αx : n flops

matrix-vector product $\mathbf{y} = \mathbf{A}\mathbf{x}$ with $\mathbf{A} \in \mathbf{R}^{m \times n}$

- m(2n-1) flops (or 2mn if n large)
 - 2N if Λ is sparse with N panzers elements
- 2N if A is sparse with N nonzero elements
 2p(n+m) if A is given as A = UV^T, U ∈ R^{m×p}, V ∈ R^{n×p}

matrix-matrix product $\mathbf{C} = \mathbf{A}\mathbf{B}$ with $\mathbf{A} \in \mathbf{R}^{m \times n}$, $\mathbf{B} \in \mathbf{R}^{n \times p}$

- mp(2n-1) flops (or 2mnp if n large)
- \bullet less if ${\bf A}$ and/or ${\bf B}$ are sparse
- $(1/2)m(m+1)(2n-1) \approx m^2 n$ if m=p and C symmetric

Linear equations that are easy to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$

• diagonal matrices $(a_{ij} = 0 \text{ if } i \neq j \text{ and } a_{ii} \neq 0 \text{ for all } i)$: n flops

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = [b_1/a_{11}; b_2/a_{22}; \cdots; b_n/a_{nn}]$$

• lower triangular $(a_{ij} = 0 \text{ if } j > i \text{ and } a_{ii} \neq 0 \text{ for all } i)$: n^2 flops

$$x_1 = b_1/a_{11}$$

 $x_2 = (b_2 - a_{21}x_1)/a_{22}$
 \dots
 $x_n = (b_n - a_{n1}x_1 - \dots - a_{n,n-1}x_{n-1})/a_{nn}$

called forward substitution

• upper triangular $(a_{ij} = 0 \text{ if } j < i \text{ and } a_{ii} \neq 0 \text{ for all } i)$: n^2 flops via backward substitution

Special matrix for Ax = b

- orthogonal matrices $(\mathbf{A}^{-1} = \mathbf{A}^H)$
 - $2n^2$ flops to compute $\mathbf{x} = \mathbf{A}^H \mathbf{b}$ for general \mathbf{A}
 - less with structure, e.g., if $\mathbf{A} = \mathbf{I} 2\mathbf{u}\mathbf{u}^{\top}$ with $\|\mathbf{u}\|_2 = 1$, we can compute $\mathbf{x} = \mathbf{A}^{\top}\mathbf{b} = \mathbf{b} 2(\mathbf{u}^{\top}\mathbf{b})\mathbf{u}$ in 4n flops
 - permutation matrices:

$$a_{ij} = \begin{cases} 1 & j = \pi_i \\ 0 & \text{otherwise} \end{cases}$$

where $\pi = (\pi_1, \pi_2, \dots, \pi_n)$ is a permutation of $(1, 2, \dots, n)$.

- interpretation: $\mathbf{A}\mathbf{x} = (x_{\pi_1}, \dots, x_{\pi_n})$
- cost of solving Ax = b is 0 flops

example:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad \mathbf{A}^{-1} = \mathbf{A}^{\top} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

- orthogonal matrices $(\mathbf{A}^{-1} = \mathbf{A}^H)$
 - Discrete Fourier transform: $n \log(n)$ for FFT

$$W = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{n-1}\\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)}\\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(n-1)}\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix},$$

where $\omega = e^{-2\pi i/n}$

- Discrete Wavelet transform: only ${\cal O}(n)$ in certain cases

The factor-solve method for solving Ax = b

factor A as a product of simple matrices (usually 2 or 3):

$$\mathbf{A} = \mathbf{A}_1 \mathbf{A}_2 \cdots \mathbf{A}_k$$

 $(A_i \text{ diagonal, upper or lower triangular, etc})$

• compute $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \mathbf{A}_k^{-1}\cdots \mathbf{A}_2^{-1}\mathbf{A}_1^{-1}\mathbf{b}$ by solving k 'easy' equations

$$\mathbf{A}_1\mathbf{x}_1 = b, \quad \mathbf{A}_2\mathbf{x}_2 = \mathbf{x}_1, \quad \dots, \quad \mathbf{A}_k\mathbf{x} = \mathbf{x}_{k-1}$$

cost of factorization step usually dominates cost of solve step

equations with multiple righthand sides

$$\mathbf{A}\mathbf{x}_1 = b_1, \quad \mathbf{A}\mathbf{x}_2 = \mathbf{b}_2, \quad \dots, \quad \mathbf{A}\mathbf{x}_m = \mathbf{b}_m$$

cost: one factorization plus m solves

LU factorization

every nonsingular matrix ${f A}$ can be factored as

$$A = PLU$$

with ${\bf P}$ a permutation matrix, ${\bf L}$ lower triangular, ${\bf U}$ upper triangular cost: $(2/3)n^3$ flops

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \mathbf{U}^{-1}\mathbf{L}^{-1}\mathbf{P}^{-1}\mathbf{b}$$

- 1. LU factorization: $(2/3)n^3$
- 2. Permutation: 0
- 3. Lower triangular: n^2
- 4. Upper triangular: n^2

Total costs: $(2/3)n^3 + 0 + n^2 + n^2 \approx (2/3)n^3$ flops for large n.

sparse LU factorization

$$A = P_1 L U P_2$$

- adding permutation matrix P₂ offers possibility of sparser L, U (hence, cheaper factor and solve steps)
- P_1 and P_2 chosen (heuristically) to yield sparse L, U
- choice of \mathbf{P}_1 and \mathbf{P}_2 depends on sparsity pattern and values of \mathbf{A}
- cost is usually much less than $(2/3)n^3$; exact value depends in a complicated way on n, number of zeros in \mathbf{A} , sparsity pattern

Cholesky factorization

every symmetric/Hermitian positive definite matrix ${\bf A}$ can be factored as

$$\mathbf{A} = \mathbf{L}\mathbf{L}^H$$

with ${f L}$ lower triangular.

cost: $(1/3)n^3$ flops

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = (\mathbf{L}\mathbf{L}^H)^{-1}\mathbf{b} = \mathbf{L}^{-H}\mathbf{L}^{-1}\mathbf{b}$$

- 1. Cholesky factorization: $(1/3)n^3$
- 2. Lower triangular: n^2
- 3. Upper triangular: n^2

Total costs: $(1/3)n^3 + 0 + n^2 + n^2 \approx (1/3)n^3$ flops for large n.

sparse Cholesky factorization

$$\mathbf{A} = \mathbf{P} \mathbf{L} \mathbf{L}^H \mathbf{P}^\top$$

- ullet adding permutation matrix ${f P}$ offers possibility of sparser ${f L}$
- P chosen (heuristically) to yield sparse L
- ullet choice of ${f P}$ only depends on sparsity pattern of ${f A}$ (unlike sparse ${f L}{f U}$)

$\mathbf{L}\mathbf{D}\mathbf{L}^{\top}$ factorization

every nonsingular symmetric/Hermitian matrix ${\bf A}$ can be factored as

$$\mathbf{A} = \mathbf{P} \mathbf{L} \mathbf{D} \mathbf{L}^H \mathbf{P}^\top$$

with ${\bf P}$ a permutation matrix, ${\bf L}$ lower triangular, ${\bf D}$ block diagonal with 1×1 or 2×2 diagonal blocks.

cost: $(1/3)n^3$

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = (\mathbf{PLDL}^H\mathbf{P}^\top)^{-1}\mathbf{b} = \mathbf{P}^{-\top}\mathbf{L}^{-H}\mathbf{D}^{-1}\mathbf{L}^{-1}\mathbf{P}^{-1}\mathbf{b}$$

- total costs: $(1/3)n^3 + 0 + n^2 + n + n^2 + 0 \approx (1/3)n^3$ flops for large n
- for sparse ${\bf A}$, can choose ${\bf P}$ to yield sparse ${\bf L}$; cost $\ll (1/3)n^3$

Equations with structured sub-blocks

$$\left[\begin{array}{cc} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{array}\right] \left[\begin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \end{array}\right] = \left[\begin{array}{c} \mathbf{b}_1 \\ \mathbf{b}_2 \end{array}\right]$$

- variables $\mathbf{x}_1 \in \mathbf{R}^{n_1}$, $\mathbf{x}_2 \in \mathbf{R}^{n_2}$; blocks $\mathbf{A}_{ij} \in \mathbf{R}^{n_i \times n_j}$
- if A_{11} is nonsingular, we can eliminate x_1 :

$$\Rightarrow \left[\begin{array}{cc} \mathbf{A}_{11} & \mathbf{A}_{12} \\ & \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \end{array} \right] \left[\begin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \end{array} \right] = \left[\begin{array}{c} \mathbf{b}_1 \\ \mathbf{b}_2 - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{b}_1 \end{array} \right]$$

- 1. Form $\mathbf{A}_{11}^{-1}\mathbf{A}_{12}$ and $\mathbf{A}_{11}^{-1}\mathbf{b}_{1}$
- 2. Form $\mathbf{S} = \mathbf{A}_{22} \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$ and $\tilde{\mathbf{b}} = \mathbf{b}_2 \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{b}_1$
- 3. Determine \mathbf{x}_2 by solving $\mathbf{S}\mathbf{x}_2 = \tilde{\mathbf{b}}$
- 4. Determine \mathbf{x}_1 by solving $\mathbf{A}_{11}\mathbf{x}_1 = \mathbf{b}_1 \mathbf{A}_{12}\mathbf{x}_2$

dominant terms in flop count

- step 1+4: $f + n_2 s$ (f is cost of factoring A11; s is cost of solve step)
- step 2: $2n_2^2n_1$ (cost dominated by product of ${\bf A}_{21}$ and ${\bf A}_{11}^{-1}{\bf A}_{12}$)
- total: $f + n_2 s + 2n_2^2 n_1 + (2/3)n_2^3$

examples

• step 3: $(2/3)n_2^3$

- general ${f A}_{11}$ $(f=(2/3)n_1^3,\ s=2n_1^2)$: no gain over standard method
 - #flops = $(2/3)n_1^3 + 2n_1^2n_2 + 2n_2^2n_1 + (2/3)n_2^3 = (2/3)(n_1 + n_2)^3$
 - block elimination is useful for structured ${\bf A}_{11}$ ($f \ll n_1^3$) for example, diagonal ($f=0,\ s=n_1$): # flops $\approx 2n_2^2n_1+(2/3)n_2^3$

Structured matrix plus low rank term

$$(\mathbf{A} + \mathbf{BC})\mathbf{x} = \mathbf{b}$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$, and $\mathbf{C} \in \mathbb{R}^{p \times n}$. Assume that \mathbf{A} has structure such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ is easy to solve. We can rewrite is as

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{C} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{I} + \mathbf{C}\mathbf{A}^{-1}\mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{0} + \mathbf{C}\mathbf{A}^{-1}\mathbf{b} \end{bmatrix}$$

$$(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}$$

example: A diagonal, B, C dense

• method 1: form D = A + BC, then solve Dx = b

then compute $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} - \mathbf{A}^{-1}\mathbf{B}\mathbf{y}$ cost: $2p^2n + (2/3)p^3$ (i.e., linear in n)

cost: $(2/3)n^3 + 2pn^2$

 $(\mathbf{I} + \mathbf{C}\mathbf{A}^{-1}\mathbf{B})\mathbf{v} = \mathbf{C}\mathbf{A}^{-1}\mathbf{b}.$

Underdetermined linear equations

if $\mathbf{A} \in \mathbf{R}^{p \times n}$ with p < n, $rank \mathbf{A} = p$,

$$\{\mathbf{x}|\mathbf{A}\mathbf{x}=\mathbf{b}\}=\{\mathbf{F}\mathbf{z}+\hat{\mathbf{x}}|\mathbf{z}\in\mathbf{R}^{n-p}\}$$

- $\hat{\mathbf{x}}$ is (any) particular solution
- lacksquare columns of $\mathbf{F} \in \mathbf{R}^{n imes (n-p)}$ span nullspace of \mathbf{A}
- \blacksquare there exist several numerical methods for computing ${\bf F}$ (QR factorization, rectangular LU factorization, . . .)

Eigenvalues and eigenvectors

Definition (Eigenvalues and eigenvectors)

Let ${\bf A}$ be a $n \times n$ square matrix, λ is an eigenvalue of ${\bf A}$ if

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

for some nonzero x, and x is the corresponding eigenvectors.

- Intuition: eigenvectors are vectors in $\mathbb{R}^n/\mathbb{C}^n$ whose direction is preserved under action of \mathbf{A} ; however, length may change.
- $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{U}^{-1}$ where \mathbf{D} is diagonal, then the diagonal entries of \mathbf{D} are eigenvalues and the columns of \mathbf{U} are eigenvectors.

Spectral theorem

Theorem (Spectral Theorem)

If $\mathbf{A} = \mathbf{A}^H$, then

- The matrix is symmetric/Hermitian ,
- all eigenvalues are real,
- eigenvectors with different eigenvalues are perpendicular
- there exists a complete orthogonal basis of eigenvectors

Singular value decomposition

Definition (SVD)

Any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}/\mathbb{C}^{m \times n}$ can be written as

$$\mathbf{A} = \mathbf{U}\Sigma \mathbf{V}^H,$$

where $\mathbf{U} \in \mathbb{R}^{m \times m}/\mathbb{C}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}/\mathbb{C}^{n \times n}$ are unitary and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.

- $UU^H = U^HU = I$ and $VV^H = V^HV = I$ (unitary)
- Diagonal entries of Σ are called the singular values; they are positive and real. Typically, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, where r is the rank of \mathbf{A} .
- $\mathbf{A}^H \mathbf{A} = \mathbf{V} \Sigma^\top \mathbf{U}^H \mathbf{U} \Sigma \mathbf{V}^H = \mathbf{V} \Sigma^\top \Sigma \mathbf{V}^H$. Therefore, $\sqrt{\mathbf{A}^H \mathbf{A}} = \mathbf{V} \sqrt{\Sigma^\top \Sigma} \mathbf{V}^H$
- Singular values are the eigenvalues of $\sqrt{\mathbf{A}^H \mathbf{A}}$ and $\sqrt{\mathbf{A} \mathbf{A}^H}$.
- The columns of V are eigenvectors of A^HA, and the columns of U are eigenvectors of AA^H.
- If $A = A^H$, singular values are the same as the eigenvalues
- Geometric picture and other properties, read Wikipedia

Singular value decomposition

Definition (SVD2)

Any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be written as

$$\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^{\mathsf{T}},$$

where $\mathbf{U} \in \mathbb{R}^{m \times r}$ and $\mathbf{V} \in \mathbb{R}^{n \times r}$ are unitary and $\Sigma \in \mathbb{R}^{r \times r}$ is diagonal.

- If \mathbf{A}^{-1} exists, then $\mathbf{A}^{-1} = \mathbf{V} \Sigma^{-1} \mathbf{U}^{\top}$
- Even if A is singular, we can deïňAne a pseudo-inverse A^* as follows:
- The ratio of the largest to smallest singular value is the so-called condition number of A

Matrix norm

Definition (Spectral norm)

$$\|\mathbf{A}\|_{2,2} = \max_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2} = \max_{\|\mathbf{x}\|_2 = 1} \|\mathbf{A}\mathbf{x}\|_2$$

- The norm is call the induced norm or the ℓ_2 -norm
- Quantifies the maximum increase in length of unit-norm vectors due to the operation of the matrix A
- $\|\mathbf{A}\|_{2,2}$ is equal to the largest singular value of \mathbf{A}
- $\|\mathbf{A}\mathbf{x}\|_2 \le \|\mathbf{A}\|_{2,2} \|\mathbf{x}\|_2$ (Q: When is it equal?)

Lemma

$$\|\mathbf{A}\mathbf{B}\|_{2,2} \leq \|\mathbf{A}\|_{2,2} \|\mathbf{B}\|_{2,2}$$

Induced matrix norm

Definition

$$\|\mathbf{A}\|_{p,q} = \max_{\mathbf{z} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_q}{\|\mathbf{x}\|_p} = \max_{\|\mathbf{x}\|_p = 1} \|\mathbf{A}\mathbf{x}\|_q$$

- $\|\mathbf{A}\|_{2,2}$: the maximum singular value of \mathbf{A} .
- $\|\mathbf{A}\|_{1,1}$: the maximum of the absolute column sums.
- $\|\mathbf{A}\|_{\infty,\infty}$: the maximum of the absolute row sums.
- $\quad \|\mathbf{A}\mathbf{x}\|_q \leq \|\mathbf{A}\|_{p,q} \|\mathbf{x}\|_p$
- $\|\mathbf{A}\|_{2,2}^2 \le \|\mathbf{A}\|_{1,1} \|\mathbf{A}\|_{\infty,\infty}$

Other frequently-used matrix norms

Definition (Frobenius norm)

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i,j} |a_{ij}|^2} = \sqrt{\operatorname{tr}(\mathbf{A}^H \mathbf{A})} = \sqrt{\operatorname{tr}(\mathbf{A}\mathbf{A}^H)}$$

Definition (Nuclear norm)

$$\|\mathbf{A}\|_* = \operatorname{tr}(\sqrt{\mathbf{A}^H \mathbf{A}}) = \sum_{i=1}^{\min(m,n)} \sigma_i$$

where σ_i are the singular values of the matrix A.

All matrix norms are equivalent.

Derivatives with vectors I

Vector-by-scalar $\mathbf{y} \in \mathbf{R}^n$

$$\frac{\partial \mathbf{y}}{\partial x} = \left[\frac{\partial y_1}{\partial x}, \frac{\partial y_2}{\partial x}, \cdots, \frac{\partial y_n}{\partial x} \right]$$

$$\bullet \ \frac{\partial x \mathbf{a}}{\partial x} = \mathbf{a}^{\top}$$

Scalar-by-vector $\mathbf{x} \in \mathbf{R}^n$

$$\frac{\partial y}{\partial \mathbf{x}} = \left[\frac{\partial y}{\partial x_1}; \frac{\partial y}{\partial x_2}; \dots; \frac{\partial y}{\partial x_n} \right]$$

$$\nabla_{\mathbf{u}} f(\mathbf{x}) = \nabla f(\mathbf{x})^{\top} \mathbf{u}$$

Derivatives with vectors II

Vector-by-vector $\mathbf{x} \in \mathbf{R}^n$ and $\mathbf{y} \in \mathbf{R}^m$

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \frac{\partial y_2}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

$$\bullet \ \frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}^{\top}$$

$$\bullet \ \frac{\partial (\mathbf{u}(\mathbf{x}) \cdot \mathbf{a})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{u}(\mathbf{x})^{\top} \mathbf{a})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}(\mathbf{x})}{\partial \mathbf{x}} \mathbf{a}$$

Vector-by-vector identities

• \mathbf{a} is not a function of \mathbf{x} : $\frac{\partial \mathbf{a}}{\partial \mathbf{v}} = \mathbf{0}$

$$\quad \frac{\partial \mathbf{x}}{\partial \mathbf{x}} = \mathbf{I}$$

• \mathbf{A} is not a function of \mathbf{x} : $\frac{\partial \mathbf{A} \mathbf{x}}{\mathbf{x}} = \mathbf{A}^{\top}$

• A is not a function of x:
$$\frac{\partial \mathbf{x}^{\top} \mathbf{A}}{\partial \mathbf{x}} = \frac{\partial \mathbf{A}^{\top} \mathbf{x}}{\mathbf{x}} = \mathbf{A}$$

•
$$a$$
 is not a function of \mathbf{x} , $\mathbf{u} = \mathbf{u}(\mathbf{x})$: $\frac{\partial a\mathbf{u}}{\partial \mathbf{x}} = a\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$

•
$$\frac{\partial (\mathbf{u} + \mathbf{v})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$$

• $a = a(\mathbf{x}), \ \mathbf{u} = \mathbf{u}(\mathbf{x}): \ \frac{\partial a\mathbf{u}}{\partial \mathbf{x}} = a\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial a}{\partial \mathbf{x}} \mathbf{u}^{\top}$

•
$$\mathbf{u} = \mathbf{u}(\mathbf{x})$$
: $\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}}$

• A is not a function of \mathbf{x} , $\mathbf{u} = \mathbf{u}(\mathbf{x})$: $\frac{\partial \mathbf{A}\mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A}^{\top}$

•
$$\mathbf{u} = \mathbf{u}(\mathbf{x})$$
: $\frac{\partial \mathbf{f}(\mathbf{g}(\mathbf{u}))}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}}$

Scalar-by-vector identities

•
$$a$$
 is not a function of \mathbf{x} : $\frac{\partial a}{\partial \mathbf{x}} = \mathbf{0}$

•
$$a$$
 is not a function of \mathbf{x} , $u = u(\mathbf{x})$: $\frac{\partial au}{\partial \mathbf{x}} = a \frac{\partial u}{\partial \mathbf{x}}$

•
$$u = u(\mathbf{x}), v = v(\mathbf{x}): \frac{\partial(u+v)}{\partial \mathbf{x}} = \frac{\partial u}{\partial \mathbf{x}} + \frac{\partial v}{\partial \mathbf{x}}$$

•
$$u = u(\mathbf{x}), v = v(\mathbf{x}): \frac{\partial uv}{\partial \mathbf{x}} = \frac{\partial u}{\partial \mathbf{x}}v + u\frac{\partial v}{\partial \mathbf{x}}$$

•
$$u = u(\mathbf{x})$$
: $\frac{\partial g(u)}{\partial \mathbf{x}} = \frac{\partial u}{\partial \mathbf{x}} \frac{\partial g(u)}{\partial u}$

•
$$u = u(\mathbf{x})$$
: $\frac{\partial \mathbf{x}}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \mathbf{x}} \frac{\partial u}{\partial u} \frac{\partial g(u)}{\partial u} \frac{\partial f(g)}{\partial g}$

•
$$\mathbf{u} = \mathbf{u}(\mathbf{x}), \ \mathbf{v} = \mathbf{v}(\mathbf{x}): \ \frac{\partial (\mathbf{u}^{\top} \mathbf{v})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{u}$$

• $\mathbf{u} = \mathbf{u}(\mathbf{x}), \ \mathbf{v} = \mathbf{v}(\mathbf{x}), \ \mathbf{A} \text{ is not a function of } \mathbf{x}:$

•
$$\mathbf{u} = \mathbf{u}(\mathbf{x}), \ \mathbf{v} = \mathbf{v}(\mathbf{x}), \ \mathbf{A} \text{ is not a function of } \mathbf{x}$$

$$\frac{\partial (\mathbf{u}^{\top} \mathbf{A} \mathbf{v})}{\partial \mathbf{v}} = \frac{\partial \mathbf{u}}{\partial \mathbf{v}} \mathbf{A} \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{v}} \mathbf{A}^{\top} \mathbf{u}$$

Scalar-by-vector identities

•
$$\mathbf{a}$$
 is not a function of \mathbf{x} : $\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}$

• A is not a function of x, b is not a function of x:
$$\frac{\partial \mathbf{b}^{\top} A \mathbf{x}}{\partial \mathbf{x}} = \mathbf{A}^{\top} \mathbf{b}$$

$$\frac{\partial \mathbf{x}^{\top} \mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{x}$$

• A is not a function of
$$\mathbf{x}$$
: $\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{x}$

•
$$\mathbf{A}$$
 is not a function of \mathbf{x} : $\frac{\partial^2 \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial \mathbf{x}^2} = \mathbf{A} + \mathbf{A}^\top$

$$\bullet \ \, {\bf a} \, \, {\rm is \, not \, a \, function \, of \, } {\bf x}, \, u = u({\bf x}) \colon \, \frac{\partial {\bf a}^{\top} {\bf u}}{\partial {\bf x}} = \frac{\partial {\bf u}^{\top} {\bf a}}{\partial {\bf x}} = \frac{\partial {\bf u}}{\partial {\bf x}} {\bf a}$$

• a, b are not functions of
$$\mathbf{x}$$
: $\frac{\partial \mathbf{a}^{\top} \mathbf{x} \mathbf{x}^{\top} \mathbf{b}}{\partial \mathbf{x}} = (\mathbf{a} \mathbf{b}^{\top} + \mathbf{b} \mathbf{a}^{\top}) \mathbf{x}$

• A, b, C, D, e are not functions of x:
$$\frac{\partial (\mathbf{A}\mathbf{x} + \mathbf{b})^{\top} \mathbf{C} (\mathbf{D}\mathbf{x} + \mathbf{e})}{\partial \mathbf{x}} = \mathbf{D}^{\top} \mathbf{C}^{\top} (\mathbf{A}\mathbf{x} + \mathbf{b}) + \mathbf{A}^{\top} \mathbf{C} (\mathbf{D}\mathbf{x} + \mathbf{e})$$

• a is not a function of x:
$$\frac{\partial \|\mathbf{x} - \mathbf{a}\|}{\partial \mathbf{x}} = \frac{\mathbf{x} - \mathbf{a}}{\|\mathbf{x} - \mathbf{a}\|}$$

Derivatives with matrices

Scalar-by-matrix $\mathbf{X} \in \mathbf{R}^{p imes q}$

$$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{12}} & \cdots & \frac{\partial y}{\partial x_{1q}} \\ \frac{\partial y}{\partial x_{21}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{2q}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{p1}} & \frac{\partial y}{\partial x_{p2}} & \cdots & \frac{\partial y}{\partial x_{pq}} \end{bmatrix}$$

Scalar-by-matrix identities

- $\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{A}^{\top})$
- tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC)
- $\bullet \ \frac{\partial \operatorname{tr}(\mathbf{A}\mathbf{X})}{\partial \mathbf{X}} = \mathbf{A}^{\top}$
- $\bullet \ \frac{\partial \operatorname{tr}(\mathbf{X}^{\top} \mathbf{A} \mathbf{X})}{\partial \mathbf{Y}} = (\mathbf{A} + \mathbf{A}^{\top}) \mathbf{X}$
- $\frac{\partial \operatorname{tr}(\mathbf{X}^{-1}\mathbf{A})}{\partial \mathbf{X}} = -(\mathbf{X}^{-1})^{\top} \mathbf{A}^{\top} (\mathbf{X}^{-1})^{\top}$
- $\bullet \ \frac{\partial \operatorname{tr}(\mathbf{A} \mathbf{X} \mathbf{B} \mathbf{X}^{\top} \mathbf{C})}{\partial \mathbf{X}} = \mathbf{A}^{\top} \mathbf{C}^{\top} \mathbf{X} \mathbf{B}^{\top} + \mathbf{C} \mathbf{A} \mathbf{X} \mathbf{B}$
- $\frac{\partial \operatorname{tr}(\mathbf{X}^n)}{\partial \mathbf{Y}} = n(\mathbf{X}^{n-1})^{\top}$

- $\bullet \ \frac{\partial \operatorname{tr}(e^{\mathbf{X}})}{\partial \mathbf{Y}} = (e^{\mathbf{X}})^{\top}$
- $\bullet \frac{\partial \operatorname{tr}(\sin(\mathbf{X}))}{\partial \mathbf{Y}} = (\cos(\mathbf{X}))^{\top}$