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Vectors

• Rn: n-dimensional Euclidean Space

• A vector x ∈ Rn/Cn is an n-tuple [x1, x2, · · · , xn], where xi ∈ R/C.

• We also consider a vector x ∈ Rn/Cn as a column vector or a n× 1
matrix.

• Inner product in Rn: For x,y ∈ Rn,
〈x,y〉 = x>y =

∑n

i=1 xiyi = y>x = 〈y,x〉 ∈ R.

• Inner product in Cn: For x,y ∈ Cn,
〈x,y〉 = xHy =

∑n

i=1 xiyi = (yHx) = 〈y,x〉 ∈ C

• Euclidean norm in Rn: For x ∈ Rn, we have ‖x‖2 =
√
〈x,x〉 ≥ 0.

• `2 norm in Cn: For x ∈ Cn, we have ‖x‖2 =
√
〈x,x〉 ≥ 0.



Cauchy-Schwarz inequality

Lemma (Cauchy-Schwarz inequality)
For any x,y ∈ Rn (or Cn), we have

|〈x,y〉| ≤ ‖x‖2‖y‖2.

• When y = 0, It is trivially true.

• When y 6= 0, we have

0 ≤‖x− λy‖2 = 〈x,x〉 − 〈λy,x〉 − 〈x, λy〉+ 〈λy, λy〉

=‖x‖2 − λ〈x,y〉 − λ̄〈x,y〉+ |λ|2‖y‖2.

Letting λ = 〈x,y〉/‖y‖2, we have

0 ≤‖x‖2 − |〈x,y〉|
2

‖y‖2 − |〈x,y〉|
2

‖y‖2 + |〈x,y〉|
2

‖y‖2 = ‖x‖2 − |〈x,y〉|
2

‖y‖2 .

• 11 Proofs for this lemma: Wu, Hui-Hua; Wu, Shanhe (April 2009).
“Various proofs of the Cauchy-Schwarz inequality”. OCTOGON
MATHEMATICAL MAGAZINE. 17 (1): 221-229.



Cauchy-Schwarz inequality

Lemma (Cauchy-Schwarz inequality)
For any x,y ∈ Rn (or Cn), we have

|〈x,y〉| ≤ ‖x‖2‖y‖2.

• It is one of the most important inequalities in all of mathematics.

• When does it hold with equality? x = (〈x,y〉/‖y‖2)y.



Triangle inequality

Lemma (Triangle inequality)
For any x,y ∈ Rn (or Cn), we have

‖x + y‖2 ≤ ‖x‖2 + ‖y‖2.

‖x + y‖2
2 =〈x + y,x + y〉 = 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉

=‖x‖2
2 + 〈x,y〉+ 〈y,x〉+ ‖y‖2

2

≤‖x‖2
2 + 2‖x‖2‖y‖2 + ‖y‖2

2 = (‖x‖2 + ‖y‖2)2.

• When does this inequality hold with equality?

• Other variants:

‖x + y‖2 ≥‖x‖2 − ‖y‖2

‖x + y‖2 ≥‖y‖2 − ‖x‖2.



More identities I

Lemma (Parallelogram identity)

‖x + y‖2
2 + ‖x− y‖2

2 = 2‖x‖2
2 + 2‖y‖2

2

Lemma (Polarization identity)

‖x + y‖2
2 − ‖x− y‖2

2 = 4〈x,y〉

Lemma (Apollonius’ identity)

‖x− y‖2
2 =2‖x‖2

2 + 2‖y‖2
2 − ‖x + y‖2

2

− ‖x + y‖2
2 − 4‖z‖2

2 + 4〈x + y, z〉

=2‖x− z‖2
2 + 2‖y− z‖2

2 − 4‖1
2(x + y)− z‖2

2



More identities II

Lemma (Cosine rule)

2〈z− x,y− z〉 = ‖y− x‖2
2 − ‖z− x‖2

2 − ‖y− z‖2
2

Lemma (Three-point identity)

2〈z− x,y〉 =‖y− x‖2
2 − ‖z− x‖2

2 − ‖y− z‖2
2 + 2〈z− x, z〉

=‖y− x‖2
2 − ‖z− x‖2

2 − ‖y− z‖2
2 + 2〈z− x, z〉

=‖y− x‖2
2 − ‖y− z‖2

2 + ‖z‖2
2 − ‖x‖2

2

Lemma (Four-point identity)

2〈z− x,y−w〉 =‖y− x‖2
2 − ‖y− z‖2

2 + ‖z‖2
2 − ‖x‖2

2

− ‖w− x‖2
2 + ‖w− z‖2

2 − ‖z‖2
2 + ‖x‖2

2

=‖y− x‖2
2 − ‖w− x‖2

2 − ‖y− z‖2
2 + ‖w− z‖2

2



What is a norm?

Norm properties
• Absolute homogeneity/scalability: ‖αx‖ = |α|‖x‖ for x ∈ V and
α ∈ R/C

• Triangle inequality or subadditivity: ‖x + y‖ ≤ ‖x‖+ ‖y‖ for x,y ∈ V

• Separates points: If ‖x‖ = 0, then x = 0

• From the absolute homogeneity, we have ‖0‖ = 0 and ‖x‖ = ‖ − x‖,
therefore 2‖x‖ = ‖x‖+ ‖ − x‖ ≥ ‖x + (−x)‖ = 0.

• A seminorm is a function that satisfies absolute homogeneity and triangle
inequality.

• Two norms (or seminorms) ‖ · ‖p and ‖ · ‖q on a vector space V are
equivalent if there exist two real constants c and C, with c > 0 such that

c‖x‖q ≤ ‖x‖p ≤ C‖x‖q ∀x ∈ V.



Norm in Rn?

• ‖x‖2

• ‖x‖0: the number of non-zeros in x

• ‖x‖1: taxicab norm or Manhattan norm

• ‖∇x‖2 =
√∑n−1

i=1 (xi+1 − xi)2

•
√

x>Ax for some matrix A

• ...



`p norm

Definition (`p norm in Rn/Cn)

When p ≥ 1, ‖x‖p =
(∑n

i=1 |xi|
p
)1/p for x ∈ Rn/Cn.

• `2 norm: ‖x‖2 =
√∑n

i=1 |xi|2

• `1 norm: ‖x‖1 =
∑n

i=1 |xi|

• `∞ norm: ‖x‖∞ = maxni=1 |xi|

• ‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞

• ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞
• ‖x‖2 ≤ ‖x‖1 ≤

√
n‖x‖2

• ‖x‖q ≤ ‖x‖p ≤ n1/p−1/q‖x‖q for 1 ≤ p < q



Holder’s inequality

Lemma (Holder’s inequality)
|〈x,y〉| ≤ ‖x‖p‖y‖q with 1/p+ 1/q = 1 and p, q ∈ [1,∞]

• ‖ · ‖p and ‖ · ‖q are dual norms.



Collection of vectors, subspaces

A set of m vectors, V = {x1,x2, · · · ,xm}

• Linear combination:
∑m

j=1 αjxj , αj ∈ R/C.

• Linearly independent: No vector in V can be written as linear
combination of other. If 0 =

∑m

j=1 αjxj , then αj = 0 for all
j = 1, · · · ,m.

• Span: Span(V) = {x|x =
∑m

j=1 αjxj , αj ∈ R/C}.

Definition (Subspace)
A collection of vectors V ⊂ Rn/Cn is a subspace iff it is closed under linear
combination, i.e.,

x,y ∈ V⇒ αx + βy ∈ V, ∀α, β ∈ R/C

• Basis of a subspace: A linearly independent spanning set

• Dimensionality of a subspace: the number of elements in a basis



Matrix

• A ∈ Rm×n: A matrix of dimension m× n.

• A = [aij ] = [a1,a2, · · · ,ab], here ai ∈ Rm/Cm

• Rank(A) is the largest number of linearly independent columns, which is
equivalent to the largest number of linear independent rows.

• Rank(A) = Rank(AH) ≤ min(m,n)

• A is full-rank if Rank(A) = min(m,n).

• A is full-row-rank if Rank(A) = m and full-column-rank if Rank(A) = n.

Matrices are representations of linear operators.

A : Rn/Cn → Rm/Cm x ∈ Rn/Cm 7→ Ax ∈ Rm/Cm.

Examples of linear operators that aren’t matrices?



Matrix structure and algorithm complexity

cost (execution time) of solving Ax = b with A ∈ Rn×n

• n3 for general methods

• less if A is structured (banded, sparse, Toeplitz, . . . )

Flop counts

• flop (floating-point operation): one addition, subtraction, multiplication,
or division of two floating-point numbers

• to estimate complexity of an algorithm: express number of flops as a
(polynomial) function of the problem dimensions, and simplify by keeping
only the leading terms

• not an accurate predictor of computation time on modern computers

• useful as a rough estimate of complexity



vector-vector operations (x,y ∈ Rn)

• inner product x>y: 2n− 1 flops (or 2n if n is large)

• sum x + y, scalar multiplication αx: n flops

matrix-vector product y = Ax with A ∈ Rm×n

• m(2n− 1) flops (or 2mn if n large)

• 2N if A is sparse with N nonzero elements

• 2p(n+m) if A is given as A = UV>, U ∈ Rm×p, V ∈ Rn×p

matrix-matrix product C = AB with A ∈ Rm×n, B ∈ Rn×p

• mp(2n− 1) flops (or 2mnp if n large)

• less if A and/or B are sparse

• (1/2)m(m+ 1)(2n− 1) ≈ m2n if m = p and C symmetric



Linear equations that are easy to solve Ax = b

• diagonal matrices (aij = 0 if i 6= j and aii 6= 0 for all i): n flops

x = A−1b = [b1/a11; b2/a22; · · · ; bn/ann]

• lower triangular (aij = 0 if j > i and aii 6= 0 for all i): n2 flops

x1 =b1/a11

x2 =(b2 − a21x1)/a22

· · ·

xn =(bn − an1x1 − · · · − an,n−1xn−1)/ann

called forward substitution

• upper triangular (aij = 0 if j < i and aii 6= 0 for all i): n2 flops via
backward substitution



Special matrix for Ax = b

• orthogonal matrices (A−1 = AH)
• 2n2 flops to compute x = AHb for general A
• less with structure, e.g., if A = I− 2uu> with ‖u‖2 = 1, we can

compute x = A>b = b− 2(u>b)u in 4n flops
• permutation matrices:

aij =
{

1 j = πi

0 otherwise

where π = (π1, π2, · · · , πn) is a permutation of (1, 2, · · · , n).
• interpretation: Ax = (xπ1 , . . . , xπn )
• cost of solving Ax = b is 0 flops

example:

A =

 0 1 0
0 0 1
1 0 0

 , A−1 = A> =

 0 0 1
1 0 0
0 1 0





• orthogonal matrices (A−1 = AH)
• Discrete Fourier transform: n log(n) for FFT

W = 1√
n



1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2(n−1)

1 ω3 ω6 ω9 · · · ω3(n−1)

...
...

...
...

. . .
...

1 ωn−1 ω2(n−1) ω3(n−1) · · · ω(n−1)(n−1)


,

where ω = e−2πi/n

• Discrete Wavelet transform: only O(n) in certain cases



The factor-solve method for solving Ax = b

• factor A as a product of simple matrices (usually 2 or 3):

A = A1A2 · · ·Ak

(Ai diagonal, upper or lower triangular, etc)

• compute x = A−1b = A−1
k · · ·A

−1
2 A−1

1 b by solving k ‘easy’ equations

A1x1 = b, A2x2 = x1, . . . , Akx = xk−1

cost of factorization step usually dominates cost of solve step

equations with multiple righthand sides

Ax1 = b1, Ax2 = b2, . . . , Axm = bm

cost: one factorization plus m solves



LU factorization

every nonsingular matrix A can be factored as

A = PLU

with P a permutation matrix, L lower triangular, U upper triangular
cost: (2/3)n3 flops

x = A−1b = U−1L−1P−1b

1. LU factorization: (2/3)n3

2. Permutation: 0

3. Lower triangular: n2

4. Upper triangular: n2

Total costs: (2/3)n3 + 0 + n2 + n2 ≈ (2/3)n3 flops for large n.



sparse LU factorization
A = P1LUP2

• adding permutation matrix P2 offers possibility of sparser L, U (hence,
cheaper factor and solve steps)

• P1 and P2 chosen (heuristically) to yield sparse L, U

• choice of P1 and P2 depends on sparsity pattern and values of A

• cost is usually much less than (2/3)n3; exact value depends in a
complicated way on n, number of zeros in A, sparsity pattern



Cholesky factorization

every symmetric/Hermitian positive definite matrix A can be factored as

A = LLH

with L lower triangular.
cost: (1/3)n3 flops

x = A−1b = (LLH)−1b = L−HL−1b

1. Cholesky factorization: (1/3)n3

2. Lower triangular: n2

3. Upper triangular: n2

Total costs: (1/3)n3 + 0 + n2 + n2 ≈ (1/3)n3 flops for large n.



sparse Cholesky factorization

A = PLLHP>

• adding permutation matrix P offers possibility of sparser L

• P chosen (heuristically) to yield sparse L

• choice of P only depends on sparsity pattern of A (unlike sparse LU)



LDL> factorization

every nonsingular symmetric/Hermitian matrix A can be factored as

A = PLDLHP>

with P a permutation matrix, L lower triangular, D block diagonal with 1× 1
or 2× 2 diagonal blocks.
cost: (1/3)n3

x = A−1b = (PLDLHP>)−1b = P−>L−HD−1L−1P−1b

• total costs: (1/3)n3 + 0 + n2 + n+ n2 + 0 ≈ (1/3)n3 flops for large n

• for sparse A, can choose P to yield sparse L; cost � (1/3)n3



Equations with structured sub-blocks

[
A11 A12

A21 A22

][
x1

x2

]
=
[

b1

b2

]

• variables x1 ∈ Rn1 , x2 ∈ Rn2 ; blocks Aij ∈ Rni×nj

• if A11 is nonsingular, we can eliminate x1:

⇒
[

A11 A12

A22 −A21A−1
11 A12

][
x1

x2

]
=
[

b1

b2 −A21A−1
11 b1

]

1. Form A−1
11 A12 and A−1

11 b1

2. Form S = A22 −A21A−1
11 A12 and b̃ = b2 −A21A−1

11 b1

3. Determine x2 by solving Sx2 = b̃

4. Determine x1 by solving A11x1 = b1 −A12x2



dominant terms in flop count

• step 1+4: f + n2s (f is cost of factoring A11; s is cost of solve step)

• step 2: 2n2
2n1 (cost dominated by product of A21 and A−1

11 A12)

• step 3: (2/3)n3
2

total: f + n2s+ 2n2
2n1 + (2/3)n3

2

examples

• general A11 (f = (2/3)n3
1, s = 2n2

1): no gain over standard method

#flops = (2/3)n3
1 + 2n2

1n2 + 2n2
2n1 + (2/3)n3

2 = (2/3)(n1 + n2)3

• block elimination is useful for structured A11 (f � n3
1)

for example, diagonal (f = 0, s = n1): # flops≈ 2n2
2n1 + (2/3)n3

2



Structured matrix plus low rank term

(A + BC)x = b

where A ∈ Rn×n, B ∈ Rn×p, and C ∈ Rp×n. Assume that A has structure
such that Ax = b is easy to solve. We can rewrite is as[

A B
−C I

][
x
y

]
=
[

b
0

]
⇒
[

A B
I + CA−1B

][
x
y

]
=
[

b
0 + CA−1b

]

(A + BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1



example: A diagonal, B, C dense

• method 1: form D = A + BC, then solve Dx = b
cost: (2/3)n3 + 2pn2

• method 2 (via matrix inversion lemma): solve

(I + CA−1B)y = CA−1b,

then compute x = A−1b−A−1By
cost: 2p2n+ (2/3)p3 (i.e., linear in n)



Underdetermined linear equations

if A ∈ Rp×n with p < n, rankA = p,

{x|Ax = b} = {Fz + x̂|z ∈ Rn−p}

• x̂ is (any) particular solution

• columns of F ∈ Rn×(n−p) span nullspace of A

• there exist several numerical methods for computing F (QR factorization,
rectangular LU factorization, . . . )



Eigenvalues and eigenvectors

Definition (Eigenvalues and eigenvectors)
Let A be a n× n square matrix, λ is an eigenvalue of A if

Ax = λx

for some nonzero x, and x is the corresponding eigenvectors.

• Intuition: eigenvectors are vectors in Rn/Cn whose direction is preserved
under action of A; however, length may change.

• A = UDU−1 where D is diagonal, then the diagonal entries of D are
eigenvalues and the columns of U are eigenvectors.



Spectral theorem

Theorem (Spectral Theorem)
If A = AH , then

• The matrix is symmetric/Hermitian ,

• all eigenvalues are real,

• eigenvectors with different eigenvalues are perpendicular

• there exists a complete orthogonal basis of eigenvectors



Singular value decomposition
Definition (SVD)
Any matrix A ∈ Rm×n/Cm×n can be written as

A = UΣVH ,

where U ∈ Rm×m/Cm×m and V ∈ Rn×n/Cn×n are unitary and Σ ∈ Rm×n is
diagonal.

• UUH = UHU = I and VVH = VHV = I (unitary)
• Diagonal entries of Σ are called the singular values; they are positive and

real. Typically, σ1 ≥ σ2 ≥ · · · ≥ σr > 0, where r is the rank of A.
• AHA = VΣ>UHUΣVH = VΣ>ΣVH . Therefore,√

AHA = V
√

Σ>ΣVH

• Singular values are the eigenvalues of
√

AHA and
√

AAH .
• The columns of V are eigenvectors of AHA, and the columns of U are

eigenvectors of AAH .
• If A = AH , singular values are the same as the eigenvalues
• Geometric picture and other properties, read Wikipedia



Singular value decomposition

Definition (SVD2)
Any matrix A ∈ Rm×n can be written as

A = UΣV>,

where U ∈ Rm×r and V ∈ Rn×r are unitary and Σ ∈ Rr×r is diagonal.

• If A−1 exists, then A−1 = VΣ−1U>

• Even if A is singular, we can deïňĄne a pseudo-inverse A∗ as follows:

• The ratio of the largest to smallest singular value is the so-called condition
number of A



Matrix norm

Definition (Spectral norm)

‖A‖2,2 = max
x6=0

‖Ax‖2

‖x‖2
= max
‖x‖2=1

‖Ax‖2

• The norm is call the induced norm or the `2-norm

• Quantifies the maximum increase in length of unit-norm vectors due to the
operation of the matrix A

• ‖A‖2,2 is equal to the largest singular value of A

• ‖Ax‖2 ≤ ‖A‖2,2‖x‖2 (Q: When is it equal?)

Lemma

‖AB‖2,2 ≤ ‖A‖2,2‖B‖2,2



Induced matrix norm

Definition

‖A‖p,q = max
z6=0

‖Ax‖q
‖x‖p

= max
‖x‖p=1

‖Ax‖q

• ‖A‖2,2: the maximum singular value of A.

• ‖A‖1,1: the maximum of the absolute column sums.

• ‖A‖∞,∞: the maximum of the absolute row sums.

• ‖Ax‖q ≤ ‖A‖p,q‖x‖p
• ‖A‖2

2,2 ≤ ‖A‖1,1‖A‖∞,∞



Other frequently-used matrix norms

Definition (Frobenius norm)

‖A‖F =
√∑

i,j

|aij |2 =
√

tr(AHA) =
√

tr(AAH)

Definition (Nuclear norm)

‖A‖∗ = tr(
√

AHA) =
min(m,n)∑
i=1

σi

where σi are the singular values of the matrix A.

• All matrix norms are equivalent.



Derivatives with vectors I

Vector-by-scalar y ∈ Rn

∂y
∂x

=
[
∂y1

∂x
,
∂y2

∂x
, · · · , ∂yn

∂x

]

• ∂xa
∂x

= a>

Scalar-by-vector x ∈ Rn

∂y

∂x =
[
∂y

∂x1
; ∂y
∂x2

; · · · ; ∂y
∂xn

]

• ∇uf(x) = ∇f(x)>u



Derivatives with vectors II

Vector-by-vector x ∈ Rn and y ∈ Rm

∂y
∂x =


∂y1
∂x1

∂y2
∂x1

· · · ∂ym
∂x1

∂y1
∂x2

∂y2
∂x2

· · · ∂ym
∂x2

...
...

. . .
...

∂y1
∂xn

∂y2
∂xn

· · · ∂ym
∂xn



• ∂Ax
∂x = A>

• ∂(u(x) · a)
∂x = ∂(u(x)>a)

∂x = ∂u(x)
∂x a



Vector-by-vector identities

• a is not a function of x: ∂a
∂x = 0

• ∂x
∂x = I

• A is not a function of x: ∂Ax
x = A>

• A is not a function of x: ∂x>A
∂x = ∂A>x

x = A

• a is not a function of x, u = u(x): ∂au
∂x = a

∂u
∂x

• ∂(u + v)
∂x = ∂u

∂x + ∂v
∂x

• a = a(x), u = u(x): ∂au
∂x = a

∂u
∂x + ∂a

∂xu>

• u = u(x): ∂g(u)
∂x = ∂u

∂x
∂g(u)
∂u

• A is not a function of x, u = u(x): ∂Au
∂x = ∂u

∂x A>

• u = u(x): ∂f(g(u))
∂x = ∂u

∂x
∂g(u)
∂u

∂f(g)
∂g



Scalar-by-vector identities

• a is not a function of x: ∂a

∂x = 0

• a is not a function of x, u = u(x): ∂au
∂x = a

∂u

∂x

• u = u(x), v = v(x): ∂(u+ v)
∂x = ∂u

∂x + ∂v

∂x

• u = u(x), v = v(x): ∂uv
∂x = ∂u

∂xv + u
∂v

∂x

• u = u(x): ∂g(u)
∂x = ∂u

∂x
∂g(u)
∂u

• u = u(x): ∂f(g(u))
∂x = ∂u

∂x
∂g(u)
∂u

∂f(g)
∂g

• u = u(x), v = v(x): ∂(u>v)
∂x = ∂u

∂x v + ∂v
∂xu

• u = u(x), v = v(x), A is not a function of x:
∂(u>Av)

∂x = ∂u
∂x Av + ∂v

∂xA>u



Scalar-by-vector identities

• a is not a function of x: ∂a>x
∂x = ∂x>a

∂x = a

• A is not a function of x, b is not a function of x: ∂b>Ax
∂x = A>b

• ∂x>x
∂x = 2x

• A is not a function of x: ∂x>Ax
∂x = (A + A>)x

• A is not a function of x: ∂
2x>Ax
∂x2 = A + A>

• a is not a function of x, u = u(x): ∂a>u
∂x = ∂u>a

∂x = ∂u
∂x a

• a, b are not functions of x: ∂a>xx>b
∂x = (ab> + ba>)x

• A, b, C, D, e are not functions of x:
∂(Ax + b)>C(Dx + e)

∂x = D>C>(Ax + b) + A>C(Dx + e)

• a is not a function of x: ∂‖x− a‖
∂x = x− a

‖x− a‖



Derivatives with matrices

Scalar-by-matrix X ∈ Rp×q

∂y

∂X =


∂y
∂x11

∂y
∂x12

· · · ∂y
∂x1q

∂y
∂x21

∂y
∂x22

· · · ∂y
∂x2q

...
...

. . .
...

∂y
∂xp1

∂y
∂xp2

· · · ∂y
∂xpq





Scalar-by-matrix identities

• tr(A) = tr(A>)

• tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC)

• ∂ tr(AX)
∂X = A>

• ∂ tr(X>AX)
∂X = (A + A>)X

• ∂ tr(X−1A)
∂X = −(X−1)>A>(X−1)>

• ∂ tr(AXBX>C)
∂X = A>C>XB> + CAXB

• ∂ tr(Xn)
∂X = n(Xn−1)>

• ∂ tr(AXn)
∂X =

n−1∑
i=0

(XiAXn−i−1)>

• ∂ tr(eX)
∂X = (eX)>

• ∂ tr(sin(X))
∂X = (cos(X))>


